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ABSTRACT. In this paper, we study an algorithm (which we call the support reduction algorithm)
that can be used to compute non-parametric M-estimators in mixture models. The algorithm is
compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in
quantum physics.
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1. Introduction

During the past decades emphasis in statistics has shifted from the study of parametric
models to that of semi- or non-parametric models. An advantage of the latter models is their
flexibility and ability to ‘let the data speak for themselves’. However, problems that can usually
be solved using standard techniques in the parametric case, can be much more difficult in
the semiparametric situation. One of these problems is that of computing an M -estimator,
which is defined as the minimizer of a random criterion function over an appropriate para-
meter set. In parametric models, estimates can often be computed explicitly or approximated
using some numerical technique for solving (low dimensional) convex unconstrained optimi-
zation problems like steepest descent or Newton. In semi- and non-parametric models, the
computational issues often boil down to high dimensional constrained optimization prob-
lems. Especially in the context of methods involving resampling or when a profile likelihood
is to be computed in a semiparametric model (where estimates often have to be computed
many times), the availability of computationally efficient algorithms is crucial.

Within the general theory of optimization, methods can be found to solve optimization
problems in the context of these models. For instance, interior point methods (see e.g. Wright,
1994) and active set methods (see e.g. Luenberger, 1973 and, in a statistical context, Diimbgen
et al., 2007). Also within the field of statistics, algorithms have been developed that are par-
ticularly useful in certain statistical applications. Perhaps the best known example of this
type is the Expectation Maximization (EM) algorithm of Dempster et al. (1977), which is
designed to compute maximum likelihood (ML) estimates based on incomplete data.
Another example is the iterative convex minorant algorithm that is introduced in Groeneboom
& Wellner (1992) and further studied in Jongbloed (1998). That algorithm is based on isotonic
regression techniques as can be found in Robertson ez al. (1988). It is mostly used to com-
pute shape-restricted estimators of distribution functions in semiparametric models. Another
class of algorithms developed in the statistics community is the class of vertex direction (VD)
algorithms as introduced and studied in Simar (1976), Bohning (1986) and Lesperance &
Kalbfleisch (1992).
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In this paper, we study what we call a support reduction (SR) algorithm. This algorithm
is designed to compute M -estimators in mixture models, using unconstrained optimizations
iteratively. Examples will be seen in section 3, but applications of the algorithm can also
be found in the literature. Jongbloed ez al. (2005) apply the algorithm to compute a non-
parametric least squares (LS) estimate of a self-decomposable density, Van Dam et al. (2005)
in the context of quantum physics experiments, Langaas et al. (2005) to compute the ML
estimate of the distribution of p-values in a multiple testing setting, Birke & Dette (2007)
to compute the LS estimator of a convex regression function, Groeneboom ez al. (2007) to
compute a non-parametric estimator in the current status model with competing risks and
Jongbloed & Van der Meulen (2008) to compute the ML- and LS estimator of a concave distri-
bution function based on data corrupted with noise. In Groeneboom et al. (2003), an earlier
version of the present paper, the algorithm is used to compute the LS estimate of a convex decreas-
ing density and the ML estimator of the distribution function in the Gaussian deconvolution
problem. An R package, called MLEcens, using the support reduction algorithm, has been
developed by Maathuis (2007), for computing the ML estimator for bivariate interval cen-
sored data. The R package can also be used for univariate censored data (see the dataset
‘cosmesis’, coming with this package) and for interval censored data with competing risks
(see the dataset ‘menopause’, also coming with this package).

Within optimization theory, the SR algorithm can be classified as a specific instance of an
active set method. Within the field of statistical computing the algorithm fits in the class of
vertex direction algorithms. An algorithm, related to our support reduction algorithm, can
be found in Meyer (1997) (her ‘hinge algorithm’), which led the first author to the idea of
the iterative spline algorithm for convex regression, as described in section 3 of Groeneboom
et al. (2001a).

This paper is organized as follows. In section 2, we introduce the basic support reduc-
tion algorithm, describe situations where it can be applied and prove convergence under gen-
eral conditions. In section 3, the algorithm is compared with natural competing algorithms
for two interesting examples. The first is LS estimation in convex regression and the second
ML estimation in the so-called ‘Aspect problem’ from quantum statistics. In the latter example,
we describe in detail the steps of an iterative quadratic minimization method, where the
support reduction algorithm is used for the quadratic minimization, and line search is used
to go from one quadratic minimization problem to the next one. This is the most common
method in applications of the support reduction algorithm, and also used in the R package of
Maathuis (2007). We describe the steps in detail, since this example provides a prototype for
this method.

