
Computing Chernoff’s Distribution
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A distribution that arises in problems of estimation of monotone functions is that
of the location of the maximum of two-sided Brownian motion minus a parabola. Using
results from the � rst author’s earlier work, we present algorithmsand programs for compu-
tation of this distribution and its quantiles.We also present some comparisons with earlier
computations and simulations.
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1. INTRODUCTION

Our goal here is to compute, table, and plot the density, distribution function,moments,
and quantilesof the location Z of the maximum of two-sided Brownian motion B minus the
parabola t2. We also provide several examples of the applicationof this distribution to prob-
lems including interval censoring, monotone density and hazard estimation, deconvolution,
least median of squares estimation, and mode estimation.

To be explicit, let B(t), ¡ 1 < t < 1, be two-sided standard Brownian motion with
B(0) = 0. Then

Z ² argmaxt(B(t) ¡ t2) :

It follows from Lemma 2.6 of Kim and Pollard (1990) that Z is uniquely de� ned with
probability 1. The distribution of Z apparently � rst arose in work of Chernoff (1964) on
the estimation of the mode of a distribution function, and hence we refer to the distribution
of Z as Chernoff’s distribution.

Prakasa Rao (1969) showed that the distribution of the slope at zero of the greatest
convex minorant of B(t) + t2 is exactly 2Z. This follows from the “switching relation”;
see Groeneboom (1985, Eq. (2.2), p. 541) for the � nite sample version of this relation.
Groeneboom (1985; 1989) completely described the distribution of Z and characterized
analytically the process fV (a) : a 2 IRg, where

V (a) ² supft 2 IR : B(t) ¡ (t ¡ a)2 is maximal:
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In particular,Z has a densityfZ with respect to Lebesgue measure on IR which is symmetric
about zero, and which satis� es

fZ(z) ¹ 1
2

44=3jzj
Ai0(ã1)

exp

µ
¡ 2

3
jzj3 + 21=3ã1jzj

¶
as z ! 1 ;

where ã1 º ¡ 2:3381 is the largest zero of the Airy functionAi and where Ai0(ã1) º 0:7022.
The link of the distribution of Z with Airy functions is also given in Daniels and Skyrme
(1985), but the process fV (a) : a 2 IRg is not discussed in that article. In unpublishednotes,
Groeneboom and Sommeijer (1984) numericallycomputed the absolute moments E(jZjk),
k = 1; : : : ; 4. The � rst of these was reported by Devroye and Gyor� (1985, p. 214); and all
four of them were reported by Keiding, Begtrup, Scheike, and Hasibeder (1996). Note that
by symmetry of fZ it follows that E(Zk) = 0 for k odd.

2. APPLICATIONS AND EXAMPLES

Here we present several examples showing how the distribution of Z enters.

Example 1. (decreasing densities): A classical example of an application of the theory is
the Grenander estimator of a decreasing density on [0; 1) Suppose that X1; : : : ; Xn is a
sample,generatedby a decreasingdensityf on [0; 1) thathas a nonzeroderivativef 0(x) at a
point x 2 (0; 1). Let f̂n be the maximum likelihoodestimator of f under the monotonicity
restriction.Then f̂n is the left-continuousderivativeof the concavemajorantof the empirical
distribution function; see Grenander (1956) and Groeneboom and Lopuhaä (1993). This
estimator has, after “cube root n” standardization, the following limiting distribution

n1=3

½
1
2

f (x)f 0(x)

¾¡1=3 n
f̂n(x) ¡ f (x)

o
D! 2Z; n ! 1;

where
D! denotes convergence in distribution, see Prakasa Rao (1969) and (for a different

shorter proof) Groeneboom (1985).

Example 2. (monotone failure rates): For this situation a similar result holdsas in Example
1. For example, let X1; : : : ; Xn is a sample, generated by a distribution with an increasing
failure rate r on [0; 1) and let r̂n be the NPMLE of r in the class of distributions with
increasing failure rate. Then, under some regularity conditions:

n1=3

½
1
2

r(x)2r0(x)

¾¡1=3

fr̂n(x) ¡ r(x)g D! 2Z; n ! 1;

see Prakasa Rao (1970).

