Computing Chernoff’s Distribution

Piet GROENEBOOM and Jon A. WELLNER

A distribution that arises in problems of estimation of monotone functions is that
of the location of the maximum of two-sided Brownian motion minus a parabola. Using
results from the first author’s earlier work, we present algorithms and programs for compu-
tation of this distribution and its quantiles. We also present some comparisons with earlier
computations and simulations.
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1. INTRODUCTION

Our goal here is to compute, table, and plot the density, distribution function, moments,
and quantiles of the location Z of the maximum of two-sided Brownian motion B minus the
parabola t>. We also provide several examples of the application of this distribution to prob-
lems includinginterval censoring, monotone density and hazard estimation, deconvolution,
least median of squares estimation, and mode estimation.

To be explicit, let B(t), —oo < t < 00, be two-sided standard Brownian motion with
B(0) = 0. Then

Z = argmax,(B(t) — t%).

It follows from Lemma 2.6 of Kim and Pollard (1990) that Z is uniquely defined with
probability 1. The distribution of Z apparently first arose in work of Chernoff (1964) on
the estimation of the mode of a distribution function, and hence we refer to the distribution
of Z as Chernoff’s distribution.

Prakasa Rao (1969) showed that the distribution of the slope at zero of the greatest
convex minorant of B(t) 4 t? is exactly 2Z. This follows from the “switching relation”;
see Groeneboom (1985, Eq. (2.2), p. 541) for the finite sample version of this relation.
Groeneboom (1985; 1989) completely described the distribution of Z and characterized
analytically the process {V (a) : a € R}, where

V(a) =sup{t € R: B(t) — (t —a)* is maximal.
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In particular, Z has adensity f; with respect to Lebesgue measure on IR which is symmetric
about zero, and which satisfies

4/3
fz(z) N%jlz’(zl) exp <—%|Z|3+21/3d1|z|> as z — 00,
where d; ~ —2.3381is thelargest zero of the Airy function Ai and where Ai’ (@) ~ 0.7022.
The link of the distribution of Z with Airy functions is also given in Daniels and Skyrme
(1985),butthe process {V (a) : a € IR} isnotdiscussedin thatarticle. In unpublishednotes,
Groeneboom and Sommeijer (1984) numerically computed the absolute moments E(|Z|*),
k =1,...,4. The first of these was reported by Devroye and Gyorfi (1985, p. 214); and all
four of them were reported by Keiding, Begtrup, Scheike, and Hasibeder (1996). Note that
by symmetry of f it follows that E£(Z*) = 0 for k odd.

2. APPLICATIONS AND EXAMPLES
Here we present several examples showing how the distribution of Z enters.

Example 1. (decreasing densities): A classical example of an application of the theory is
the Grenander estimator of a decreasing density on [0, c0) Suppose that Xi,...,X,, isa
sample, generated by a decreasing density f on [0, co) thathas a nonzeroderivative f(x) ata
pointz € (0, 00). Let fn be the maximum likelihood estimator of f under the monotonicity
restriction. Then fn is the left-continuousderivative of the concave majorant of the empirical
distribution function; see Grenander (1956) and Groeneboom and Lopuhai (1993). This
estimator has, after “cube root n” standardization, the following limiting distribution

nl/3 {%f(x)f/(x)}l/3 {fn(sc) — f(sc)} A 27, n— o0,

where LA denotes convergence in distribution, see Prakasa Rao (1969) and (for a different
shorter proof) Groeneboom (1985).

Example2. (monotone failure rates): For this situation a similar result holds as in Example
1. For example, let X1, ..., X, is a sample, generated by a distribution with an increasing
failure rate r on [0, c0) and let #,, be the NPMLE of r in the class of distributions with
increasing failure rate. Then, under some regularity conditions:

| ~1/3
n'/3 {Er(sc)zr/(sc)} {Pn(z) —r(z)} LA 27, n — 00,
see Prakasa Rao (1970).