2. Description of the basic algorithm and convergence

Let ® be a parameter set (in applications often finite), and let M, be the convex cone of
bounded discrete positive (i.e. non-negative) measures with finite support on a g-algebra on
©®, containing all singletons. So, in particular, M contains all Dirac measures Jj.

Consider the following type of optimization problem, assuming it is well defined (this
should be verified in a particular model),

minimize Y(u) for pe M., ey

where ¥ is a convex function on M, with values in RU{co}.

To have a specific example in mind, consider the problem of maximum likelihood
estimation in the (standard) Gaussian deconvolution model. In that model, there is a sample
Yi,..., Y, from a distribution described by an unknown probability measure Py on R.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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Instead of observing this sample, a sample X,..., X, is observed, where each X; is the sum
of Y; and an independent standard normally distributed random variable. The X;s are then
a sample from a probability density which is a location mixture of the standard normal
density with a mixing measure Py. If ¢ denotes the standard normal density, the ML estimate
of Py is found by maximizing

> to [ (- 0)dP)
i=1

over all probability measures P on ® =R, for given observed data xi,...,x,, generated by
the convolution density. We transform this problem to an optimization problem of type (1)
on the convex cone M by transforming it to the following optimization problem: minimize

Y(=—n" " log [ ¢(x; —0)du(0)+ | du(0)
e /

over n€ M,. The second term of the expression on the right-hand side of the last display
corresponds to a Lagrangian term with parameter A= 1, which ensures that the solution over
the cone M will in fact be a probability measure, i.e. will have total mass 1. It can be proved
that the solution of this minimization problem exists and does not have a larger number of
support points than the size of the sample (the points of support will not belong to the set
of observation points, though).

Remark 1. This example illustrates a feature that can often be observed. A complicated
optimization problem over a class of probability measures can be restated as optimization
problem over the class M. For a quite general proof of this in the context of mixture
models, see e.g. Lindsay (1983), theorem 3.1, p. 89. For a wide range of other problems, it
can be proved on a case-to-case basis.

Let us return to (1). We assume that we can extend the convex function i to a convex
function on the set M of all bounded (not necessarily positive) measures with finite support
on O. In order to describe the algorithm, to show that its steps are well defined and that it
converges, we need some assumptions. Dirac measure at 6 will always be denoted by dy.

The solution of (1) can (under certain conditions) be characterized in terms of a ‘direc-
tional derivative function from the right’ D,(i) ‘in the direction of v’ defined by

(D)) () =lim e (Wl ev) — ().

Note that whenever (u) < oo, convexity of i guarantees existence of [D,(y)](x). We will use
the simpler notation Dy(y) instead of D;,(1). We use the following conditions.

Assumption Al

Y is a convex function on M such that for each u,ve M, where V¥ is finite,
fim e {yut-e(v— ) =Y} =D N = [DUWNw).

Moreover, [D,(y)](1) (and similarly [D,(y)](x)) has representation:

[D.(W)] (W)= / [Do(¥)] (1) dv(0). (@)
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Assumption A2

If, for ue M., u has strictly positive mass at 6 and () <oo, then Y(u+ €dy) is finite for ¢
sufficiently small in absolute value (negative values of e allowed), and the finite derivative of
¥ in the direction of dy exists and is given by

Do =lime ™" (W(u-+edn) = y(w).

Here the point is that ¢ may approach zero from above and below for those 0 with strictly
positive u-measure.

Possibly these conditions are not really necessary, in particular not in their present strong
form, but they are satisfied in our examples and make the proofs run smoothly. The lemma
below, a proof of which can be found in the Appendix, characterizes the solution of (1) in
terms of Dy(i). Intuitively, this lemma states that ji minimizes ¥ over M, if and only if
the directional derivative of the function s, evaluated at fi, in the direction of the allowable
(positive and negative) Dirac measures, is non-negative. This says that letting the measure /i
put additional mass at any points in ® is not profitable in the sense that it will not decrease
the function  and decreasing its mass at current support points does not lead to a lower
value for y either.

Lemma 1
Let the assumptions Al and A2 be satisfied. Suppose that the measure i€ M. Then

>0 forall 0e®

fi=argmin g G0 if and only if Do { 20 00

©)

This characterization of the solution leads to the following basic algorithm.