Example3. (least medianof squares estimator):Let X1; : : : ; Xn be a sample from a density
strongly unimodal distribution with density f³ , given by

f³ (x) = f (x ¡ ³ ); x 2 IR;
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where the density f is differentiable and symmetric around zero. Rousseeuw (1984) intro-
duces the least median of squares estimator ˆ³ n for the shift parameter ³ and gives a heuristic
argument for the result that

n1=3
n

ˆ³ n ¡ ³
o

;

converges in distribution to c ¢ Z, where c > 0 is a constant depending on the distribution
functionF correspondingto the densityf , thedensityf itself and its derivativef 0. A proofof
this result is given in Kim and Pollard (1990). In Rousseeuw (1984) also recommendations
for con� dence intervals can be found.

Example 4. (interval censoring, case 1, also called “current status model”): Suppose that
X is a “survival time” with distribution function F on [0; 1) and Y is an observation time
which is independent of X and has distribution function G on [0; 1). However, we can
observe only (Y; 1fXµY g) = (Y; ¢), and want to estimate F , the distribution function of

X based on iid replications (Y1; ¢1); : : : ; (Yn; ¢n) of (Y; ¢). In this case the NPMLE bFn

of F is known from Ayer, Brunk, Ewing, Reid, and Silverman (1955). It was proved in
Groeneboom and Wellner (1992) that if F has density f and G has density g at t0 2 (0; 1)

with g(t0) > 0, f(t0) > 0, then

n1=3(bFn(t0) ¡ F (t0))
D!

½
1
2

F (t0)(1 ¡ F (t0))f (t0)=g(t0)

¾1=3

2Z; n ! 1:

Thus, from Table 2 in Section 2, it follows that an asymptotic 95% con� dence interval for
F (t0) is given by

bFn(t0) § n¡1=3

½
1
2

bFn(t0)(1 ¡ bFn(t0)) bf (t0)=bg(t0)

¾1=3

2 ¢ (:99818);

where bf (t0) and bg(t0) are any consistent estimators of f (t0) and g(t0), respectively; for
example, based on kernel smoothing of bFn and bGn(t) ² n¡1

Pn
i = 1 1fYiµtg.

In the particular application discussed by Keiding et al. (1996), Xi represents “age of
immunization” of individual i against rubella, Yi represents “current age” of person i.

Example 5. (interval censoring, case 2): In this case the data consist of a sample of obser-
vations

(Ui; Vi; ¢i; ¡ i); i = 1; : : : ; n;

where Ui < Vi and [Ui; Vi] is an “observation interval” for the (hidden and unobservable)
variable Xi. The variables ¢i and ¡ i are indicators, telling us whether Xi is left of Ui,
between Ui and Vi, or right of Vi:

¢i = 1fXiµUig; ¡ i = 1fUi<XiµVig:

The Xi are assumed to be independent of the (Ui; Vi). For analyses of this model; see,
for example, Groeneboom (1996) and Geskus and Groeneboom (1999). In this situation
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the NPMLE bFn has to be computed by an iterative method. A fast iterative algorithm is
available, the so-called iterative convex minorant algorithm, proposed by Groeneboom and
Wellner (1992) and further analyzed by Jongbloed (1998b).

Assume that (Ui; Vi) has a density h with respect to Lebesgue measure, with � rst
and second marginal densities h1 and h2, respectively. Moreover, suppose that F is the
distribution function of the variable Xi with a density f with respect to Lebesgue measure,
and let ki; i = 1; 2; and the function a be de� ned by

k1(u) =

Z 1

u

h(u; v)

F (v) ¡ F (u)
dv; k2(v) =

Z v

0

h(u; v)

F (v) ¡ F (u)
du;

and

a(t) =
h1(t0)

F (t0)
+ k1(t0) + k2(t0) +

h2(t0)

1 ¡ F (t0)
:

Then we have at a point t in the interior of the support of the distribution function F under
some regularity conditions, in particular assuming that the observation points Ui and Vi are
strictly separated (i.e., P fVi ¡ Ui < ° g = 0 for some ° > 0) and that f (t) > 0:

n1=3f2a(t)=f(t)g1=3fbFn(t) ¡ F (t)g D! 2Z; n ! 1;

see Groeneboom (1996, theorem 4.4).
A long-standing conjecture is that in the situation where Ui and Vi are not strictly

separated the rate of convergence increases to (n log n)1=3 and that the limiting distribution
is again given by Z; see Groeneboom and Wellner (1992, p. 100), but this conjecture has at
present still not been proved or disproved. Extensions to more than two observation points
are possible (the situation is not very different from “case 2,” since only the two observation
points surrounding the hidden variable Xi will be relevant for the analysis), but we will not
further discuss this here.