Example3. (leastmedianof squares estimator): Let X, ..., X, be asample from adensity
strongly unimodal distribution with density fy, given by

fo(x) = f(z —0), z € R,
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where the density f is differentiable and symmetric around zero. Rousseeuw (1984) intro-
duces the least median of squares estimator 0,, for the shift parameter 6 and gives a heuristic
argument for the result that

n!/3 {9n — 9} ,

converges in distribution to ¢ - Z, where ¢ > 0 is a constant depending on the distribution
function F' correspondingto the density f, the density f itselfand its derivative f’. A proof of
this result is given in Kim and Pollard (1990). In Rousseeuw (1984) also recommendations
for confidence intervals can be found.

Example 4. (interval censoring, case 1, also called “current status model”): Suppose that
X is a “survival time” with distribution function F on [0, c0) and Y is an observation time
which is independent of X and has distribution function G on [0, c0). However, we can
observe only (Y, 1{x<yy) = (Y, A), and want to estimate [, the distribution function of
X based on iid replications (Y7, Ay), ..., (Ya,A,) of (Y, A). In this case the NPMLE F,
of F'is known from Ayer, Brunk, Ewing, Reid, and Silverman (1955). It was proved in
Groeneboom and Wellner (1992) that if F has density f and G has density g at t, € (0, c0)
with g(to) > 0, f(to) > 0, then

1/3/m p [l 13
W5 Falte) = Fiw) 2 { 3F ()1 = St s(t) | 22, .

Thus, from Table 2 in Section 2, it follows that an asymptotic 95% confidence interval for
F(to) is given by

R I~ R R 1/3
F(ty) = n~/3 {EFn(to)(l - Fn(to))f(to)/;j(to)} 2 (.99818),

where f (to) and g(to) are any consistent estimators of f(to) and g(to), respectively; for
example, based on kernel smoothing of F,, and G,, () =n"" 300 Livi<ey-

In the particular application discussed by Keiding et al. (1996), X; represents “age of
immunization” of individual ¢ against rubella, Y; represents “current age” of person i.

Example 5. (interval censoring, case 2): In this case the data consist of a sample of obser-
vations

(Ui, Vi, A, Ty), i=1,...,n,

where U; < V; and [U;, V;] is an “observation interval” for the (hidden and unobservable)
variable X;. The variables A; and I'; are indicators, telling us whether X; is left of U,,
between U; and V;, or right of V;:

A'L = I{XiSUi}v F1 = 1{Ui<Xi§Vi}'

The X; are assumed to be independent of the (U;, V;). For analyses of this model; see,
for example, Groeneboom (1996) and Geskus and Groeneboom (1999). In this situation
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the NPMLE @n has to be computed by an iterative method. A fast iterative algorithm is
available, the so-called iterative convex minorant algorithm, proposed by Groeneboom and
Wellner (1992) and further analyzed by Jongbloed (1998b).

Assume that (U;, V;) has a density h with respect to Lebesgue measure, with first
and second marginal densities h; and h,, respectively. Moreover, suppose that F' is the
distribution function of the variable X; with a density f with respect to Lebesgue measure,
and let k;, i = 1, 2, and the function a be defined by

* h(u,v) v h(u,v)
ne = [ F S 0= [ o re

and

>

1(to)

ha(to)
a(t) = Tt A\

1— Fto)

+ ki (to) + ka(to) +

Then we have at a point ¢ in the interior of the support of the distribution function F' under
some regularity conditions, in particular assuming that the observation points U; and V; are
strictly separated (i.e., P{V; — U; < €} = 0 for some € > 0) and that f(¢) > 0:

n'32a(t)/ FOYHFA() — F(8)} 222, n— oo,

see Groeneboom (1996, theorem 4.4).