The support reduction algorithm
Step 1: initialize k =0, choose initial 0 € ® and p© =cdy0 € M, such that
0 <c=argmin, .o (cdy0),

or do:

Step 1’: initialize k =0, choose initial support set S= {6(10), 00, ., 6([0)} C © and weights
1. ..,¢¢ >0 such that l//(zle ¢;0p,(0)) <¥(0) and use ‘sequential unrestricted min-
imizations and support reductions’ (to be explained below) to obtain u®, with
support S’ C {0(10), 0(20),. . 020)}, such that

u= argmin{ueM+ SuUppw==s'} ().

In this way, we find a subset S” of S so that on this set unrestricted minimization
gives a solution which belongs to M, .

Step 2: compute [Dy(¢)](u*) and choose some 6" € ® with [Dg-())](u*) <0; if such 6*
cannot be found, STOP.

Step 3: define the ‘extended current support set’ by S =supp(u®)u{0*}.

Step 4: use ‘sequential unrestricted minimizations and support reductions’ (to be
explained below) to obtain p*+D with support S’ C S satisfying (in the same
sense as in Step 1')

l~4(kJr D= argmin{ye/\/{+ : supp(;z)=s'}‘//(,“)-

Step 5: k< k+1, return to Step 2.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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Steps 1’ and 4 in this description need some extra clarification. Step 1 could be called (using
a currently popular jargon) a ‘bottom-up’ approach, whereas Step 1’ usually represents a
‘top-down’ approach, where one starts with an overparametrization. Step 1’ plays an impor-
tant role in situations where the support reduction algorithm is used in an iterative quadratic
minimization (e.g. Newton) scheme of a non-quadratic objective function. We will discuss
this method in detail for the Aspect experiment example in the next section. In this situation
one does not want to start at zero at the beginning of each new quadratic minimization, but
instead one wants to use the solution found in the preceding quadratic minimization. In such
a case one uses Step 1’ as the start of the new iteration step, where the solution of the preced-
ing quadratic minimization and its support set S is used to start the quadratic minimization
with Step 1.
Given the support set S={0,...,0,}, the following function is minimized over R*:

4
Plar,...,a)=y (Z al-éo,) “

i=1

The solution a=(ay,...,a,) of this problem generates a measure ﬂ=2f:l a;0q,, not
necessarily belonging to M, (because a; might be negative for some 7). If this function
happens to belong to M., it is the new iterate () in step 1’ or u*+Y in step 4). Otherwise,
one travels as far as possible along the line segment connecting the current iterate with this
infeasible fi. That in step 4 a move of positive length can indeed be made, follows from
lemma 2 in the Appendix. For step 1’ it is obvious since ¢; >0 for all i. Having reached the
boundary of M, in this manner, a new measure, say i is obtained, for which at least one
of the support points is dropped. Using the new thus restricted support S, one can again
minimize the function (4) (with smaller £) and obtain a new . If fe M., u*+D =i in step
4 (U9 =f in step 1'). Otherwise, one moves as far as possible from ji towards ji to obtain
the new j, etc. How this works will be demonstrated in detail with the Aspect example in
the next section.

In order to prove convergence of the algorithm, we need an extra assumption on ¥, related
to its curvature.

Assumption A3

For any specific measure u® € M with (u®) < oo, there exists an €€ (0, 1] such that for all
ue€ M with Y(p) <y(u®) and 6 € ®, the following implication holds:

lim e (W(ue(d — 1) = Y(w) S —c <O= i+ e(d9 — 1) —Y(w) <—3ec for all e (0, €],

The proof of the convergence theorem below can be found in the Appendix. Note that an
additional assumption on the choice of the new support point 6" is needed in order to get a
convergent algorithm.

Theorem 1
Let [i be a minimizer of W over M_.. Denote by u® a sequence generated by the SR algorithm.
Also suppose that in each iteration the new support point 0° is chosen such that

(Do (1) < 5 [ D))
Then, under the assumptions Al to A3, y(u®) | W(f) as k — oo.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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3. Simulation studies
Convex regression

Given are data {(x;,y;)}/_, in R? with 0<x; <x, <... <x, and the problem is to find the LS
convex regression of these points. In other words, to find the convex function f minimizing
the sum of squares

Sl z i —f ()’

over the class of convex functions. Since this objective function only depends on f via its
values at the points {x;:1<i<n}, without loss of generality, we can restrict the minimiza-
tion to piecewise linear convex functions with changes of slopes only possible at these points.
This observation puts the problem in the framework of section 2. See also remark 1. We take
®={-1,0,1,...,n+1}. The solution of the LS problem can be written as a linear combin-
ation of the functions

1 for j=—1
By for j=0
Sfilx)= (=) o.5(x) for 1<j<n

() for j=n+1.

