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Estimation of a Monotone Density or Monotone 
Hazard Under Random Censoring 

JIAN HUANG and JON A. WELLNER 

University of Iowa and University of Washington 

ABSTRACT. Consider non-parametric estimation of a decreasing density function f under the 
random (right) censorship model. Alternatively, consider estimation of a monotone increasing (or 
decreasing) hazard rate i based on randomly right censored data. We show that the non-paramet- 
ric maximum likelihood estimator of the density f (introduced by Laslett, 1982) is asymptotically 
equivalent to the estimator obtained by differentiating the least concave majorant of the 
Kaplan-Meier estimator, the non-parametric maximum likelihood estimator of the distribution 
function F in the larger model without any monotonicity assumption. A similar result is shown to 
hold for the non-parametric maximum likelihood estimator of an increasing hazard rate A: the 
non-parametric maximum likelihood estimator of A (introduced in the uncensored case by 
Prakasa Rao, 1970) is asymptotically equivalent to the estimator obtained by differentiation of 
the greatest convex minorant of the Nelson-Aalen estimator, the non-parametric maximum 
likelihood estimator of the cumulative hazard function A in the larger model without any 
monotonicity assumption. In proving these asymptotic equivalences, we also establish the 
asymptotic distributions of the different estimators at a fixed point at which the monotonicity 
assumption is strictly satisfied. 

Key words: Asymptotic equivalence, argmax continuous mapping, asymptotic distribution, 
density, empirical process, greatest convex minorant, hazard function, Kaplan-Meier estima- 
tor, least concave majorant, monotone, Nelson-Aalen estimator, non-parametric maximum 
likelihood, weak approximation 

1. Introduction 

Suppose that (X, Y), (X1, Y1), . (X,,, Yj) are i.i.d. pairs of random variables where X 
and Y are independent, X is a failure time with distribution function F on R+ = [0, oo), and 
Y is a censoring time with distribution function G. Under the random censorship model, 
the observed data are (T1, b ), . . . , (T,,, j,) where Ti =min {Xi, Yi}, bi = l{xi< Yi}, 
i = 1, 2, . . ., n. If F is absolutely continuous with densityf, let A be the hazard (rate) function 
of X, i.e., A(x) =f(x)/(1 - F(x)), and let A be the corresponding cumulative hazard function, 
A(x) = JO A(t) dt. 

Our goal is to study non-parametric estimators of the densityf and the hazard 2 under the 
following monotonicity assumptions: 

(1) f decreasing (non-increasing) on R+; 
(2) A increasing on R+; 
(3) 2 decreasing on R+. 

When there is no censoring, Grenander (1956) showed that the non-parametric maximum 
likelihood estimator (NPMLE) of a decreasing density f coincides with the left continuous 
slope of the least concave majorant of the empirical distribution function. Its asymptotic 
distribution at a fixed point was studied by Prakasa Rao (1969) and Groeneboom (1985). 
Groeneboom (1985) also derived the limiting distribution of the L1 distance between the 
Grenander maximum likelihood estimator and a decreasing density f 

In the case of a monotone decreasing density function f, non-parametric maximum 
likelihood estimation off under random censoring has been considered by Laslett (1982) and 
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independently by McNichols & Padgett (1982). Laslett (1982) considered non-parametric 
maximum likelihood estimation of f under random censoring as a special case of a more 
general line segment model involving both censoring and biased sampling; see his sects. 2 and 
3. Computation of the NPMLE and its asymptotic behavior at a point have recently been 
considered by Huang & Zhang (1994). 

For a monotone hazard function A, Prakasa Rao (1970) studied the asymptotic distribution 
of the NPMLE at a fixed point in the case of no censoring, and the estimator was extended to 
the context of right censoring by Padgett & Wei ( 1980), but without further development of its 
asymptotic properties. Mykytyn & Santner (1981) also studied non-parametric maximum 
likelihood estimation based on monotonicity assumptions concerning the hazard rate A and 
several different censoring schemes. They prove strong consistency of the resulting estimator of 
A and 1 - F under random censoring. None of these authors consider the natural estimators 
based on concave majorants (or convex minorants) of the product limit estimator of F and the 
Nelson-Aalen estimator of A, or the relationship of these estimators to the NPMLEs. 

