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Often of primary interest in the analysis of multivariate data are the copula parameters describing the depen-
dence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate
dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural
candidates for semiparametric copula estimation. Asymptotic information bounds for such estimators can
be obtained from an asymptotic analysis of the rank likelihood, that is, the probability of the multivariate
ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula
models. Our results cover models with structured correlation matrices, such as exchangeable or circular
correlation models, as well as unstructured correlation matrices. For all Gaussian copula models, the lim-
iting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio
for an appropriately chosen multivariate normal model. This implies that the semiparametric information
bounds for rank-based estimators are the same as the information bounds for estimators based on the full
data, and that the multivariate normal distributions are least favorable.

Keywords: copula model; local asymptotic normality; marginal likelihood; multivariate rank statistics;
rank likelihood; transformation model

1. Rank likelihood for copula models

Recall that a copula is a multivariate CDF having uniform univariate marginal distributions.
For any multivariate CDF F(y1, . . . , yp) with absolutely continuous margins F1, . . . ,Fp , the
corresponding copula C(u1, . . . , up) is given by

C(u1, . . . , up) = F
(
F−1

1 (u1), . . . ,F
−1
p (up)

)
.

Sklar’s theorem [21] shows that C is the unique copula for which F(y1, . . . , yp) = C(F1(y1), . . . ,

Fp(yp)).
In this article, we consider models consisting of multivariate probability distributions for

which the copula is parameterized separately from the univariate marginal distributions. Specif-
ically, the models we consider consist of collections of multivariate CDFs {F(y|θ,ψ) : y ∈
R

p, (θ,ψ) ∈ � × �} such that ψ parameterizes the univariate marginal distributions and θ

parameterizes the copula, meaning that for a random vector Y = (Y1, . . . , Yp)T with CDF
F(y|θ,ψ),

Pr(Yj ≤ yj |θ,ψ) = Fj (yj |ψ) ∀θ ∈ �,j = 1, . . . , p,

Pr
(
F1(Y1|ψ) ≤ u1, . . . ,Fp(Yp|ψ) ≤ up|θ,ψ

) = C(u1, . . . , up|θ) ∀ψ ∈ �.
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We refer to such a class of distributions as a copula-parameterized model. For such a model, it
will be convenient to refer to the class of copulas {C(u|θ) : θ ∈ �} as the copula model, and the
class {F1(y|ψ), . . . ,Fp(y|ψ) :ψ ∈ �} as the marginal model.

As an example, the copula model for the class of p-variate multivariate normal distributions
is called the Gaussian copula model, and is parameterized by letting � be the set of p × p

correlation matrices. The marginal model for the p-variate normal distributions is the set of all
p-tuples of univariate normal distributions. The copula-parameterized models we focus on in this
article are semiparametric Gaussian copula models [14], for which the copula model is Gaussian
and the marginal model consists of the set of all p-tuples of absolutely continuous univariate
CDFs.

Let Y be an n × p random matrix whose rows Y1, . . . ,Yn are i.i.d. samples from a p-variate
population. We define the multivariate rank function R(Y) : Rn×p → R

n×p so that Ri,j , the
(i, j)th element of R(Y), is the rank of Yi,j among {Y1,j , . . . , Yn,j }. Note that the ranks R(Y) are
invariant to strictly increasing transformations of the columns of Y, and therefore the probability
distribution of R(Y) does not depend on the univariate marginal distributions of the p variables.
As a result, for any copula parameterized model and data matrix y ∈ R

n×p with ranks R(y) = r,
the likelihood L(θ,ψ : y) can be decomposed as

L(θ,ψ : y) = p(y|θ,ψ) = Pr
(
R(Y) = r|θ,ψ

) × p(y|θ,ψ, r)
(1)

≡ L(θ : r) × L
(
θ,ψ : [y|r]),

where p(y|θ,ψ) is the joint density of Y and p(y|θ,ψ, r) is the conditional density of Y given
R(Y) = r. The function L(θ : r) = Pr(R(Y) = r|θ) is called the rank likelihood function. In sit-
uations where θ is the parameter of interest and ψ a nuisance parameter, inference for θ can
be obtained from the rank likelihood function without having to estimate the margins or spec-
ify a marginal model. A univariate rank likelihood function was proposed by Pettitt [17] for
estimation in monotonically transformed regression models. Asymptotic properties of the rank
likelihood for this regression model were studied by Bickel and Ritov [4], and a parameter es-
timation scheme based on Gibbs sampling was provided in [12]. Rank likelihood estimation of
copula parameters was studied in [11], who also extended the rank likelihood to accommodate
multivariate data with mixed continuous and discrete marginal distributions.

The rank likelihood is constructed from the marginal probability of the ranks and can there-
fore be viewed as a type of marginal likelihood. Marginal likelihood procedures are often used
for estimation in the presence of nuisance parameters (see Section 8.3 of [19] for a review). Ide-
ally, the statistic that generates a marginal likelihood is “partially sufficient” in the sense that
it contains all of the information about the parameter of interest that can be quantified without
specifying the nuisance parameter. Notions of partial sufficiency include G-sufficiency [1] and
L-sufficiency [18], which are motivated by group invariance and profile likelihood, respectively.
Hoff [11] showed that the ranks R(Y) are both a G- and L-sufficient statistic in the context of
copula estimation.