Using the set-up of section 2, we let the convex cone of measures M be the set of non-
negative bounded measures x on ©. Defining f,(x)= [, fo(x) du(6), the minimization problem
boils down to the problem of minimizing

(=1 ; i~ )P

over u€ M,. To ensure uniqueness of the solution, we only allow the solution /i to have
strictly positive mass at either —1 or at 0, and likewise either strictly positive mass at n or at
n+1.

The support reduction algorithm can be implemented easily with initialization step 1. The
algorithm is a discrete analogue of the iterative spline algorithm, discussed in Groeneboom
et al. (2001a) and as such applied in Birke & Dette (2007). It is easily verified that assump-
tions Al to A3 are satisfied in this setting. In fact, the function yy on M, can be identified
with a convex function ¢: R’i” — R, defined by

i=1

n nt1 :
d) (a—l>"'5aﬂ+l) Z% Z {y; - .Zla/f]"(xi)} 5
=2
where a; is the mass of the corresponding p at 0;=j. This function is also well defined on
R"+3, is convex, and satisfies clearly the conditions Al to A3.

An interesting competitor of the support reduction algorithm is the interior point algo-
rithm. We studied two versions of the interior point algorithm: the interior point algorithm
with logarithmic barrier and a primal and dual version of the interior point algorithm. In
our experience, the interior point algorithm with logarithmic barrier worked best, and we will
therefore only report on the results of that algorithm in the present problem.

Defining r € R" by r;=f(x;), the cone of convex functions can be identified with the cone
K,CR",

Fi— il Fiv1—Ti .
IC,,:{reR”: UL QA d forallz=2,...,n71}.
Xi—Xi—1 Xig1—X;
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The objective function for the interior point method with logarithmic barrier is in the
present case given by

n n—2 . — . . — 7.
¢2(r):%2 (y,-—r,-)z—l—/lzlog(r’H Tit1 _ Fig1—Fi ), VZ(VI,...,F‘”).

i=1 i=1 Xit2 = Xig1  Xig1 —X;

The idea is now to start with a value of A that is not too small, say A=1, then to minimize
¢,(r) as a function of r. This is done in the inner iteration loop by doing steps in Newton
directions, but staying inside the allowed set of functions until the Euclidean norm of V¢,(r)
is smaller than a prescribed value, say 10~8. Then we decrease Z, say to A/2, starting with the
value of r found by the Newton-type algorithm for the case A=1, and again doing steps in
Newton directions, but staying inside the allowed set of functions until the Euclidean norm
of V¢,(r) is smaller than a prescribed value. This is repeated until 4 is smaller than another
prescribed value, say A <1078, In decreasing /, the solution will in general move to the boun-
dary of the domain of the set with the original restrictions, but, in contrast with the support
reduction algorithm, it will move to the solution from the interior of X,, and the solution
will at each step involve all generators of the convex cone.

The algorithms were programmed in C, using the Metrowerks Code Warrior compiler,
version 5.5, and run on a G4 PowerBook, with a 1.67 GHz PowerPC processor and 1 GB
DDR SDRAM memory. Time was clocked with the clock() C procedures, using the C header
file time.h.

We used the ranl.c random number generator algorithm of Numerical Recipes in C, start-
ing with a seed equal to —200 and generated with this random samples of 10,000 normally
distributed random variables, with expectation 0, and standard deviation 1, 0.1 and 0.01,
respectively, and added these to the values of the function y=x?, on an equidistant grid
of points on [—1, 1], with distance 0.0002 between the points.

As the solution has large ‘blocks’ of equal difference ratios (r;, | —r;)/(x;+1 — X;), and since
the interior point method with logarithmic barrier can only accommodate to solutions where
all these difference ratios are different, one cannot expect the interior point method to attain
the same accuracy as the support reduction algorithm. And indeed we could not push the
parameter y further down than u=10"% (without getting into numerical difficulties with the
inversion of the Hessian band matrix for the parameters r;), for which value the criterion
function is still slightly larger than the one obtained by the support reduction algorithm.
How important this is for practical purposes is of course another matter.

The support reduction algorithm was run until the inequality conditions of lemma 1 were
satisfied within a tolerance of 1078, i.e. the expression on the left side of the inequalities had
to be larger than —10~%. Note that the algorithm is so designed that the equality conditions
of lemma 1 will automatically be satisfied. The support reduction algorithm works best if the
noise is rather large, whereas the interior point method with logarithmic barrier has a more
or less constant behaviour. This is illustrated in Table 1.