A long-standing conjecture is that in the situation where U; and V; are not strictly
separated the rate of convergence increases to (n logn) 1/3 and that the limiting distribution
is again given by Z; see Groeneboom and Wellner (1992, p. 100), but this conjecture has at
present still not been proved or disproved. Extensions to more than two observation points
are possible (the situationis not very different from “case 2,” since only the two observation
points surrounding the hidden variable X; will be relevant for the analysis), but we will not
further discuss this here.

Example 6. (deconvolution): Let X, ..., X,, be a sample from the convolution of an
unknown distribution function F, concentrated on [0, 1] and the uniform distribution and
let F,, be the NPMLE of F'. Then, if F' has a positive density f(z) atx € (0,1):

! {Bo(e) - F(a)}/ {%F(sc)(l - F(x))f(x)}l/3 D27, n— oo

see van Es (1991, theorem 4.5) or Groeneboom and Wellner (1992, p. 109). A similar result
for deconvolution with the exponential distributionis given in Jongbloed (1998a), where it
is shown that if X, ..., X, is a sample from the convolution of an unknown distribution
function F', concentrated on [0, co) with the standard exponential distribution, the NPMLE
Fn of F' satisfies

! B (2) - Fla)}/ {%e“ff(x)}m 2oz,

if F' has a positive density f(z) at z > 0. For related material, see van Es and van Zuijlen
(1996) and van Es, Jongbloed, and van Zuijlen (1998).
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Example 7. (mode Estimation; Venter’s estimator): Suppose that X, ..., X,, are iid with
unimodal density f satisfying

£(#) =0 = 37(e = 0 + £(x — )’ + ol — 0.

Then as shown by Venter (1967), his estimator §n of the mode 6 satisfies
nl/S(é\n —0) =y 21/3A72/3772/3,Yoz.
Thus, if 4 and 4 are consistent estimators of vy and +, respectively, then

~ 21/3%

yields an approximate 95% confidence interval for the mode 6.

Narayanan and Sager (1989) gave several nice examples of mode estimation via both
Chernoff’s estimators and Venter’s estimators and their (simulated) quantiles of the distri-
bution of Z to form confidence intervals; see especially pages 46-50.

Example8. (panelcountdata): Wellner and Zhang (1998) showed that a pseudo-likelihood
estimator A,, of the mean function A of a counting process with “panel count” data satisfies

2 ’ 1/3
n1/3 Aps _ g g (t)A (t)
@0 - a0y 2 {Sor L 2z

where G'(t) = > 7o | P(K = k) Z?:l Gy, ;(t). Thus, if &52(t), A, and G’ (t) are consistent
estimators of o(t), A’(t), and G’ (t), respectively, then

~ 1/3
Tps L jeoNm |
A (t)inl/3{ 20 } 2-(.99818)

yields an approximate 95% confidence interval for A(¢).

For a rather different approach to examples of the type presented here, see Politis and
Romano (1994), especially their example 2.1.1, pages 2035-2036.

3. COMPUTATION OF THE DENSITY f; AND DISTRIBUTION
FUNCTION F

The density fz can in principle be found by solving the following partial differential
equation (heat equation), given by Chernoff (1964):

0 1 9%
Fu(he) = —5 5 5ult @), 3.1
for x < 2, under the boundary conditions:
u(t, ) € limu(t, z) = 1, lim u(t,z) =0, t € R. (3.2)

93th x| —o0



CoMPUTING CHERNOFF’S DISTRIBUTION 393

In terms of the (smooth) solution u(¢, x), the density fz is given by

fz(t) = %uz(—t)uz(t), t € R, 3.3)

where (as in Groeneboom 1985), the function u, is defined by

0
t) = lim —u(? t e R. 34
’LL2( ) IITIE 8tu( ,SC), ( )
In fact, the original computations of the density were based on a numerical solution
of this differential equation (this information is based on personal communications with
Herman Chernoff and Willem van Zwet). The trouble with this approach is the behavior of
the function u, for negative values of ¢. In fact, since, by (4.25) in Groeneboom (1985),