We consider two ways of estimating the density or the hazard under a monotonicity 
assumption. One way is via the non-parametric maximum likelihood estimator, i.e., maximiz- 
ing the likelihood function with respect to the density or hazard under monotonicity 
constraints. We will denote these estimators by fl, and 2n respectively. 

Another approach is based on the product limit estimator Fn of F or the Nelson-Aalen 
estimator An of A; see e.g. Lo & Phadia (1992) who follow the framework of Kiefer & 
Wolfowitz (1976) and Wang (1986). Their focus is on the estimators of F or A. To estimate 
a decreasing density or hazard function, one possibility is to form the least concave majorant 
(LCM), Fn (or An), of Fn (or Aj), and take the right derivativeI,, or (2,) of Gn (or An) as the 
estimator off (or A). Similarly, to estimate an increasing hazard function, we form the greatest 
convex minorant (GCM), ii,n of An, and take the left derivative of An as the estimator of A. 

Our main goal in this paper is to show that these two approaches are asymptotically 
equivalent. Section 2 contains the statements of our main results. Characterizations of the 
estimators and a brief discussion of computational methods are given in section 3. Section 4 
gives consistency results as well as n-consistency of the non-parametric MLE Fn of F, a result 
due to Huang & Zhang (1994). Proofs of the main results in section 2 are given in sections 
5, 6, and 7 based on an extension of the argmax continuous mapping theorem of Kim & 
Pollard ( 1990). In section 8 we compute and compare the estimators graphically for simulated 
data with sample sizes 100 and 800. 

2. Main results 

In this section we state our main results. The non-parametric maximum likelihood estimates 

(NPMLEs)f,n and 2n off and A are characterized in section 3. Proofs will be given in sections 
4-7. 

Let H(t) =P{X A Y < t} = 1 -(1 -F(t))(l -G(t)), ,H = inf {t: H(t) = 1}. We assume G is 
absolutely continuous. 

Theorem 2.1 
Suppose f is decreasing on [0, oo), and f'(t) is continuous in a neighborhood of to E (0, 'CH), 

f(to) = 0, f'(to) < 0. Let I?n be the NPMLE off, and let jn be the left continuous slope of Fn. 
Then 

1- G(t0) 1/3 d(1 n f'/3t2 0) (f,(t0) -f(to)) 2Z,( 
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where Z = argmax (W(t) - t2), and W is standard two-sided Brownian motion on RF starting at 
zero. Moreover 

n 13 
3(gn (to ) -.En (to ))-p 

? 

so the convergence in distribution in (1) also holds with f,, replaced by 1n. 

The f,n part of the theorem is due to Huang & Zhang (1994). For monotone hazard 
functions A, we have the following two theorems. 

Theorem 2.2 
Suppose TH = TG < TF, A is increasing on [0, oo), and i'(t) is continuous in a neighborhood of 
to E (0, TH), A(to) # 0, A'(to) > 0. Let i be the NPMLE of A, and let An be the right continuous 
slope of An. Then 

n11 l 2 ( ), ? (JtO) - ANt)) 2Z, (2) 

where Z is the same as in the previous theorem. Moreover 

n (in(tO) - n(to)) >?, 

so the convergence in distribution in (2) also holds with 2, replaced by 2n. 

Theorem 2.3 
Suppose TH = TG < TF, A is decreasing on [0, oe), and A'(t) is continuous in a neighborhood of 
to E (0, TH). A(to) #0, A'(to) < 0. Let 2,n be the NPMLE of A, and let An be the left continuous 
slope of 4,. Then 

131 _-H(to,) 1/3 d) n' 32 4 0VO)| (2n(to) - ANt)) 2Z, (3) 

where Z is the same as in the previous theorem. Moreover 

n 13 
(13n(to) - 2(to)) ? 0, 

so the convergence in distribution in (3) also holds with 2n replaced by An. 