Table 1. Performance of the support reduction algorithm (SR), and the interior point
method (IP) with logarithmic barrier for sample size 10,000

Number of iterations  Time (seconds) %Z;’zl(f; —y)* Noise

SR 27 0.24 4950.840019 Normal(0,1)
1P 27 4.53 4950.840168 Normal(0,1)
SR 48 0.36 49.4252297 Normal(0,0.1)
1P 27 4.41 49.4253782 Normal(0,0.1)
SR 143 0.95 0.491968 Normal(0,0.01)
1P 27 4.46 0.492106 Normal(0,0.01)

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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The number of (outer) iterations for the interior point method is the same for the three
examples, but this is just the number of times that the original 1 is divided by 2 to get below
10~%. We had to allow for 100 inner iterations for the interior point method, otherwise the
inner minimization problem did not get solved, which makes the algorithm start diverging
instead of converging. Therefore the number of (outer) iterations may be a slightly mislead-
ing indicator of its performance. For the last example the generators found by the support
reduction algorithm has increased to 62.

The Aspect problem

This model is from Aspect et al (1982) and deals with so-called quantum non-locality
experiments. A nice exposition of ideas involved is given in Gill (2007), and we give below a
brief description of what this is about, following Gill’s exposition.

Bell’s theorem states that quantum physics (also ‘quantum mechanics’ or QM) is incom-
patible with classical physics, in particular with Jocal realism (LR). Under LR, a certain
correlation inequality (Bell’s inequality) has to be satisfied, but under QM this inequality can
be violated. The experiment described in Aspect et al. (1982) is believed to show that Bell’s
inequality can be violated ‘in nature’ and hence to settle the incompatibility in favour of QM.
However, this experiment exhibits certain shortcomings and one is therefore still looking for
a ‘definitive successful experiment’, settling the matter in favour of QM.

To this end, the sets of all possible joint probability distributions of the outcomes of
so-called Bell-type experiments are studied. In this context, Bell’s theorem can be interpreted
by saying that the set of LR probability laws is a strict subset of the QM probability laws.
An o x f§ Xy Bell-type experiment has o players, [ settings and y outcome categories. The
P settings are alternatively denoted by measurements or tools. The players are conventionally
called Alice, Bob, etc., where Alice chooses setting a, Bob setting b, etc. at random from some
(discrete) probability density on the f settings. A run of the whole experiment has outcome
(a,b,...;x,y,...)=(a,b,...;X4, Vs, ...), Where a,b, ... belong to the set of f§ settings and
X, ¥, ... to the set of y outcomes. The probability of the outcome (a, b, ... ;x,y, ...)is given by
pla,b,...;x,y,...). Supposing that we observe N independent copies of (4,B,...;X,Y,...),
our log likelihood, divided by N, is of the form:

Z (Na,b,...;x‘y‘.../N) IOgP(a>b, s Xy ), )’ (5)

a,b,...;x,y, ...

where N, .« /N are relative frequencies (often replaced by the corresponding expecta-
tions in the analysis of these experiments) of the outcomes (a,b, ... ;Xx,y, ...). Furthermore,
under LR, the vector p of probabilities p(a, b, ...;x,y,...) has a representation of the form

p=4gq, (6)

where A is an (incidence) matrix, filled with zeroes and ones, and the vector ¢ represents
a vector of probabilities in [0, 1]”, where m=7y**. In fact, relation (6) corresponds to the

relation:
pla.b,...ix,p,...)= > o5yt S
X1 s XBa V1w s Vfoee 1 Xa =X, Y = Vs
where ¢y, . is the probability that Alice has outcome x; with setting 1, outcome

S XBa Vs s Ve
X, with setting 2, ..., outcome x with setting 5, Bob has outcome y; with setting 1, outcome

»» with setting 2, ..., outcome yz with setting f3, etc.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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Note that the vector p of probabilities p(a,b,...;x,y,...) has length n=(fy)*, and that
A is an n x m matrix (of zeroes and ones). One now wants to find the MLE ¢ of the vector
¢, using the log likelihood (5) and the representation of p in terms of ¢, given in (6). The
ultimate goal is to design a Bell-type experiment in such a way that the Kullback—Leibler
distance between the vector of relative frequencies N,; .., /N and A4 is as large as
possible, which would demonstrate a large discrepancy between LR and QM.