2
wlt) ~ cvexp{ -2 —elel} ¢ o

where c = 2.9458 ... and ¢; = 2.2638. . ., the function u; tends to zero extremely rapidly,
as t decreases away from zero. Some experiments with the numerical approach by the first
author, in cooperation with B. Sommeyer, back in 1984, showed that this simple analytic
fact invalidates any direct numerical approach, based on the partial differential equation:
an error analysis showed that even with very fine grids the numerical solution was highly
unstable. For this reason a more thorough analytic analysis of the problem was made, and
the results of this analysis were given by Groeneboom (1985, 1989)

The following developmentis from Groeneboom (1985, sec. 4, pp. 548-553). Define
a function p : [0,00) — R as follows:

—VE o ary + 2 by it yelo1]
p(y) = (3.5)
—y 2 4+ 2v2mexp(—y? /6) 10T exp(2' Pary) , if y € (1,00).

Here the dy,’s are the zeros of the Airy function Ai, and ay, by are defined recursively as

follows: set ¢y = 1 and

(2n —3)2n+1)
n?(2n — 1)

ep =274 Cn—1, n=12,....
The recursive relations for the coefficients a;, and b, follow from the integral equation
(4.14)in Groeneboom (1985). The integral equation leads to an accurate and useful analytic
representation of the density in a neighborhoodof zero, whereas the expansionon the second
line of (3.5) does similar job away from zero.

Then with ap = 1, by = 2/3, and B(p,q) = T'(p)T'(q)/T(p + q), the standard Beta
function, set

n—1

1

an:cn—zmbn,kB(Bn—Ek—1/2,k+3/2), n=12..; (3.6)
n—I1 1

bn:Zman,k,lmsn—zk—2,k+3/2), n=23,.... @37

k=0
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0.5

Figure 1.  Density function of Z, fz.

The reason for treating the intervals [0, 1] separately is that the series using the zeros of the
Airy function diverges at zero and gives a bad approximation in neighborhoods of zero.
We then define g : R — R by

g(z) = 22— \/_27/ ) exp <—%y(21 +y)2> dy
22 [T et s Jor s yen (irer o) a
(3.8)

ifz € [—1,00), and
g(x) =exp < > 4173 Zexp ( 1/3aksc) JA (@) 3.9)

if x € (—oo, —1]; here Ai’ is the derivative of the Airy function Ai. The reason for using
y? in the integrand of the first part of the definition of ¢ instead of y as in Groeneboom
(1985), is purely numerical: the present change of variables avoids a factor of /y in the
denominator of the integrand.

Finally, the density fz is expressed in terms of g as

fz(z) = =g(2)g(—2), z € (—00,00). (3.10)

The distribution function Fz of Z is simply

2) = / OO Jz(w)dw = %/m g(w)g(-w)dw, 2 € (~00,00).
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Figure 2. Distribution function of Z, Fyz.

Because of the symmetry of fz about 0, it suffices to calculate

z z
Fz(z) — Fz(0) = /0 fz(w)dw = %/0 g(w)g(—w)dw, z€[0,00). (3.11)

Figures 1 and 2 show plots of the density function fz and the distribution function Fz,
respectively; in these figures we used the first 20 terms of the series defining the function
p, and also the first 20 terms of the series defining g in the region (—oo, —1). The figures
shown here were produced by Mathematica; see Wolfram (1996).

The tablesin this article were also first computed in Mathematica. Subsequently,a com-
puter program, written in C, was developed. The program uses some routines for computing
integrals and (zeros of) Airy functions by Lau (1995). These C routines are translations into
C of the routines in the NUMAL library of the ALGOL 60 routines, developed at the
Mathematical Centre, Amsterdam; see Hemker (1980). The results of the C program cor-
respond in all decimals shown with the results obtained in Mathematica, except in a few
cases where Mathematica could not reach sufficient accuracy (giving small differences in
the last decimals). The C program was originally written on a Macintosh powerbook, using
the Metrowerks Code Warrior C compiler and the sources could be compiled without any
change on an HP Unix workstation by the standard C compiler available on this workstation.
In the demonstration version of the program Table 1, of the this article is computed.