Although rank-based estimators of the copula parameter θ may be appealing for the rea-
sons described above, one may wonder to what extent they are efficient. The decomposition
given in (1) indicates that rank-based estimates do not use any information about θ contained
in L(θ,ψ : [y|r]), the conditional density of the data given the ranks. For at least one copula
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model, this information is asymptotically negligible: Klaassen and Wellner [14] showed that for
the bivariate normal copula model, a rank-based estimator is semiparametrically efficient and has
asymptotic variance equal to the Cramér–Rao information bound in the bivariate normal model,
that is, the bivariate normal model is the least favorable submodel. Genest and Werker [9] stud-
ied the efficiency properties of pseudo-likelihood estimators for two-dimensional semiparametric
copula models and showed that the pseudo-likelihood estimators (which are functions of the bi-
variate ranks) are not in general semiparametrically efficient for non-Gaussian copulas. Chen
et al. [5] proposed estimators in general multivariate copula models that achieve semiparamet-
ric asymptotic efficiency but are not based solely on the multivariate ranks. It remains unclear
whether estimators based solely on the ranks can be asymptotically efficient in general semipara-
metric copula models. In particular, it is not yet known if maximum likelihood estimators based
on rank likelihoods for Gaussian semiparametric copula models are semiparametrically efficient.

The potential efficiency loss of rank-based estimators can be investigated via the limiting dis-
tribution of an appropriately scaled rank likelihood ratio. Generally speaking, the local asymp-
totic normality (LAN) of a likelihood ratio plays an important role in the asymptotic analysis
of testing and estimation procedures. For semiparametric models, the asymptotic variance of
a LAN likelihood ratio can be related to efficient tests [6] and information bounds for regular
estimators [2,3]. In particular, the variance of the limiting normal distribution of a LAN rank
likelihood ratio provides information bounds for locally regular rank-based estimators of copula
parameters.

In this article, we obtain the limiting normal distributions of the rank likelihood ratio for Gaus-
sian copula models with structured and unstructured correlation matrices. In the next section, we
give sufficient conditions under which the rank likelihood is LAN. The basic result is that the rank
likelihood is LAN if there exists a good rank-measurable approximation to a LAN submodel. For
Gaussian copulas, the natural candidate submodels are multivariate normal models, for which the
log likelihood is quadratic in the observations. In Section 3, we identify sufficient conditions for
a normal quadratic form to have a good rank-measurable approximation. This result allows us to
identify multivariate normal submodels with likelihood ratios that asymptotically approximate
the rank likelihood ratio. In Section 4, we show that for any smoothly parameterized Gaussian
copula, the rank likelihood ratio is LAN with an asymptotic variance equal to that of the like-
lihood ratio for the corresponding multivariate normal model with unequal marginal variances.
Since the parametric multivariate normal model is a submodel of the semiparametric Gaussian
copula model, and in general the semiparametric information bound based on the full data is
higher than that of any parametric submodel, our results imply that the bounds for rank-based es-
timators are equal to the semiparametric bounds for estimators based on the full data, and that the
multivariate normal models are least favorable. These bounds can be compared to the asymptotic
variance of an estimator to assess its asymptotic efficiency. Via two examples, in Section 5 we
show that pseudo-likelihood estimators are asymptotically efficient for some but not all Gaussian
copula models. This is discussed further in Section 6.
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2. Approximating the rank likelihood ratio

The local log rank likelihood ratio is defined as

λr(s) = log
L(θ + s/

√
n : r)

L(θ : r)
,

where L(θ : r) is defined in (1). Studying λr is difficult because L(θ : r) is the integral of a copula
density over a complicated set defined by multivariate order constraints. However, in some cases
it is possible to obtain the asymptotic distribution of λr by relating it to the local log likelihood
ratio λy of an appropriate parametric multivariate model, where

λy(s, t) = log
L(θ + s/

√
n,ψ + t/

√
n : y)

L(θ,ψ : y)
. (2)

This method of identifying the asymptotic distribution of λr is analogous to the approach taken
by Bickel and Ritov [4] in their investigation of the rank likelihood ratio for a univariate semi-
parametric regression model.

In this section, we will show that if we can find a sufficiently good rank-measurable approxi-
mation to λy , then the limiting distribution of λr will match that of λy . Specifically, we prove the
following theorem.

Theorem 2.1. Let {F(y|θ,ψ) : θ ∈ �,ψ ∈ �} be an absolutely continuous copula parameter-
ized model where for given values of θ and s there exists values of ψ and t such that under i.i.d.
sampling from F(y|θ,ψ),

1. λy(s, t) is LAN, so that λy(s, t)
d→ Z, a normal random variable, and

2. there exists a rank-measurable approximation λŷ(s, t) such that λy(s, t) − λŷ(s, t)
p→ 0.

Then λr(s)
d→ Z as n → ∞ under i.i.d. sampling from any population with copula C(u|θ) equal

to that of F(y|θ,ψ) and arbitrary absolutely continuous marginal distributions.

Proof. Let L(θ,ψ : y) be the (parametric) likelihood function for a given dataset y ∈ R
n×p . The

lack of dependence of the rank likelihood on the marginal distributions leads to the following
identity relating λr(s) to λy(s, t):

log Eθ

[
eλy(s,t)|R(Y) = r

] = log
∫

R(y)=r

p(y|θ + s/
√

n,ψ + t/
√

n)

p(y|θ,ψ)

p(y|θ,ψ)

Pr(R(Y) = r|θ)
dy

= log
Pr(R(Y) = r|θ + s/

√
n)

Pr(R(Y) = r|θ)
= λr(s).

Now suppose we would like to describe the statistical properties of λr(s) when the matrix r
is replaced by the ranks R(Y), where the rows of Y are i.i.d. samples from a population with
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copula C(u|θ). Since the distribution of the ranks of Y is invariant with respect to the univariate
marginal distributions, the particular marginal model and values of ψ and t are immaterial and
can be chosen to facilitate analysis. For each θ and s, our strategy will be to select ψ and t

such that the replacement of y by a rank-measurable approximation ŷ in Equation (2) results
in an accurate rank-based approximation λŷ(s, t) of λy(s, t). Because the resulting λŷ is rank-
measurable, we can write

λr(s) = log Eθ

[
eλy(s,t)|R(Y)

]
= λŷ(s, t) + log Eθ

[
eλy(s,t)−λŷ (s,t)|R(Y)

]
.