Interpreting the model as an incomplete data model, the EM algorithm of Dempster et al.
(1977) is a natural algorithm to apply in this setting. Using (6), we have, denoting the ijth
element of 4 by a; and the ith row of 4 by dj,

m

def . .
pi=Y asg=dyg, i=1....n.  qg=(q.....qu), m=y". n=(By)".
=1

Letting ®={1,...,m}, and M, be the convex cone of bounded positive measures on O,
which can be represented by a vector ¢=(qi, ...,q¢.) of non-negative numbers, we get that
our ML problem is equivalent to the problem of minimizing

n n
Wq)==> wilogaq+>_dig. )
i=1 i=1
where the weights w; correspond to the relative frequency N, s, .y, /N in (5), and where the
term ) ;_, djq is a Lagrange term for the side restriction that the ¢;s should sum to 1 with
a Lagrange parameter A=1.
For the present model, the EM algorithm has a particularly simple form. The so-called
‘self-consistency equation’ for the EM algorithm gives rise to the EM iterations:

n
(k+1) _ (k) ajw; .
q; =q; Z o j=1...,m.

i=1 i

In Bohning (1995), a ‘vertex exchange method’ (VEM) for obtaining an ML estimator
of ¢ is discussed. There, the performance of the VEM is compared with the vertex direc-
tion method (VDM) for computing the MLE in mixture models, and some examples are
given, showing a better performance of VEM with respect to VDM and the EM algorithm. In
simple examples, VEM still can be used, but in the examples below the computing times of
VEM were prohibitive. So we omit this in our comparisons.

The support reduction algorithm starts with a probability vector g® = (q(o),.. ,qﬁ,?)) s
where all 3”s are strictly positive. For example, we can take: q(o) =1/m, i=1,...,m (the

discrete umform distribution). This gives the vector p® = (ﬁ(o) ...,ﬁno)> via
ﬁio)=aﬁ(o),i=1,...,n

After that, one could proceed with the steps of the algorithm and perform unrestricted mini-
mizations. However, these minimizations are essentially different from those in the convex
regression problem where the solutions can be found by solving a system of linear equations.
Here the minimization has to be done iteratively. We will use the support reduction algorithm
to solve the sequential quadratic minimization problems in a Newton scheme. In fact, our
experience is that this latter approach is much more stable than the first.

We now describe the first inner loop of the procedure that minimizes the local quadratic
approximation of y at g over R". Suppose that at the kth inner iteration ¢ = Zf_, qf/k)e,j
(where e; denotes the ith unit vector in R™) minimizes the quadratic form:

Y@= L4 4'C, (C (™))" Ag—21,C,.C (7) Aq+1,.q, ®)
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over the restricted set of vectors, spanned by the generators e, ,...,e;,. Here C, and C (17‘0))
are the diagonal matrices given by:

Co=diag (wr,..w,), € (F0)=diag (15..... 1/5)

and 1, and 1,, are vectors of length n and m, respectively, with all components equal to 1.

We then determine the minimum partial derivative among the partial derivatives (Step 2):
%!ﬁo(qﬂq:q(m. If all partial derivatives are larger than 0 (or, say —107'), we are through
with our inner minimization problem. Otherwise, we add the generator with the index, cor-
responding to the largest negative partial derivative (Step 3). Note that this must be an index
iy outside the ‘working set’ of indices, as the fact that ¢ minimizes (8) over the working
set of indices implies that the partial derivatives of , w.r.t. the variables ¢;, j=1,...,¢, are
zero at ¢®. Then we enter Step 4, solving the equation

qi, 1
o2 .
Ay CCE Ay | )24, G L[ =00 @
iy 1
where 4;, ., is the submatrix of 4, consisting of the columns with indices i,..., i 1.
If all components g;, of this solution are non-negative, we take this solution vector as our

new candidate solution. Otherwise we determine the index for which
(k)
q;;
-5 2 (10)
4" — 45
is minimal among the ¢; <0. The generator with index j; is discarded from our set of
generators, and we solve again the equation
) 9y 1
Co(CP) iy | | =245, CCE") L+ | - | =0,
e 1

A;l»--»»«fe
where {Ji,...,j,} is the new set of indices, with the index for which (10) is minimal removed.
If the solution of this system of linear equations in ¢ variables produces again a solution
with a negative component, we determine again the index for which (10) is minimal among
the ¢; <0 and discard the generator with this index from the set of generators, etc., until
we obtain a subset for which the solution of the system of equations of the form (9) has
non-negative components.