We also tried to provide a Microsoft Windows 98 executable, but ran into trouble here,
since compilation by the Microsoft Visual C++ compiler, version 6.0, produced a so-called
“release version” that either did not work or produced the wrong results (interestingly, de-
pending on the machine on which it was run!). The so-called “debug version” worked better
but was rather slow. Consulting the available information on differences between “debug”
and “release” versions did not help us to solve the problem. Disabling the “maximize speed”
option in compiling the release version also produced a correct but slowly working version!
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Table 1. Values of the distribution function Fz and density function f»

z Fz(2) f2(2) z Fz(z) f2(2) z Fz(z) f2(2)

.00 .500000 .758345 .30 .716352 .649874 .60 .875858 .403594
.01 507583 .758215 .31 .722817 .643059 .61 .879851 .394887
.02 515163 .757828 .32 .729213 .636088 .62 .883756 .386214
.03 .622739 .757183 .33 .735538 .628967 .63 .887575 .377580
.04 530306 .756281 34 741792 621704 .64 .891308 .368989
.05 537863 .755123 .35 .747972 614303 .65 .894955 .360447
.06 .545408 .753709 .36 .754077 .606771 .66 .898517 .351960
.07 652937 .752042 .37 .760107 .599115 .67 .901994 .343531
.08 .560448 .750122 .38 .766059 .591341 .68 .905388 .335166
.09 .567938 .747951 39 771933 583455 .69 .908698 .326870
10 575406 .745532 .40 777728 575464 .70 911925 .318646
11 582848 .742866 .41 .783442 567374 .71 915071 .310499
12 590263 .739957 .42 789075 .559192 .72 918136 .302433
13 597647 736806 .43 .794626 .550925 .73 .921120 .294452
14 604998 733416 .44 .800094 542578 .74 .924025 .286560
15 612314 729792 .45 .805477 534159 .75 .926852 .278760
16 619593 725935 .46 .810776 .525674 .76 .929601 .271057
17 626832 721849 .47 .815991 517130 .77 .932273 .263452
.18  .634029 .717539 .48 .821119 508533 .78 .934870 .255950
19 641182 .713008 .49 .826161 .499890 .79 .937392 .248553
20 .648289 .708260 .50 .831117 .491208 .80 .939841 .241264
.21 655347 .703299 .51 .835985 .482492 .81 .942218 .234086
.22 .662354 .698131 52 .840766 473749 .82 .944523 227020
.23 .669309 .692758 .53 .845460 .464986 .83 .946759 .220070
.24 676208 .687187 .54 .850066 .456209 .84 .948925 .213237
.25 .683052 .681422 .55 .854584 447424 85 951024 .206523
.26 .689836 .675469 .56 .859014 .438638 .86 .953056 .199931
.27 696560 .669332 .57 .863357 .429855 .87 .955023 .193460
.28 703222 .663017 .58 .867612 .421083 .88 .956926 .187113
29 709820 .656529 .59 871779 412327 .89 .958766 .180891

Some testing showed that Lau’s integrationroutines derail the Microsoft Visual C++release
version (with “maximize speed” enabled), so replacing these by other integration routines
may remove the problem. However, since the program worked fine on Unix and a Macintosh
and even in a Microsoft Visual C++ “release” version with “maximize speed” disabled, we
did not investigate this further. But, in view of these experiences, we recommend compil-
ing the C sources either on a machine using the Unix operating system or on a Macintosh
power PC, using Metrowerks Code Warrior. Compilation using Microsoft Visual C++ may
produce unexpected results!

Dykstra and Carolan (1997) computed the density function fz by numerical Fourier
inversion of formula (3.8) in Groeneboom (1989, p. 91). This section showed how f7 is
computable without numerical Fourier inversion.