If the approximation of λy(s, t) by λŷ(s, t) is sufficiently accurate to make the remainder term,
log Eθ [eλy(s,t)−λŷ (s,t)|R(Y)], converge in probability to zero as n → ∞, then the asymptotic dis-
tribution of λr(s) is determined by that of λŷ(s, t). Note that λr(s) does not depend on t , which
implies that the value of t for which such an approximation is available will depend on s and θ .

Let λy be LAN and Y1, . . . ,Yn ∼ i.i.d. F(y|θ,ψ). For given s and t , we will show that if

λy(s, t) − λŷ(s, t)
p→ 0, then log Eθ [eλy(s,t)−λŷ (s,t)|R(Y)] p→ 0, where here and in what follows,

limits are as n → ∞ and probabilities and expectations are calculated under θ and ψ unless oth-
erwise noted. We note that this result was essentially proven at the end of the proof of Theorem 1
of [4] in the context of the regression transformation model, although details were omitted. We
include the proof here for completeness.

Let Un = eλy , Vn = eλŷ and Rn = R(Y1, . . . ,Yn), so that the exponential of the remainder
term can be written as E[Un

Vn
|Rn]. For any M > 1, we can write∣∣∣∣E

[
Un

Vn

− 1
∣∣∣Rn

]∣∣∣∣ ≤ E

[∣∣∣∣Un

Vn

− 1

∣∣∣∣
∣∣∣Rn

]

= E

[∣∣∣∣Un

Vn

− 1

∣∣∣∣1(Un/Vn≤M)

∣∣∣Rn

]
+ E

[∣∣∣∣Un

Vn

− 1

∣∣∣∣1(Un/Vn>M)

∣∣∣Rn

]

≤ E

[∣∣∣∣Un

Vn

− 1

∣∣∣∣1(Un/Vn≤M)

∣∣∣Rn

]
+ E

[
Un

Vn

1(Un/Vn>M)

∣∣∣Rn

]
+ E[1(Un/Vn>M)|Rn]

= E

[∣∣∣∣Un

Vn

− 1

∣∣∣∣1(Un/Vn≤M)

∣∣∣Rn

]
+ V −1

n E[Un1(Un/Vn>M)|Rn]

+ Pr

(
Un

Vn

> M

∣∣∣Rn

)
= an + bn + cn.

We now show that each of an, bn and cn converge in probability to zero. To do so, we make use
of the following facts:

1. Un/Vn = eλy−λŷ
p→ 1 by the continuous mapping theorem;

2. Un = eλy and V −1
n = e−λŷ are bounded in probability, as λy and λŷ converge in distribution;
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3. {Un :n ∈ N} is uniformly integrable, since logUn = λy is LAN [10];

4. If E[|Xn|] → 0 and Zn is a random sequence, then E[Xn|Zn] p→ 0.

To see that an
p→ 0 and cn

p→ 0, note that both |Un

Vn
−1|1(Un/Vn≤M) and 1(Un/Vn>M) are bounded

random variables that converge in probability to zero, so their conditional expectations given Rn

converge in probability to zero as well. For the sequence bn, note that Un is Op(1) as it con-

verges in distribution, and 1(Un/Vn>M) is op(1) as Un

Vn

p→ 1, so Ũn = Un1(Un/Vn>M) is op(1). Now

0 ≤ Ũn ≤ Un for each n, and {Un :n ∈ N} is uniformly integrable, so {Ũn :n ∈ N} is uniformly

integrable as well. This and Ũn
p→ 0 imply that E[|Ũn|] = E[Ũn] → 0, and so E[Ũn|Rn] p→ 0.

Since bn = V −1
n E[Ũn|Rn], and V −1

n is Op(1), bn is op(1).
Recall our original identity relating λr(s) to λy(s, t) and λŷ(s, t):

λr(s) = λŷ(s, t) + log E
[
eλy(s,t)−λŷ (s,t)|R(Y)

]
.

We have shown that if λy is LAN and λy(s, t) − λŷ(s, t)
p→ 0 under i.i.d. sampling from

F(y|θ,ψ), then the remainder term goes to zero, and so λy , λŷ and λr all converge to the same
normal random variable. If the data are being sampled from a population with the same cop-
ula as F(y|θ,ψ) but different margins, then there exists a transformation of the data such that
F(y|θ,ψ) is the distribution of the transformed population, and the result follows. �

For a given copula model, Theorem 2.1 essentially says that the asymptotic distribution of
the log rank likelihood ratio will be the same as that of the log likelihood ratio of any mul-
tivariate model with the same copula, as long as the latter admits an asymptotically accurate
rank-measurable approximation. The task of identifying the limiting distribution of λr then be-
comes one of identifying a suitable marginal model for which such an approximation to the log
likelihood ratio holds. For multivariate normal models, the log likelihood ratio is quadratic in
the observations, and so the existence of a good rank measurable approximation depends on the
accuracy of rank-based approximations to normal quadratic forms. In the next section, we iden-
tify a class of quadratic forms that admit sufficiently accurate rank-measurable approximations.
In Section 4, we relate these forms to multivariate normal models for which the conditions of
Theorem 2.1 hold.