Suppose g, minimizing the quadratic function ¥,(g) over R”, is obtained in this way. We
now find « € (0,0.9] such that

0@+ (a-7") an

is minimal (or we solve this one-dimensional minimization problem only approximately),
where  is defined by (7). Suppose oy minimizes (11). Then we take

7V =7"+u (G-7")

as our next iterate in the first outer iteration step, and take as the new vector p for the
quadratic minimization problem: p'V’=Ag". We continue this procedure (using support
reduction for solving the quadratic minimizations in all outer steps) until condition (3) of
lemma 1 is satisfied (within a chosen tolerance) for the original object function y given by
(7). As in the preceding example, it is easily verified that the conditions Al to A3 are satisfied
for these quadratic minimization problems.
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Table 2. Performance of the SR- and EM algorithm
for the CHSH44 dataset
Number of iterations  Time (seconds)

SR 56 329.65
EM 7102 17,830.20

We now turn to an example. This example is a ‘CHSH44 dataset’ of a 2 x 4 x 4 Bell-type
experiment, in the terminology of Gill (2007). The sequence of letters CHSH refers to the
authors of Clauser et al. (1969). The model is again of the same type as above, but now
m=65,536=4% and n=162. The weight vector w and the transition matrix 4 is given at
http://dutiosc.twi.tudelft.nl/~geurt/homepage/code/code. htm

For this example we compare the performance of the EM algorithm with that of the sup-
port reduction algorithm. As noted above, the problem is too large for VEM (the number
of parameters is 65,536 and the computing time for VEM is prohibitive). For this reason, we
omit VEM in the comparison. The starting distribution is chosen in the same way as in the
example above. We get the following results (Table 2).

The algorithms were again run until the conditions of lemma 1 were satisfied within a
tolerance of 107'°. In this case the EM algorithm takes almost 5 hours to reach the cri-
terion, which is about 53 times longer than the time it takes the support reduction algorithm
to reach the criterion. Since EM has to converge from the interior of the g-space to the solu-
tion, it has to update all 65,536 parameters at each iteration step in the last example; it cannot
profit from the reduction of the number of parameters during the iterations, as the support
reduction algorithm does.

In the preceding example of the application of the support reduction algorithm to the
Aspect problem, the iterations were started with a vector of zeroes. This works well if the
number of points in the support of the solution is not too large. However, if the number
of points in the support of the solution is larger than 100, the algorithm, started with the
zero vector, slows down considerably, since in that case large systems of linear equations have
to be solved in the later iterations.

An example of this type is provided by the ‘CHSHI10 data set’ of a 2 x 2 x 10 experiment,
which is provided separately with this paper, together with the structure of the transi-
tion matrix A. The model is of the same type as the model above, but now m (the number
of ¢;s) is 10* and n (the number of p;s) is 20> =400. The weight vector w and the transition
matrix A are again given at http://dutiosc.twi.tudelft.nl/~geurt/homepage/code/code.htm [for
more information on the 2 x 2 x y Bell-type experiments, see Zohren & Gill (2006)].

For this example, the algorithm, as applied above, starting with the zero vector, finds a
solution with 356 points with positive mass (we note in passing that the solution is unique
in p, but not in ¢g). It took almost 4 hours to arrive at this solution. On the other hand, the
EM algorithm only took about 4 minutes to reach the criterion. In a situation of this type,
where the number of points of support is so large, it is advantageous to use the ‘top-down’
approach, as in Step 1’ of the support reduction algorithm. We again solved the problem
by a sequence of quadratic minimization problems, but now started with the uniform dis-
crete distribution on ©, starting with a number of steepest descent steps in the unrestricted
problem, dropping the points 0 with negative weights. After this, we approximately solved
the quadratic minimization problems by doing at each inner iteration a number of steepest
descent steps in the unrestricted quadratic minimization problem. In the inner iterations, we
remove the negative ¢; in a similar way as above: we walk along the steepest descent direction
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Table 3. Performance of SRI, SR2 and EM on the
CHSHI0 dataset

Number of iterations Time (seconds)

SR1 783 12,386.04
SR2 16 69.71
EM 713 243.31

until we hit the boundary, next we drop the corresponding point of support and recompute
the steepest descent direction for the unrestricted problem, after which we walk again along
this new direction till we hit the boundary, etc., until we obtain a soluton in M.

Calling the support reduction method, starting at zero, SR1, and the latter support reduc-
tion method SR2, we get Table 3.