Remark 2.1. When specialized to the case of no censoring, theorem 2.1 agrees with the 
result of Groeneboom (1985), and theorems 2.2 and 2.3 agree with ths. 6.1 and 7.1 of 
Prakasa Rao (1970). nl 

Remark 2.2. The distribution of Z has been completely characterized by Groeneboom 
(1989). El 

Remark 2.3. All of the above results assert thatf Jand 71n (or 2n and 2n) are asymptotically 
equivalent at the n' /3 scaling level when the true density f is decreasing (or the true hazard 
A is increasing or decreasing). Similarly, the consistency results to be established in section 4 
assert that P, T, and Fn are all asymptotically equivalent at the n "2 scaling level where 
Fn (t)=JO.Jn(s) ds. It would be interesting to study the differences between these estimators. It 
follows along the lines of Wang (1992) that 

In 2/3( - Fn )(to ) d- 2)2(t+) ) C(O) 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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where C(0) is the concave majorant of two-sided Brownian motion minus a parabola at 0. 
Note that C(0) ? 0 a.s. We conjecture that 

d 
n 2/3( G- Fn)(to) D 

where the random variable D is 0 with positive probability. Other ways of examining the 
differences may also be of interest. O 

Remark 2.4. Note that the density and hazard rate estimates studied here do not require 
the choice of a bandwidth parameter. Other methods, including density and hazard rate 
estimates based on kernel smoothing or splines can be used to exploit additional smoothness 
assumptions (if they are warranted) to achieve faster convergence rates; e.g. mean square 
errors of n -4/5 in contrast to the n -2/3 rates for the estimators studied here. However, the 
gain in rate comes at the price of additional smoothness hypotheses, the validity of these 
hypotheses for the true population, and the need to specify a bandwidth parameter. We 
prefer to use estimation methods based on minimal smoothness hypotheses, and do not yet 
know how to exploit both monotonicity and smoothness hypotheses in combination. For 
more on kernel estimates and other smoothing methods we refer the interested reader to 
Andersen et al. (1992, pp. 224-227) and Cox & O'Sullivan (1990). 

3. Characterization of the NPMiLEs n and in 

If G is absolutely continuous with density g, then the density of (T, 6) with respect to the 
product of Lebesgue measure on R+ and counting measure on {0, 1} is 

p(t, ) = (f(t)G(t))3(g(t)F(t))' - , 0 < t < oo, 6e{0, 1}; 

here G(t) _ - G(t) and, similarly, F(t) 1 - F(t). We use this notation throughout for the 
survival function associated with a distribution function F. The log-likelihood for the 
observed data is 

n 

l(i) = E {bi log (f(Ti)) + (1 - bi) log (1 - F(Ti))} + C(g, G), 

where C(g, G) is a term not involving f or F. Hence we can treat it as a constant term and 
will not consider it in the following. 

3.1. Characterization of the NPMLE }'4 

Let T() < < T(n) be the order statistics of T1, . . ., Tn, and let b(i) be the 6 corresponding 
to T(), i.e., if T(i) = Tj, then b(i) = 1{Xj Yj 1. Define T(0) = 0. 

The NPMLE of f under monotonicity constraints is the solution to the following 
maximization problem: maximize 

n 
(ff) = Z [6(i) log f (T(i)) + (1 - 6(e)) log (1 -F(T(i))] 

ij= I 

over the convex set 

C= {Z=(Zl .. * ZJ: Z Zn > O Z (TO -TU 1 ) < 1} 

where zi =f(T(i)), and F(T(i)) =E>=lf(T(j))(T(j)-T(j1)). For vectors z such that 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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F(T(i)) > 1, define the objective function to be - oo. In this way, we obtain a concave 

objective function, defined on the set C. 

Define the process by 

Wf (t) =i 
{t' ,< 

t 
+ ( 1- ,-Ft) (t -t) )-t ]d Pn(t' 

A 

where F(t) = fof(s) ds, t > 0. Then the following theorem characterizes the NPMLE of f. 