3. Rank approximations to normal quadratic forms

Let Y1, . . . ,Yn be i.i.d. random column vectors from a member of a class of mean-zero p-variate
normal distributions indexed by a correlation parameter θ ∈ � and a variance parameter ψ ∈ � .
As discussed further in the next section, the local likelihood ratio λy can be expressed as a
quadratic function of Y1, . . . ,Yn, taking the form

λy(s, t) =
(

1√
n

n∑
i=1

YT
i AYi

)
+ c(θ,ψ, s, t) + op(1)
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for some matrix A which could be a function of s, t , θ and ψ . A natural rank-based approxima-
tion to λy is

λŷ(s, t) =
(

1√
n

n∑
i=1

ŶT
i AŶi

)
+ c(θ,ψ, s, t),

where {Ŷi,j : i ∈ {1, . . . , n}, j ∈ {1, . . . , p}} are the (approximate) normal scores, defined by R =
R(Y) and Ŷi,j = √

Var[Yi,j |ψ] × �−1(
Ri,j

n+1 ). Whether or not λŷ − λy → 0 therefore depends
on the convergence to zero of the difference between the quadratic terms of λŷ and λy . In this
section, we show that this difference converges to zero under certain conditions on A and the
covariance matrix C = Cov[Yi]. Specifically, we prove the following theorem.

Theorem 3.1. Let Y1, . . . ,Yn ∼ i.i.d. Np(0,C) where C is a correlation matrix, and let Ŷi,j =
�−1(

Ri,j

n+1 ), where Ri,j is the rank of Yi,j among Y1,j , . . . , Yn,j . Let A be a matrix such that the

diagonal entries of AC + AT C are zero. Then

1√
n

n∑
i=1

(
ŶT

i AŶi − YT
i AYi

) p→ 0 as n → ∞.

Proof. Let Sn = 1√
n

∑n
i=1(Ŷ

T
i AŶi − YT

i AYi ) and let Ã = (A + AT )/2, so that yT Ãy = yT Ay
for all y ∈ R

p . Then

ŶT AŶ − YT AY = ŶT ÃŶ − YT ÃY

= (Ŷ − Y)T Ã(Ŷ − Y) + 2(Ŷ − Y)T ÃY,

the latter equality holding since Ã is symmetric. From this, we can write Sn = Qn + 2Ln where

Qn = 1√
n

∑
(Ŷi − Yi )

T Ã(Ŷi − Yi ),

Ln = 1√
n

∑
(Ŷi − Yi )

T ÃYi .

We can write Qn as

Qn =
p∑

j=1

ãj,j

(
1√
n

n∑
i=1

(Ŷi,j − Yi,j )
2

)
+

∑
j 
=k

ãj,k

(
1√
n

n∑
i=1

(Ŷi,j − Yi,j )(Ŷi,k − Yi,k)

)
.

The squared terms converge in probability to zero by Theorem 1 of [7], and the cross term
converges in probability to zero by the Cauchy–Schwarz inequality.

We now find conditions on A under which Ln
p→ 0. Note that

(ŷ − y)T Ãy =
p∑

j=1

(ŷj − yj )ãT
j y,
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where ã1, . . . , ãp are the rows of Ã. This gives

Ln =
p∑

j=1

Ln,j ≡
p∑

j=1

1√
n

n∑
i=1

(Ŷi,j − Yi,j )ãT
j Yi .

Let cj be the j th row of C, the correlation matrix of Y. We will show that Ln,j
p→ 0 if ãT

j cj = 0
using an argument based on conditional expectations. Considering Ln,1 for example, recall that
E[Y|Y1] = c1Y1 and so

E[Ln,1|Y1,1, . . . , Yn,1] = 1√
n

∑
(Ŷi,1 − Yi,1)E

[
ãT

1 Yi |Yi,1
]

= 1√
n

∑
(Ŷi,1 − Yi,1)ãT

1 c1Yi,1 = 0

if ãT
j cj = 0. The conditional expectation of L2

n,1 is given by

E
[
L2

n,1|Y1,1, . . . , Yn,1
]

= 1

n

n∑
i=1

(Ŷi,1 − Yi,1)
2 E

[(
ãT

1 Yi

)2|Yi,1
]

+ 1

n

∑∑
i1 
=i2

(Ŷi1,1 − Yi1,1)(Ŷi2,1 − Yi2,1)E
[
ãT

1 Yi1 |Yi1,1
]

E
[
ãT

1 Yi2 |Yi2,1
]
.

The expectations in the second sum are both proportional to ãT
1 c1 = 0, leaving

Var[Ln,1|Y1,1, . . . , Yn,1] = E
[
L2

n,1|Y1,1, . . . , Yn,1
] = 1

n

n∑
i=1

(Ŷi,1 − Yi,1)
2 E

[(
ãT

1 Yi

)2|Yi,1
]
.

The conditional expectation E[(ãT
1 Yi )

2|Yi,1] can be obtained by noting that if Y ∼ Np(0,C),
then the conditional distribution of Y given Y1 can be expressed as

Y|Y1
d= c1Y1 + Gε,

where GGT = C − c1cT
1 and ε is p-variate standard normal. The desired second moment is then

E
[(

ãT
1 Y

)2|Y1
] = ãT

1 E
[
YYT |Y1

]
ã1

= ãT
1 E

[
Y 2

1 c1cT
1 + 2Y1c1ε

T GT + GεεT GT |Y1
]
ã1

= (
Y 2

1 − 1
)(

ãT
1 c1

)2 + ãT
1 Cã1
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which is equal to ãT
1 Cã1 under the condition that ãT

1 c1 = 0. Letting γ1 = ãT
1 Cã1, the conditional

variance of Ln,1 given the observations for the first variate is then

Var[Ln,1|Y1,1, . . . , Yn,1] = γ1

n

∑
(Ŷi,1 − Yi,1)

2.