Example 6. (deconvolution): Let X1; : : : ; Xn be a sample from the convolution of an
unknown distribution function F , concentrated on [0; 1] and the uniform distribution and
let bFn be the NPMLE of F . Then, if F has a positive density f (x) at x 2 (0; 1):

n1=3
n

bFn(x) ¡ F (x)
o. ½

1
2

F (x)(1 ¡ F (x))f(x)

¾1=3
D! 2Z; n ! 1;

see van Es (1991, theorem 4.5) or Groeneboom and Wellner (1992, p. 109). A similar result
for deconvolutionwith the exponential distribution is given in Jongbloed (1998a), where it
is shown that if X1; : : : ; Xn is a sample from the convolution of an unknown distribution
function F , concentrated on [0; 1) with the standard exponential distribution, the NPMLE
F̂n of F satis� es

n1=3
n

bFn(x) ¡ F (x)
o. ½

1
2

e¡xf (x)

¾1=3
D! 2Z;

if F has a positive density f(x) at x > 0. For related material, see van Es and van Zuijlen
(1996) and van Es, Jongbloed, and van Zuijlen (1998).
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Example 7. (mode Estimation; Venter’s estimator): Suppose that X1; : : : ; Xn are iid with
unimodal density f satisfying

f (x) = ® 0 ¡ 1
2

® (x ¡ ³ )2 +
1
6

® 3(x ¡ ³ )3 + o(jx ¡ ³ j3) :

Then as shown by Venter (1967), his estimator b³ n of the mode ³ satis� es

n1=5(b³ n ¡ ³ ) !d 21=3A¡2=3 ® ¡2=3 ® 0Z :

Thus, if ˆ® 0 and ˆ® are consistent estimators of ® 0 and ® , respectively, then

b³ n § 21=3 ˆ® 0

n1=5A2=3 ˆ® 2=3
¢ (:99818)

yields an approximate 95% con� dence interval for the mode ³ .
Narayanan and Sager (1989) gave several nice examples of mode estimation via both

Chernoff’s estimators and Venter’s estimators and their (simulated) quantiles of the distri-
bution of Z to form con� dence intervals; see especially pages 46–50.

Example 8. (panel countdata):Wellner and Zhang (1998) showed that a pseudo-likelihood
estimator b¤n of the mean function ¤ of a countingprocess with “panel count” data satis� es

n1=3(b¤ps
n (t) ¡ ¤(t))

D!
½

¼ 2(t)¤0(t)

2G0(t)

¾1=3

2Z;

where G0(t) =
P1

k = 1 P (K = k)
Pk

j = 1 G0
k;j(t). Thus, if ˆ¼ 2(t), b¤0, and bG0(t) are consistent

estimators of ¼ 2(t), ¤0(t), and G0(t), respectively, then

b¤ps
n (t) § 1

n1=3

(
ˆ¼ 2(t)b¤0(t)

2 bG0(t)

)1=3

¢ 2 ¢ (:99818)

yields an approximate 95% con� dence interval for ¤(t).

For a rather different approach to examples of the type presented here, see Politis and
Romano (1994), especially their example 2.1.1, pages 2035–2036.

3. COMPUTATION OF THE DENSITY fZ AND DISTRIBUTION
FUNCTION FZ

The density fZ can in principle be found by solving the following partial differential
equation (heat equation), given by Chernoff (1964):

@

@t
u(t; x) = ¡ 1

2
@2

@x2
u(t; x); (3.1)

for x µ t2, under the boundary conditions:

u(t; t2)
def
= lim

x"t2
u(t; x) = 1; lim

x#¡1
u(t; x) = 0; t 2 IR: (3.2)
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In terms of the (smooth) solution u(t; x), the density fZ is given by

fZ(t) =
1
2

u2( ¡ t)u2(t); t 2 IR; (3.3)

where (as in Groeneboom 1985), the function u2 is de� ned by

u2(t) = lim
x"t2

@

@t
u(t; x); t 2 IR: (3.4)