The problem is again much too large for VEM, so we leave this out of the comparison. It
was run for 5 hours, but did not reach the criterion. As noticed above, the main drawback of
this algorithm is that it only changes generators one by one. In contrast, SR2 jumps down
from 10,000 points of support to 4120 points of support at the first iteration step. At the
fourth iteration step it is down to 1641 points of support, and the final solution, satisfying
the 10710 criterion, has 1641 points of support. So most of the (16) iterations are spent in
‘fine tuning’ around this solution.

4. Discussion

Efficient algorithms are needed in computationally intensive statistical models. In this paper,
an algorithm is described, studied and applied that can be used to compute M -estimators
in mixture models by sequentially solving (usually low dimensional) unconstrained optimiza-
tion problems in terms of a mixing measure. During each iteration, the algorithm adds one
‘support point’ to the existing iterate. After that, as many as possible support points of the
measure are deleted, resulting in a sparse next iterate. This again leads to a low-dimensional
unconstrained optimization problem during the next iteration. As such, the algorithm can
be expected to perform well in problems where the solution is a sparse mixture, due to the
speed at which the low-dimensional optimizations can be performed.
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Appendix

Proof of lemma 1
First assume that i minimizes { over M. Then, since i+ edyp € M for all ¢>0 and 0 €O,
it follows that y(ft+ €dp) > Y(fv) for all ¢ >0 and 6 € ®. Hence,

[Ds(¥)](j) =lim e (Wit €dg) — () >0,

where existence of the limit follows from the convexity of the mapping u+— Y(ft+ udy), u>0.
By assumption A2, we get for 0 € supp(fv)

~ (Do) =lim e (Wit — €dg) — () > 0.

This, together with the previous inequality, gives the equality part of (3) for 0 € supp(ft).
Conversely, if ji satisfies the (in)equalities given in (3), we have for any pu€ M., by
convexity of y and Al, that

Y(w) — (@) 2 lim e (Wt e(p— ) = (i) =[Du (W) — [Dp(WIR,

where [D,l(l//)} (fv) and [D,,(np)] (f) can be represented as in (2). Since, by (3), [De(¥)](i) =0
for 0 in the support of fi, we get from this representation: [D(y)]() =0. Hence, by (3),

Y() = Y (i) = [Du (I — D)) =D ()] (f) = / [Do())(f) du(0) = 0.

Lemma 2

Suppose H(k)=2f;11 a;09,, with a;>0 for all i, minimizes y over the convex cone of positive
measures, spanned by the Dirac measures {dg,:1<i<{—1}. Suppose that 0,:=0" is chosen as
in the description of the algorithm, so with [Dy-(Y)](u®)<0. Then the minimizer fi= Zf: 1 G0,
of W over the linear space generated by the measure {Sg,:1<i <t} differs from u® and a, > 0.
Hence, there exists an €>0 such that u® + e(i — ) € M. and such that

¥ (1 +e(i—u®)) <y (u®).

Proof. First note that from the optimality conditions for u®, together with Al and A2,
we get

0=time ! ((1+ 1) i) = [ a0 (12)

Also note that i # u® because for e >0 sufficiently small y(u® + €5p) <y(u®). Then we get,
using convexity of i,

lim e (W((1 = +ef)) =y () <lime ™" (1 = W) + () — Y1)

=y(R) — (") <0.

Hence, using again assumptions Al and A2, we have,

0> l(lgl e (W1 =™ +ei)) — () = [Da()I(U®) = [D o (W)™
= [Da()(u®) = / Do) di(0) = @[ Dy, (¥)I(1®).
Since [Dg, )](1®) =[Dy-(Y)](1¥) <0, this implies a; >0.
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Proof of theorem 1

Without loss of generality, we assume 4 # 0 (this can be checked using the characterization
of the solution before starting the algorithm). Hence, we have 0 < fi((®) <oco. By (12) we have
for each k,

lim e (W +e(3g — 1) — Y ) =[Do())(U™®). (13)

As ((u®)),_, is a bounded and decreasing sequence of real numbers, it decreases to a limit.
Assume for the moment that Y(u®) | " =y() + 5> y(f1) for some 5>0. We show that this
leads to a contradiction.

Denote by 0y, the new support point 6 selected based on u®. Then

&) dju(0
[ng(l//)](,u(k)) < % }Qg[De(‘/’)](“(k)) < f[D()(l//z)l]u((H@)) £(6)

Y- Y(u) Y- v
2(©) 2i(©)

—0/(2[(®)). (14)

Because y/(u®) <y(u®) for all k, (13), (14) and assumption A3 imply

YD) <(u® + &g, — 1)) <Y(u) — 0/(41(®@))  for all k.

This contradicts the fact that y(u®) converges.
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