Applying Chebyshev’s inequality gives

Pr
(|Ln,1| > ε|Y1,1, . . . , Yn,1

) ≤ 1 ∧ Var[Ln,1|Y1,1, . . . , Yn,1]/ε2

= 1 ∧ γ1

ε2

∑
(Ŷi,1 − Yi,1)

2

n

= 1 ∧ cn = c̃n.

Now cn
p→ 0 as a result of Theorem 1 of [7] and therefore so does c̃n. But as c̃n is bounded, we

have E[c̃n] → 0, giving

Pr
(|Ln,1| > ε

) = E
[
Pr

(|Ln,1| > ε|Y1,1, . . . , Yn,1
)]

≤ E[c̃n] → 0,

and so Ln,1
p→ 0. The same argument can be applied to Ln,j for each j , and so Ln =∑p

j=1 Ln,j → 0 as long as ãT
j cj = 0 for each j = 1, . . . , p, or equivalently, if the diagonal

elements of AC + AT C are zero. �

4. LAN for general Gaussian copulas

In this section, we use Theorems 2.1 and 3.1 to prove that the limiting distribution of the rank
likelihood ratio λr for smoothly parameterized Gaussian copula models is same as that of the
likelihood ratio for the corresponding normal model with unequal marginal variances. Specifi-
cally, we prove the following theorem.

Theorem 4.1. Let {C(θ) : θ ∈ � ⊂ R
q} be a collection of positive definite correlation matrices

such that C(θ) is twice differentiable. If Y1, . . . ,Yn are i.i.d. from a population with absolutely
continuous marginal distributions and copula C(θ) for some θ ∈ �, then the distribution of the
rank likelihood ratio λr(s) converges to a N(−sT Iθθ ·ψ s/2, sT Iθθ ·ψ s) distribution, where Iθθ ·ψ
is the information for θ in the normal model with correlation C(θ) and marginal precisions ψ .

We note that Iθθ ·ψ is a function of θ and not of ψ , as will become clear in the proof.

Proof of Theorem 4.1. Consider the class of mean-zero multivariate normal models with
inverse-covariance matrix Var[Y|θ ,ψ]−1 = D(ψ)1/2B(θ)D(ψ)1/2, where θ ∈ R

q and D(ψ) is
the diagonal matrix with diagonal elements ψ ∈ R

p . The log probability density for a member
of this class is given by

l(y) =
(
−p log 2π +

∑
logψj + log |B| − yT D(ψ)1/2BD(ψ)1/2y

)/
2.
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The log-likelihood derivatives are

l̇θk
(y) = [

tr(Bθk
C) − yT D(ψ)1/2Bθk

D(ψ)1/2y
]
/2,

l̇ψj
(y) = [

1 − yjψ
1/2
j bT

j D(ψ)1/2y
]
/(2ψj ),

and straightforward calculations show that

Iψψ = D(ψ)−1(I + B ◦ C)D(ψ)−1/4,

Iψθk
= −D−1(ψ)diag(BCθk

)/2,

where “◦” is the Hadamard product denoting element-wise multiplication. The local log likeli-
hood ratio for this model can be expressed as

λy(s, t) = 1√
n

n∑
i=1

sT l̇θ (Yi ) + tT l̇ψ (Yi ) − 1

2

[
s
t

]T

I

[
s
t

]
+ op(1),

which, under independent sampling from Np(0,D(ψ)1/2C(θ)D(ψ)1/2), converges in distribu-
tion to a N(−uT Iu/2,uT Iu) random variable, where uT = (sT , tT ) and I is the information
matrix for (θ ,ψ).

We take our rank based approximation λŷ to be equal to λy absent the op(1) term and with

each Yi replaced by its approximate normal scores Ŷi . Clearly, we have λŷ(s) − λy(s) = op(1)

if

1√
n

n∑
i=1

[
sT l̇θ (Ŷi ) + tT l̇ψ (Ŷi )

] − [
sT l̇θ (Yi ) + tT l̇ψ (Yi )

] = op(1).

Given θ and s, we now identify a value of t for which the above asymptotic result holds. Let
t = Hs, where H ∈ R

p×q , so that

sT l̇θ (y) + tT l̇ψ (y) = sT
[
l̇θ (y) + HT l̇ψ (y)

]
=

q∑
k=1

sk
[
l̇θk

(y) + hT
k l̇ψ (y)

]
,

where {hk, k = 1, . . . , q} are the columns of H. Now l̇θk
(y) and l̇ψ (y) are both quadratic in y.

Evaluating at ψ = 1, we have l̇θk
(y) = [tr(Bθk

C) − yT Bθk
y]/2 and l̇ψj

(y) = [1 − yj bT
j y]/2, and

so

hT l̇ψ (y) = [
hT 1 − yT D(h)By

]
/2.

Therefore, we can write sT [l̇θ (y) + HT l̇ψ (y)] as

sT
[
l̇θ (y) + HT l̇ψ (y)

] =
q∑

k=1

sk
[
l̇θk

(y) + hT
k l̇ψ (y)

] =
(

q∑
k=1

skyT Aky

)
+ c(s,H, θ),
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where c(s,H, θ) does not depend on y, and Ak is given by

Ak = −[
Bθk

+ D(hk)B
]
/2.

Substituting this representation of sT l̇θ + tT l̇ψ into λŷ and λy gives

λŷ − λy =
q∑

k=1

sk

(
1√
n

n∑
i=1

ŶiAkŶi − YiAkYi

)
+ op(1).

Theorem 3.1 implies that this difference will converge in probability to zero if the diagonal ele-
ments of (Ak +AT

k )C are zero for each k = 1, . . . , q . The value of (Ak +AT
k )C can be calculated

as

2
(
Ak + AT

k

)
C = −2 × Bθk

C − D(hk)BC − BD(hk)C

= 2 × BCθk
− (

D(hk) + BD(hk)C
)
.