In fact, the original computations of the density were based on a numerical solution
of this differential equation (this information is based on personal communications with
Herman Chernoff and Willem van Zwet). The trouble with this approach is the behavior of
the function u2 for negative values of t. In fact, since, by (4.25) in Groeneboom (1985),

u2(t) ¹ c1 exp

½
¡ 2

3
jtj3 ¡ cjtj

¾
; t ! ¡ 1;

where c º 2:9458 : : : and c1 º 2:2638 : : :, the function u2 tends to zero extremely rapidly,
as t decreases away from zero. Some experiments with the numerical approach by the � rst
author, in cooperation with B. Sommeyer, back in 1984, showed that this simple analytic
fact invalidates any direct numerical approach, based on the partial differential equation:
an error analysis showed that even with very � ne grids the numerical solution was highly
unstable. For this reason a more thorough analytic analysis of the problem was made, and
the results of this analysis were given by Groeneboom (1985, 1989)

The following development is from Groeneboom (1985, sec. 4, pp. 548–553). De� ne
a function p : [0; 1) ! R as follows:

p(y) =

8
<

:

¡
p

º
2

P 1
k = 0 aky3k +

P 1
k = 1 bky3(k¡1=2) ; if y 2 [0; 1]

¡ y¡3=2 + 2
p

2 º exp( ¡ y3=6)
P 1

k = 1 exp(21=3ãky) ; if y 2 (1; 1) :

(3.5)

Here the ãk’s are the zeros of the Airy function Ai, and ak , bk are de� ned recursively as
follows: set c0 = 1 and

cn = ¡ 2¡4 (2n ¡ 3)(2n + 1)

n2(2n ¡ 1)
cn¡1 ; n = 1; 2; : : : :

The recursive relations for the coef� cients ak and bk follow from the integral equation
(4.14) in Groeneboom (1985). The integral equation leads to an accurate and useful analytic
representationof the density in a neighborhoodof zero, whereas the expansionon the second
line of (3.5) does similar job away from zero.

Then with a0 = 1, b1 = 2=3, and B(p; q) ² ¡ (p)¡ (q)= ¡ (p + q), the standard Beta
function, set

an = cn ¡
n¡1X

k = 0

1
º k!( ¡ 2)k

bn¡kB(3n ¡ 2k ¡ 1=2; k + 3=2) ; n = 1; 2; : : : ; (3.6)

bn =

n¡1X

k = 0

1
k!( ¡ 2)k + 1

an¡k¡1B(3n ¡ 2k ¡ 2; k + 3=2) ; n = 2; 3; : : : : (3.7)



394 P. GROENEBOOM AND J. A. WELLNER

-1.5 -1 -0.5 0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Density function of Z, fZ .

The reason for treating the intervals [0; 1] separately is that the series using the zeros of the
Airy function diverges at zero and gives a bad approximation in neighborhoodsof zero.

We then de� ne g : IR ! IR by

g(x) = 2x ¡ 1p
2 º

Z 1

0
p(y) exp

µ
¡ 1

2
y(2x + y)2

¶
dy

+ 2

r
2
º

Z 1

0
f(2x + y2)y2 +

1
2

(2x + y2)2g exp

µ
¡ 1

2
y2(2x + y2)2

¶
dy

(3.8)

if x 2 [ ¡ 1; 1), and

g(x) = exp

µ
2
3

x3

¶
41=3

1X

k = 1

exp
³

¡ 21=3ãkx
´

=Ai0(ãk) (3.9)

if x 2 ( ¡ 1; ¡ 1]; here Ai0 is the derivative of the Airy function Ai. The reason for using
y2 in the integrand of the � rst part of the de� nition of g instead of y as in Groeneboom
(1985), is purely numerical: the present change of variables avoids a factor of

p
y in the

denominator of the integrand.
Finally, the density fZ is expressed in terms of g as

fZ(z) =
1
2

g(z)g( ¡ z); z 2 ( ¡ 1; 1) : (3.10)

The distribution function FZ of Z is simply

FZ(z) =

Z z

¡1
fZ(w)dw =

1
2

Z z

¡1
g(w)g( ¡ w)dw ; z 2 ( ¡ 1; 1) :
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Figure 2. Distribution function of Z, FZ .

Because of the symmetry of fZ about 0, it suf� ces to calculate

FZ(z) ¡ FZ(0) =

Z z

0
fZ(w)dw =

1
2

Z z

0
g(w)g( ¡ w)dw ; z 2 [0; 1) : (3.11)

Figures 1 and 2 show plots of the density function fZ and the distribution function FZ ,
respectively; in these � gures we used the � rst 20 terms of the series de� ning the function
p, and also the � rst 20 terms of the series de� ning g in the region ( ¡ 1; ¡ 1). The � gures
shown here were produced by Mathematica; see Wolfram (1996).