Table 1 gives the distribution function Fz(z) and the density function f;(z) for z =
0.0(.01)2.0. We took n = 20 in our computation of the power series; the demonstration
program allows the user take a different number of terms before starting the computation.
Our experience is that in going beyond 20 (in choosing the number of terms in the power
series), the results did not change in 9 decimals. The C code also contains routines for
computing moments and quantiles; these routines can all be found in the source “main.c”.
We used these routines in producing Tables 2—4.
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Table 1. Continued

z Fz(z) f2(2) z Fz(2) f2(2) z Fz(z) f2(2)

90 .960544 174795 1.27 .994448 .0346458 .64 999631 .0031329
91 962262 .168827 1.28 .994785 .0328273 .65 .999662 .0028995
92 963921  .162985 1.29 995105 .0310864 .66 .999689 .0026817
93 .965522 157272 1.30 .995407 .0294208 .67 .999715  .0024785
.94 967067 .151687 1.31 .995693 .0278282 .68 .999739 .0022891
.95  .968556  .146231 1.32 .995964 .0263065 .69 .999761 .0021127
96 .969992  .140904 1.33 .996220 .0248534 .70 999781  .0019485
.97 971375 135705 1.34 996461 .0234666 71 .999800 .0017957
.98 972706 .130635 1.35 .996689 .0221441 .72 .999817  .0016537
.99 973988 .125694 1.36 .996904 .0208837 .73 999833 .0015219
.00 975221 .120880 1.37 .997107 .0196831 .74 999848 .0013995
.01 .976406 .116194 1.38 .997298 .0185404 .75 .999861 .0012861
.02 .977545 111633 1.39 .997478 .0174534 .76 999873 .0011810
.03 .978639 .107199 1.40 .997648 .0164201 77 999885 .0010836
.04 979689 .102889 1.41  .997807 .0154385 .78 .999895 .0009936
.05 .980697 .0987031 1.42 .997957 .0145066 .79 .999905 .0009103
.06 .981664 .0946394 1.43 .998097 .0136226 .80 .999913 .0008334
.07 .982590 .0906969 1.44 .998229 .0127844 .81 .999921  .0007625
.08 .983478 .0868741 1.45 998353 .0119902 .82 999929  .0006970

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

.09 .984328 .0831697 .46 998469 .0112384 .83 .999935 .0006367
.10 .985142 .0795821 .47 998578  .0105269 .84 .999941  .0005811
11 985920 .0761096 .48 .998680 .0098542 .85 .999947  .0005300
.12 986665 .0727506 .49 998775 .0092187 .86 .999952 .0004830
.987376  .0695033 .50 .998864 .0086186 .87 .999957  .0004399
.14 988055 .0663658 .51 .998948 .0080523 .88 .999961 .0004003
.15 988703 .0633362 .52 999025 .0075183 .89 .999965 .0003639
.16 .989322 .0604126 .53 .999098 .0070151 .90 .999968 .0003306
17 989912 .0575930 .54 999166 .0065413 91 999971  .0003001
.18 .990474  .0548753 .55 999229  .0060955 .92 999974  .0002722
.19 991010 .0522574 .56 .999288 .0056763 .93  .999977  .0002468
.20 991520 .0497372 .57 999343 .0052824 .94 999979  .0002235
.21 992005 .0473125 .58 .999394 .0049125 .95 .999981  .0002022
.22 992466  .0449811 .59 999441  .0045655 .96 .999983 .0001828
.23 992905 .0427408 .60 .999485 .0042401 .97 .999985 .0001652
.24 993321 .0405894 .61 999526 .0039352 .98 .999986 .0001491
.25 993717  .0385246 .62 .999564 .0036497 .99 .999988 .0001345
26994092  .0365441 .63 .999599 .0033826 2.00 .999989 .0001212

-k e e e e e e ek e e e bk b e ek e e ek d e ek b e b b e b b e b b e b

—_ ek b e e e e e b e e e e e e e e e e e e
—_

4. QUANTILES OF Fz AND SOME COMPARISONS

Dykstra and Carolan (1997) suggested that fz and Fz are closely approximated by the
N (0, (.52)?) density and distributionfunctionsrespectively. Althoughthis resultsina simple
approximation for the corresponding quantiles F',; ! (p), the differences between the exact
quantiles and the approximate quantiles, or exact distribution function and approximate
distribution function based on the normal approximation can be substantial.