The vector diag(D(hk) + BD(hk)C) can be written as

diag
(
D(hk) + BD(hk)C

) =
⎛
⎜⎝

hk1 + hT
k (b1 ◦ c1)

...

hkp + hT
k (bp ◦ cp)

⎞
⎟⎠ = (I + B ◦ C)hk,

and so our condition on hk becomes

(I + B ◦ C)hk = 2 × diag(BCθk
),

hk = 2(I + B ◦ C)−1 diag(BCθk
)

= −I−1
ψψIθkψ .

Therefore, setting t = Hs = −I−1
ψψIψθ s yields a quadratic form that satisfies the conditions of

Theorem 3.1. The result then follows via Theorem 2.1. The value of uT Iu that determines the
asymptotic mean and variance of λy(s), λŷ(s) and λr(s) is given by

uT Iu =
(

s
−I−1

ψψIψθ s

)T (
Iθθ Iθψ

Iθψ Iψψ

)(
s

−I−1
ψψIψθ s

)

= sT Iθθ s − sT IθψI−1
ψψIψθ s

= sT Iθθ ·ψ s. �

This result shows that the least favorable submodel of a semiparametric Gaussian copula model
is the multivariate normal model with unequal variances, and that the information bound for any
regular estimator of θ is given by Iθθ ·ψ . However, for some correlation models the value of
Iθθ ·ψ is equal to the corresponding information for θ in a model with equal marginal variances.
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In such cases, the least favorable submodel simplifies to the multivariate normal model with
equal marginal variances. To identify conditions under which this result holds, consider the log
likelihood ratio for a multivariate normal model with equal marginal variances:

λy(s, t) = 1√
n

n∑
i=1

[
sT l̇θ (Yi ) + t l̇ψ (Yi )

] −
[

s
t

]T

I

[
s
t

]/
2 + op(1).

Under i.i.d. sampling from Np(0,C(θ)/ψ), λy(s, t) converges in distribution to a N(−uT Iu/2,
uT Iu) random variable, where uT = (sT , t) and I is the information matrix for (θ ,ψ), for which

Iψθ = {Iψθk
} = {− tr(BCθk

)/(2ψ)
}
,

Iψψ = p/
(
2ψ2).

Our candidate rank-measurable approximation to λy(s, t) is given by

λŷ(s, t) = 1√
n

n∑
i=1

[
sT l̇θ (Ŷi ) + t l̇ψ (Ŷi )

] −
[

s
t

]T

I

[
s
t

]/
2.

Recall that if for our given s and θ we can find a t and ψ such that λŷ − λy = op(1), then the
conditions of Theorem 2.1 will be met and the asymptotic distribution of λr(s) will be that of
λy(s, t). With this in mind, let t = hT s for some h ∈ R

q , and write λy(s,hT s) ≡ λy(s). We will
find conditions on C(θ) such that there exists an h for which λŷ(s) − λy(s) = op(1), and will

show that any such h must be equal to −I−1
ψψIψθ . With t = hT s and ψ = 1, we have

sT l̇θ (y) + t l̇ψ (y) = sT
[
l̇θ (y) + hl̇ψ (y)

]
=

q∑
k=1

sk
[
l̇θk

(y) + hkl̇ψ(y)
]

= −
q∑

k=1

skyT (Bθk
+ hkB)y/2 + c(θ , s,h)

=
q∑

k=1

skyT Aky + c(θ , s,h),

where Ak = −(Bθk
+ hkB)/2 = (BCθk

B − hkB)/2 and c(θ , s,h) does not depend on y. The
difference between λŷ and λy is then

λŷ − λy =
q∑

k=1

sk

(
1√
n

n∑
i=1

ŶiAkŶi − YiAkYi

)
+ op(1).

Since Ak is symmetric, Theorem 3.1 implies that this difference will converge in probability to
zero if the diagonal elements of AkC are zero for each k = 1, . . . , q . This condition can equiva-
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lently be written as follows:

0 = diag(AkC) = diag(BCθk
BC − hkBC)/2 = diag(BCθk

− hkI)/2,

hk1 = diag(BCθk
).

The above condition can only be met if, for each k, the diagonal elements of BCθk
all take on a

common value. If they do, then the convergence in probability of λŷ(s, t) − λy(s, t) to zero can
be obtained by setting t = hT s, where hk = tr(BCθk

)/p.
Setting ψ = 1, we have hk = tr(BCθk

)/p = −I−1
ψψIψθk

, and so setting t = hT s = −I−1
ψψIψθ s

results in λy , λŷ and λr each converging in distribution to a N(−sT Iθθ ·ψ s/2, sT Iθθ ·ψ s) random
variable, where Iθθ ·ψ = Iθθ − IθψIT

θψ
/Iψψ is the information for θ in this parametric model. We

summarize this result in the following corollary.

Corollary 4.2. Let {C(θ) : θ ∈ � ⊂ R
q} be a collection of positive definite correlation matri-

ces such that C(θ) is twice differentiable, and for each k, the diagonal entries of BCθk
are

equal to some common value. If Y1, . . . ,Yn are i.i.d. from a population with absolutely contin-
uous marginal distributions and copula C(θ) for some θ ∈ �, then the distribution of the rank
likelihood ratio λr(s) converges to a N(−sT Iθθ ·ψ s/2, sT Iθθ ·ψ s) distribution, where Iθθ ·ψ is the
information for θ in the normal model with correlation C(θ) and equal marginal precisions ψ .