The tables in this article were also � rst computed in Mathematica.Subsequently,a com-
puter program, written in C, was developed.The program uses some routines for computing
integrals and (zeros of) Airy functions by Lau (1995). These C routines are translations into
C of the routines in the NUMAL library of the ALGOL 60 routines, developed at the
Mathematical Centre, Amsterdam; see Hemker (1980). The results of the C program cor-
respond in all decimals shown with the results obtained in Mathematica, except in a few
cases where Mathematica could not reach suf� cient accuracy (giving small differences in
the last decimals). The C program was originally written on a Macintosh powerbook, using
the Metrowerks Code Warrior C compiler and the sources could be compiled without any
change on an HP Unix workstationby the standard C compiler availableon this workstation.
In the demonstration version of the program Table 1, of the this article is computed.

We also tried to provide a Microsoft Windows 98 executable, but ran into trouble here,
since compilation by the Microsoft Visual C++ compiler, version 6.0, produced a so-called
“release version” that either did not work or produced the wrong results (interestingly, de-
pending on the machine on which it was run!). The so-called “debug version” worked better
but was rather slow. Consulting the available information on differences between “debug”
and “release” versions did not help us to solve the problem. Disabling the “maximize speed”
option in compiling the release version also produced a correct but slowly working version!
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Table 1. Values of the distribution function FZ and density function fZ

z FZ(z) fZ(z) z FZ(z) fZ(z) z FZ(z) fZ(z)

.00 .500000 .758345 .30 .716352 .649874 .60 .875858 .403594

.01 .507583 .758215 .31 .722817 .643059 .61 .879851 .394887

.02 .515163 .757828 .32 .729213 .636088 .62 .883756 .386214

.03 .522739 .757183 .33 .735538 .628967 .63 .887575 .377580

.04 .530306 .756281 .34 .741792 .621704 .64 .891308 .368989

.05 .537863 .755123 .35 .747972 .614303 .65 .894955 .360447

.06 .545408 .753709 .36 .754077 .606771 .66 .898517 .351960

.07 .552937 .752042 .37 .760107 .599115 .67 .901994 .343531

.08 .560448 .750122 .38 .766059 .591341 .68 .905388 .335166

.09 .567938 .747951 .39 .771933 .583455 .69 .908698 .326870

.10 .575406 .745532 .40 .777728 .575464 .70 .911925 .318646

.11 .582848 .742866 .41 .783442 .567374 .71 .915071 .310499

.12 .590263 .739957 .42 .789075 .559192 .72 .918136 .302433

.13 .597647 .736806 .43 .794626 .550925 .73 .921120 .294452

.14 .604998 .733416 .44 .800094 .542578 .74 .924025 .286560

.15 .612314 .729792 .45 .805477 .534159 .75 .926852 .278760

.16 .619593 .725935 .46 .810776 .525674 .76 .929601 .271057

.17 .626832 .721849 .47 .815991 .517130 .77 .932273 .263452

.18 .634029 .717539 .48 .821119 .508533 .78 .934870 .255950

.19 .641182 .713008 .49 .826161 .499890 .79 .937392 .248553

.20 .648289 .708260 .50 .831117 .491208 .80 .939841 .241264

.21 .655347 .703299 .51 .835985 .482492 .81 .942218 .234086

.22 .662354 .698131 .52 .840766 .473749 .82 .944523 .227020

.23 .669309 .692758 .53 .845460 .464986 .83 .946759 .220070

.24 .676208 .687187 .54 .850066 .456209 .84 .948925 .213237

.25 .683052 .681422 .55 .854584 .447424 .85 .951024 .206523

.26 .689836 .675469 .56 .859014 .438638 .86 .953056 .199931

.27 .696560 .669332 .57 .863357 .429855 .87 .955023 .193460

.28 .703222 .663017 .58 .867612 .421083 .88 .956926 .187113

.29 .709820 .656529 .59 .871779 .412327 .89 .958766 .180891

Some testing showed that Lau’s integrationroutines derail the Microsoft Visual C++ release
version (with “maximize speed” enabled), so replacing these by other integration routines
may remove the problem.However, since the program worked � ne on Unix and a Macintosh
and even in a Microsoft Visual C++ “release” version with “maximize speed” disabled, we
did not investigate this further. But, in view of these experiences, we recommend compil-
ing the C sources either on a machine using the Unix operating system or on a Macintosh
power PC, using Metrowerks Code Warrior. Compilation using Microsoft Visual C++ may
produce unexpected results!