Table 2 compares a few quantiles computed directly by inverting the distribution func-
tion, computed in the preceding section, with analytically computed, approximate (by a
normal distribution approximation), and Monte Carlo quantiles as computed by Dykstra
and Carolan (1997), Narayanan and Sager (1989), and Keiding et al. (1996). The Dykstra
and Carolan (1997) approach seems to fail in the tail, and we indeed believe that it is ab-
solutely necessary to use different representations of the density in a neighborhood of zero
and in the tail (which is a common phenomenon in the numerical evaluation of special func-
tions), whereas Dykstra and Carolan (1997) essentially used the same representation for the
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Table 2. Comparison of several computations and estimators of the quantiles FZ_1 (p) for certain p's

Dykstra and Narayanan

Percentile Exact Carolan; Fourier and Sager;  Keiding et al.

P Fy () inversion N(0, (.52)2) Monte Carlo  Monte Carlo
.9 .664235 .664 .666 .658 .66
.95 .845081 .846 .856 .838 .836
.975 .998181 .998 1.018 .986 1.009
.99 1.171530 1.156 1.205 1.156 1.176
.995 1.286659 1.270 1.314 1.281 1.278
.999 1.516664 1.452 1.515 1.510 NA

whole domain. The normal approximation clearly cannot be good for the whole domain; in
this case it is reasonable for the outer values, but not so good for the intermediate values.
The results of the Monte Carlo simulation of Narayanan and Sager seem pretty good for the
values tabulated here and slightly better than the Monte Carlo simulation results reported
by Keiding et al. (1996) Neverthless, there is no need for Monte Carlo simulations and these
will generally produce results deteriorating rapidly if one goes further out in the tail.
Table 3 gives further quantiles of the distribution Fz.

Table 3. Quantiles of F;" (p) for p = .5(.01).99 and p = .99(.001).999

p Fi'e) P Fl(P)
.50 .00 .80 439828
51 .013187 .81 458525
.52 .026383 .82 477804
.53 .039595 .83 497731
.54 .052830 .84 .518383
.55 .066096 .85 .539855
.56 .079402 .86 .562252
.57 .092757 .87 .585706
.58 .106168 .88 .610378
59 119645 .89 .636468
.60 .133196 .90 .664235
.61 .146831 .91 .694004
.62 .160560 .92 .726216
.63 .174393 .93 .761477
.64 188342 .94 .800658
.65 202418 .95 .845081
.66 .216633 .96 .896904
.67 230999 .97 .960057
.68  .24553 .98 1.043030
.69 .260242 .99 1.171530
.70 275151  .991 1.189813
71290274 992 1.209897
.72 305629 .993 1.232241
.73 321238 .994 1.257496
.74 337123 .995 1.286659
.75 .353308 .996 1.321370
76 369821 .997 1.364637
77 .386694 .998 1.423026
.78 403959 .999 1.516664
79 421656 9999 1.784955
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Table 4. Absolute Moments of Z; E(|Z]¥), k = 1(1)10

kK E(Z

41273655
.26355964
21135025
19715702
.20573334
.23455025
.28760426
.37509901
51604236

0 .74410271

OO ~NOUORWN =

5. MOMENTS OF Z

As remarked in the introduction, the first four moments were computed by Groeneboom
and Sommeijer (1984). Table 4 shows the first 10 moments of Z.
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