5. Asymptotic efficiency in some simple examples

Obtaining the maximum likelihood estimator of a copula parameter θ from the rank likelihood
is problematic due to the complicated nature of the likelihood. An easy-to-compute alternative
estimator is the maximizer in θ of the pseudo-likelihood, which is essentially the probability of
the observed data with the unknown marginal CDFs replaced with empirical estimates. Genest et
al. [8] studied the asymptotic properties of this pseudo-likelihood estimator (PLE) and obtained
a formula for its asymptotic variance.

For Gaussian copula models, we can compare this asymptotic variance to the information
bound I−1

θθ ·ψ obtained from Theorem 4.1 to evaluate the asymptotic efficiency of the PLE. This
is most easily done in the case of a one-parameter copula model for which the conditions of
Corollary 4.2 hold, as in this case the least favorable submodel is a simple two-parameter multi-
variate normal model with equal marginal variances. For such models, the value of Iθθ ·ψ can be
computed from the variance of the efficient influence function ľθ (y):

ľθ (y) = I−1
θθ ·ψ

[
l̇θ (y) − IθψI−1

ψψ l̇ψ(y)
] = I−1

θθ

[
l̇θ (y) − Iθψ l̃ψ (y)

]
,

where l̃ψ (y) is the efficient influence function for ψ , given by l̃ψ (y) = I−1
ψψ ·θ [l̇ψ (y) −

Iψθ I
−1
θθ l̇θ (y)] (see, e.g., [3], Chapter 2). This can be compared to the influence function for

the PLE, which is given by

ľPθ (y) = I−1
θθ

(
l̇θ (y) +

p∑
j=1

Wj(yj )

)
,



Information bounds for Gaussian copulas 617

where the likelihood derivative and information matrix are based on the multivariate normal
likelihood, and Wj(yj ) is defined as

Wj(yj ) =
∫

[0,1]p

(
∂2

∂θ ∂uj

log c(u|θ)

)(
1
{
�(yj ) ≤ uj

} − uj

)
c(u|θ)du.

By inspection, the two influence functions are equal if
∑p

j=1 Wj(yj ) = −Iθψ l̃ψ(y) ∀y ∈ R
p ,

in which case the PLE is asymptotically efficient. To compute Wj(yj ) for j = 1, . . . , p, note that
for a Gaussian copula model, we have

∂

∂θ
log c(u|θ) = −[

tr(BCθ ) + yT Bθ y
]
/2,

∂2

∂θ ∂uj

log c(u|θ) = −
p∑

k=1

(Bθ )j,k
�−1(uk)

φ(�−1(uj ))
,

where y = (�−1(u1), . . . ,�
−1(up)), C is the correlation matrix under θ and B = C−1. Straight-

forward calculations ([20], page 116) give

p∑
j=1

Wj(yj ) = 1

2

p∑
j=1

p∑
k=1

(Bθ )j,kCj,k

(
Y 2

j − 1
)

= tr
(
Bθ C

[
D(y ◦ y) − I

])
/2 = tr

(
BCθ

[
I − D(y ◦ y)

])
/2,

where D(y◦y) is the diagonal matrix with elements y2
1 , . . . , y2

p , and the last line follows from the
fact that Bθ C = −BCθ . Recall that for the models we are considering here, the diagonal elements
of BCθ are assumed to all be equal, and so we can write

p∑
j=1

Wj(yj ) = 1

2p
tr(BCθ )

p∑
j=1

(
1 − y2

j

)
.

On the other hand, Iθψ = − tr(BCθ )/2, and so our condition for asymptotic efficiency becomes

−Iθψ l̃ψ(y) =
p∑

j=1

Wj(yj ),

1

2
tr(BCθ )l̃ψ (y) = 1

2p
tr(BCθ )

p∑
j=1

(
1 − y2

j

)
,

l̃ψ (y) = 1

p

p∑
j=1

(
1 − y2

j

)
. (3)

We emphasize that this criterion for asymptotic efficiency only applies to one-parameter Gaus-
sian copula models for which the conditions of Corollary 4.2 hold. Such models include the
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one-parameter exchangeable correlation model {C(θ) : θ ∈ (−(p − 1)−1,1)}, for which all off-
diagonal elements are equal to θ , as well as any model in which the rows of C(θ) are permutations
of one another. To see this, note that if ci , the ith row of C(θ), is a permutation of cj , then bi ,
the ith row of B, is the same permutation of bj . Therefore bT

i cθ,i = bT
j cθ,j for each i and j , and

so the conditions of Corollary 4.2 are satisfied. Subclasses of such correlation matrices include
circular correlation models, often used for seasonal data [13,16], and any model in which the
rows of C are permutations of circular matrices.

Exchangeable correlation model

Consider the p = 4 exchangeable correlation matrix, for which

C = (1 − θ)I + θ11T , Cθ = 11T − I, B = (1 − θ)−1I − θ

(1 − θ)(1 + 3θ)
11T .

This gives

Iθθ = 1

2
tr(BCθ BCθ ) = 6

1 + 3θ2

(1 + 2θ − 3θ2)2
,

Iθψ = − 1

2ψ
tr(BCθ ) = 6θ

1 + 2θ − 3θ2
,

Iψψ ·θ = 2

1 + 3θ2

and

l̇θ (y) = 6θ

1 + 2θ − 3θ2
+ 1

(1 + 2θ − 3θ2)2

[(
1 + 3θ2) ∑

1≤i<j≤4

yiyj − 3θ(1 + θ)

4∑
j=1

y2
j

]
,

l̇ψ (y) = 1

2

[
4

ψ
− yT By

]
= 2/ψ − (1/2 + θ)

∑4
j=1 y2

j − θ
∑

1≤i<j≤4 yiyj

1 + 2θ − 3θ2
,

so that when ψ = 1, we have

l̇ψ (y) − Iψθ I
−1
θθ l̇θ (y)