Dykstra and Carolan (1997) computed the density function fZ by numerical Fourier
inversion of formula (3.8) in Groeneboom (1989, p. 91). This section showed how fZ is
computable without numerical Fourier inversion.

Table 1 gives the distribution function FZ(z) and the density function fZ(z) for z =

0:0(:01)2:0. We took n = 20 in our computation of the power series; the demonstration
program allows the user take a different number of terms before starting the computation.
Our experience is that in going beyond 20 (in choosing the number of terms in the power
series), the results did not change in 9 decimals. The C code also contains routines for
computing moments and quantiles; these routines can all be found in the source “main.c”.
We used these routines in producing Tables 2–4.
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Table 1. Continued

z FZ(z) fZ(z) z FZ(z) fZ(z) z FZ(z) fZ(z)

.90 .960544 .174795 1.27 .994448 .0346458 1.64 .999631 .0031329

.91 .962262 .168827 1.28 .994785 .0328273 1.65 .999662 .0028995

.92 .963921 .162985 1.29 .995105 .0310864 1.66 .999689 .0026817

.93 .965522 .157272 1.30 .995407 .0294208 1.67 .999715 .0024785

.94 .967067 .151687 1.31 .995693 .0278282 1.68 .999739 .0022891

.95 .968556 .146231 1.32 .995964 .0263065 1.69 .999761 .0021127

.96 .969992 .140904 1.33 .996220 .0248534 1.70 .999781 .0019485

.97 .971375 .135705 1.34 .996461 .0234666 1.71 .999800 .0017957

.98 .972706 .130635 1.35 .996689 .0221441 1.72 .999817 .0016537

.99 .973988 .125694 1.36 .996904 .0208837 1.73 .999833 .0015219
1.00 .975221 .120880 1.37 .997107 .0196831 1.74 .999848 .0013995
1.01 .976406 .116194 1.38 .997298 .0185404 1.75 .999861 .0012861
1.02 .977545 .111633 1.39 .997478 .0174534 1.76 .999873 .0011810
1.03 .978639 .107199 1.40 .997648 .0164201 1.77 .999885 .0010836
1.04 .979689 .102889 1.41 .997807 .0154385 1.78 .999895 .0009936
1.05 .980697 .0987031 1.42 .997957 .0145066 1.79 .999905 .0009103
1.06 .981664 .0946394 1.43 .998097 .0136226 1.80 .999913 .0008334
1.07 .982590 .0906969 1.44 .998229 .0127844 1.81 .999921 .0007625
1.08 .983478 .0868741 1.45 .998353 .0119902 1.82 .999929 .0006970
1.09 .984328 .0831697 1.46 .998469 .0112384 1.83 .999935 .0006367
1.10 .985142 .0795821 1.47 .998578 .0105269 1.84 .999941 .0005811
1.11 .985920 .0761096 1.48 .998680 .0098542 1.85 .999947 .0005300
1.12 .986665 .0727506 1.49 .998775 .0092187 1.86 .999952 .0004830
1.13 .987376 .0695033 1.50 .998864 .0086186 1.87 .999957 .0004399
1.14 .988055 .0663658 1.51 .998948 .0080523 1.88 .999961 .0004003
1.15 .988703 .0633362 1.52 .999025 .0075183 1.89 .999965 .0003639
1.16 .989322 .0604126 1.53 .999098 .0070151 1.90 .999968 .0003306
1.17 .989912 .0575930 1.54 .999166 .0065413 1.91 .999971 .0003001
1.18 .990474 .0548753 1.55 .999229 .0060955 1.92 .999974 .0002722
1.19 .991010 .0522574 1.56 .999288 .0056763 1.93 .999977 .0002468
1.20 .991520 .0497372 1.57 .999343 .0052824 1.94 .999979 .0002235
1.21 .992005 .0473125 1.58 .999394 .0049125 1.95 .999981 .0002022
1.22 .992466 .0449811 1.59 .999441 .0045655 1.96 .999983 .0001828
1.23 .992905 .0427408 1.60 .999485 .0042401 1.97 .999985 .0001652
1.24 .993321 .0405894 1.61 .999526 .0039352 1.98 .999986 .0001491
1.25 .993717 .0385246 1.62 .999564 .0036497 1.99 .999988 .0001345
1.26 .994092 .0365441 1.63 .999599 .0033826 2.00 .999989 .0001212