Theorem 3.1 

The left continuous, decreasing, and non-negative function In is an NPMLE of the unknown 
density f if and only if 

WIn(t) < 0, for all t > 0, (4) 

and either 

Wf(T(n)) < I and dPn(t', ) =l, (5) 

or 

Fn(T) = I and 13 dPn(t', ) ?1. (6) 

Proof. Sufficiency. Suppose (4) and (5) hold. Then we do not have an active constraint 

(see e.g. Fletcher, 1987, p. 142, for this terminology). Relation (4) can be written as 

E 
_______ -E) _~1y~ TE,), ^(i)~t 1 - (T) (T(i) - T(i -)) < 0, (7) 

TOX) < t In (T(i) ) T( j) >_ T(i), T(i) < t I iFn(T j) ) 

for each t, with equality if t is a point of jump of f. This is because, using the second part 

of (5), 

nW1(T)= Z (i) + Z t -(-T() - nt 

To < .t .( T(i)) T(i<t 1-F,,(T(i))()TE,-G Ti) 

= z 3(e) - ~~~~~~~~T+ t 3i -nt 

T= ) < n(T(i) - l () T() - I, l3(Tw) 
T(i)tIn (T(i)) T(i)< t 1 F ( (T( i)>)tIT > Ti) 

_ E 1a(i) - Z (T(i) -T(i_)) 
T(i,<tfn(To T(i)> <T(j) t 1 (T(j)) 

- (i) _ 13 (J)(j) >T()-Ii) 

=(e) 
z t3n( (i)) T() >- T(o), Tot) < t 1 F(T(j)) 

Furthermore, the second part of (5) is equivalent to 

i X [, 1- (j)) fn(T(i))(T(i) - T(- 1))] = 0, (8) 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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since 

i= l [1 I - F. (T(i))] i= , + 1-6(i)-l Fn(Ti) ) 

i~~ ~ ~~ = -F,((,n(T(i))] 

i, =~ 1 [ f(Tn)(TT-T )1i 

We show that relations (7) and (8) are sufficient conditions for }n to be a maximizing 
function. Supposef* is another decreasing density function. Since 4 is concave on the set C, 
we have 

)(f*) (g- 0n) -<- <Vq(n),fn -f* > 

where V4(In) is the vector of partial derivatives 

V41(In) = - ( jn(T(i)) i>- 1 -F,(T(,)i 

Here we also use I,n and f* to denote the vectors (iJn(T(l)),.f.n(T(n))) and 

(f* (T(1)). f* (T(n))), respectively. In addition, if f satisfies (8), <VO(fn), In > = 0. Next 
notice that any decreasing f* can be written as 

n 

f*= . fliii, 

where f3i =f*(T(i)) -f*(T(i+ 1)), i = 1, , n-1, fin =f*(T(n)), and where Ii is a vector 
which has ones as its first i components and zeros as its last n - i components. Hence, by (7), 

VO(In n 

<V4(nn) f*1n > = <V4),f* = E f3i <VO(f,), Ii > = Z fi W!n(Tl)) < 0. 
i=1 i=l 

Thus (4) and (5) imply In maximizes 4. 
Next suppose that (4) and (6) are satisfied for I,n. Introducing the constraint by using a 

Lagrange multiplier, we can take the objective function as 

n n 

[6(i) logf(T(i)) + (I -6(e)) log (I -F(T(i)))] -[ E f(T())(T(i) - T(i l)) - I (9) 

Defining ca by 

a= E [ TqX)- 1E I T) (T() - T(il))j. (10) 
i=1 T(j) >- (i) n ) 

Then by (4) and (10), In satisfies 

6(i) _-6E]) (T - T(i 1)) 1 Z fn(T()) - L T(k)C (i- )) (k 

T(i) S T(k) In ( TO T(j) >- T(i), T(i) ) (1 T(k)1) 

for each T(k). This means that f maximizes (9) over the set C. Since the second part of 
condition (6) implies a > 0, this means that In also maximizes the log likelihood over the set 
of functions g satisfying 

n 

E gT(o))(T(i) -TO - 1)) A< 1. 
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Conversely, suppose f,n is a maximization function. If Pf(T(n)) < 1, the necessity of the 
conditions may be proved as in prop. 1.1, p. 39, of Groeneboom & Wellner (1992). So we 
consider the case Pn(T(n,)= 1. Recall the objective function 

n n 
4(f)= Z (i logf(T(i)) + y (1 - 6(i)) log ( -F(T(i)) 

i=l i=1 

Then by the definition of an NPMLE, 

0 > lim E 1[((( I e)f1) -(Jn)] = - t() + 0 ( 1 6()) 
F (T ) 

n 1-6- W_ 

This yields (6). Finally, relation (4) follows from 

lim -'[/(f1 j) - O(.n)] <0, i = 1. . * * n, 
410 

where 

f (t) =(In(t) + e)I(1 + ST(i)), t 
- 

T(,), C1 
In (t), ~~t > TW. 