= 2 + θ
∑

1≤i<j≤4 yiyj − (1/2 + θ)
∑4

j=1 y2
j

1 + 2θ − 3θ2

− 6θ

(1 + 2θ − 3θ2)
· (1 + 2θ − 3θ2)2

6(1 + 3θ2)

· 6θ(1 + 2θ − 3θ2) + (1 + 3θ2)
∑

1≤i<j≤4 yiyj − 3θ(1 + θ)
∑4

j=1 y2
j

(1 + 2θ − 3θ2)2
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= 2

1 + 3θ2
− 1 + 2θ − 3θ2

2(1 + 3θ2)(1 + 2θ − 3θ2)

4∑
j=1

y2
j

= 2

1 + 3θ2
− 1

1 + 3θ2

1

2

4∑
j=1

y2
j

= 1

4

2

1 + 3θ2

4∑
j=1

(
1 − y2

j

)
,

and so finally

l̃ψ (y) = I−1
ψψ ·θ

[
l̇ψ (y) − Iψθ I

−1
θθ l̇θ

]

= 1 + 3θ2

2

(
1

4

2

1 + 3θ2

4∑
j=1

(
1 − y2

j

))

= 1

4

4∑
j=1

(
1 − y2

j

)
,

and so our criterion (3) for asymptotic efficiency is met.

Circular correlation model

Consider the correlation model such that

C(θ) =
⎛
⎜⎝

1 θ θ2 θ

θ 1 θ θ2

θ2 θ 1 θ

θ θ2 θ 1

⎞
⎟⎠ .

For this model, we have

Iθθ = 4(1 + 2θ2)

(1 − θ2)2
, Iθψ = 4θ

1 − θ2
, Iψψ ·θ = 2

ψ2

1

1 + 2θ2
.

Letting t0 = ∑
y2
j , t1 = 2(y1y2 + y1y4 + y2y3 + y3y4) and t2 = 2(y1y3 + y2y4), we have

l̇θ (y) = 4θ

1 − θ2
− 4θt0 − (1 + 3θ2)t1 + 2θ(1 + θ2)t2

2(1 − θ2)3
,

l̇ψ (y) = 2/ψ − t0 − θt1 + θ2t2

2(1 − θ2)2
.
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Figure 1. Asymptotic variances for the circular copula model. The left panel gives the information bound
(dashed black line) and the asymptotic variance of the PLE (gray line) and the right panel gives the differ-
ence between these two quantities as a function of θ .

Further calculations give

l̃ψ (y) = 1 − (1 − 2θ2)t0 + θ3t1 − θ2t2

4(1 − θ2)2

= 1

4

4∑
j=1

(
1 − y2

j

)
,

and so our criterion for asymptotic efficiency is not met. Additional calculations (available from
the authors) show that the asymptotic variance of the PLE is given by

Var

[
I−1
θθ

[
l̇θ +

4∑
j=1

Wj(yj )

]]
= I−1

θθ ·ψ
[

1 + 2θ6

(1 + 2θ2)2

]
.

The first panel of Figure 1 plots the asymptotic variance of the PLE with the information bound,
and the second panel plots their difference. The PLE is very nearly asymptotically efficient in
this example, but this small discrepancy indicates that the PLE is not generally asymptotically
efficient for Gaussian copula models.

6. Discussion

In this article, we have shown that the existence of a sufficiently accurate rank measurable ap-
proximation to the localized log likelihood of a copula parameterized model implies the local
asymptotic normality of the log rank likelihood. We have also shown that such approximations
exist for every smoothly parameterized Gaussian copula model. For such a copula model, the
asymptotic information bound implied by the rank likelihood matches that of the corresponding
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parametric multivariate normal submodel. This result suggests the possibility of semiparametri-
cally efficient rank-based estimators for Gaussian copula models: Generally speaking, the infor-
mation Ir based on the ranks is less than or equal to the semiparametric information If based on
the full data, as the ranks are functions of the full data [15]. Furthermore, the semiparametric in-
formation based on the full data is less than or equal to Ip , the infimum of information functions
over all parametric submodels, and so Ir ≤ If ≤ Ip in general. On the other hand, for Gaus-
sian copula models we have shown that Ir is equal to the information for a particular parametric
submodel, the corresponding multivariate normal model. This implies that for a given Gaussian
copula model, the corresponding multivariate normal model is least favorable, that Ir = Ip and
therefore Ir = If = Ip .

Based on this result, and the partial sufficiency of the multivariate ranks in semiparametric
copula models in general, we conjecture that maximum likelihood estimators based on rank like-
lihoods are asymptotically efficient for Gaussian copula models, and possibly more generally
whenever information bounds based on the complete data for the semiparametric model in ques-
tion exist. However, the rank likelihood involves a multivariate integral over a set of order con-
straints, the number of which grows with the sample size, making it difficult to use or study. An
alternative to the rank likelihood estimator is the pseudo-likelihood estimator [8], which is a very
explicit function of the copula density, making optimization and asymptotic analysis tractable.
For the one-parameter bivariate Gaussian copula model, the rank-based pseudo-likelihood esti-
mator is asymptotically equivalent to the normal scores correlation coefficient, which Klaassen
and Wellner [14] showed to be asymptotically efficient. However, Genest and Werker [9] showed
with a non-Gaussian example that the pseudo-likelihood estimator is not generally asymptotically
efficient, and in this article we have shown that this estimator is not generally asymptotically ef-
ficient for the restricted class of Gaussian copula models. However, this does not rule out the
possibility that other rank-based estimators, such as the maximizer of the rank likelihood, are
asymptotically efficient.
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