4. QUANTILES OF FZ AND SOME COMPARISONS

Dykstra and Carolan (1997) suggested that fZ and FZ are closely approximated by the
N (0; (:52)2) densityanddistributionfunctionsrespectively.Althoughthis results ina simple
approximation for the corresponding quantiles F ¡1

Z (p), the differences between the exact
quantiles and the approximate quantiles, or exact distribution function and approximate
distribution function based on the normal approximation can be substantial.

Table 2 compares a few quantiles computed directly by inverting the distribution func-
tion, computed in the preceding section, with analytically computed, approximate (by a
normal distribution approximation), and Monte Carlo quantiles as computed by Dykstra
and Carolan (1997), Narayanan and Sager (1989), and Keiding et al. (1996). The Dykstra
and Carolan (1997) approach seems to fail in the tail, and we indeed believe that it is ab-
solutely necessary to use different representations of the density in a neighborhood of zero
and in the tail (which is a common phenomenon in the numerical evaluationof special func-
tions), whereas Dykstra and Carolan (1997) essentially used the same representation for the
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Table 2. Comparison of several computations and estimators of the quantiles F ¡ 1
Z (p) for certain p’s

Dykstra and Narayanan
Percentile Exact Carolan; Fourier and Sager; Keiding et al.

p F ¡ 1
Z (p) inversion N(0, (.52) 2) Monte Carlo Monte Carlo

.9 .664235 .664 .666 .658 .66

.95 .845081 .846 .856 .838 .836

.975 .998181 .998 1.018 .986 1.009

.99 1.171530 1.156 1.205 1.156 1.176

.995 1.286659 1.270 1.314 1.281 1.278

.999 1.516664 1.452 1.515 1.510 NA

whole domain. The normal approximation clearly cannot be good for the whole domain; in
this case it is reasonable for the outer values, but not so good for the intermediate values.
The results of the Monte Carlo simulation of Narayanan and Sager seem pretty good for the
values tabulated here and slightly better than the Monte Carlo simulation results reported
by Keiding et al. (1996) Neverthless, there is no need for Monte Carlo simulationsand these
will generally produce results deteriorating rapidly if one goes further out in the tail.

Table 3 gives further quantiles of the distribution FZ .

Table 3. Quantiles of F ¡ 1
Z (p) for p = .5(.01).99 and p = .99(.001).999

p F ¡ 1
Z (p) p F ¡ 1

Z (p)

.50 .00 .80 .439828

.51 .013187 .81 .458525

.52 .026383 .82 .477804

.53 .039595 .83 .497731

.54 .052830 .84 .518383

.55 .066096 .85 .539855

.56 .079402 .86 .562252

.57 .092757 .87 .585706

.58 .106168 .88 .610378

.59 .119645 .89 .636468

.60 .133196 .90 .664235

.61 .146831 .91 .694004

.62 .160560 .92 .726216

.63 .174393 .93 .761477

.64 .188342 .94 .800658

.65 .202418 .95 .845081

.66 .216633 .96 .896904

.67 .230999 .97 .960057

.68 .24553 .98 1.043030

.69 .260242 .99 1.171530

.70 .275151 .991 1.189813

.71 .290274 .992 1.209897

.72 .305629 .993 1.232241

.73 .321238 .994 1.257496

.74 .337123 .995 1.286659

.75 .353308 .996 1.321370

.76 .369821 .997 1.364637

.77 .386694 .998 1.423026

.78 .403959 .999 1.516664

.79 .421656 .9999 1.784955
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Table 4. Absolute Moments of Z; E(jZjk), k = 1(1)10

k E(jZjk)

1 .41273655
2 .26355964
3 .21135025
4 .19715702
5 .20573334
6 .23455025
7 .28760426
8 .37509901
9 .51604236
10 .74410271

5. MOMENTS OF Z

As remarked in the introduction,the � rst fourmomentswere computedby Groeneboom
and Sommeijer (1984). Table 4 shows the � rst 10 moments of Z.
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