Define a process VnF by 

Vn'(t)-[ {tt, < t} + (I 1- ){t' '< t} FF(t() 
- 

)Ft ] dPn(t', 6) 

H 
Fp( ) dH('.(12) 

Then an alternative form of (4) is given by 

Vn"t Fn G(t), t ;? 0. ( 13) 

To see that this is indeed true, let rl <T2 < ... <T -cm be the jump points of JRn Then we have 

WJV(Ti) =0O, i= 1, . I,m. 

For 0 < t < T1, we have jn(t) In (T I), so 

6)+ T() 
0 

1- (t - Ti)-n < 
T(i) <t -I?n (T(i)) T(sE <t I r (T(i))(-()-t 

is equivalent to 

6(i) + 1 - 6) ( Fn (t) - Gn (T(i))) < n Fn (t), 
T(i) -< t T(i) t n ( (i)) 

i.e., 

V"n(t) < ;n (t) 

For T1 < t < T2, using Wjn(T1) = 0, we have 

W1n (t) Wln(T1) 0 O 

is equivalent to 

n B Vno(TIt 1S cnditnavin (url - 
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This is equivalent to 

Vrn(t) < F 

since VSn(,Q) - _n(T-). Equation (13) follows by an induction argument. Hence we have the 
following corollary. 

Corollary 3.1 
f, is the NPMLE of fo if and only if Fn(t) f nf(s) ds satisfies 

%F(T(n)) -< 1, d 1-G (t) ', 6) 1< I, (14) 

and jRn is the left derivative of the least concave majorant (LCM) of VP"(t). 

Notice that fn is also the left derivative of Gn, we also have the following characterization 
of 3n 

Corollary 3.2 
Let 0 < to < tH = inf {t: H(t) = 1}. Then G(to)fn(t) is the left derivative of the least concave 
majorant of Vnn(t) - G(to) Fn(t). 

Proof. Since the LCM of 
Vln(t) -G(to) % (t) is the same as the LCM of 

V-'(t) 
minus 

G(t0) n(t), thus the slope of the LCM of V -"(t) G(to) n (t) is equal to the slope of the LCM 
of Vnn(t) minus the slope of G(to)Gn(t), which is Inj(t) - G(to)fn(t) = G(to)j, (t). D 

We will use corollary 3.2 to derive the asymptotic distribution of !n(to) and prove the 
asymptotic equivalence of the NPMLE }n and the estimator J,n obtained directly from the 
Kaplan-Meier estimator. 

Remark 3.1. Theorem 3.1 or corollary 3.1 suggests a natural iterative concave majorant 
algorithm for computing the NPMLE jn. In our simulations described in section 8, the 
computation of Jn is carried out based on corollary 3.1. It goes as follows: 

Step 1. Choose a reasonable initial estimator F(O) of Fo, for example, the least concave 
majorant of the Kaplan-Meier estimator. 

Step 2. Compute the left derivativef(')(t) of the least concave majorant of JF?1(t). If for 
some t, f()(t) <0, set fn()(t) = 0. If f(1)(T(i)) = 0 at some uncensored observation 

T(j), make f (T(1)) slightly bigger than zero. 
Step 3. Compute Fn()(t) fromf(')(t) obtained in Step 2. If F(1)(T(j)) > 1 for some T(o), set 

F(('))(T( j))=1, for all i <j < n. 
Step 4. Compute some reasonable norm of the difference between F(1) and Fn$,). If the 

difference is no greater than a prescribed convergence criterion, stop. Otherwise go 
back to Step 1, with FnO) replaced by Fn(). O 

3.2. Characterization of the NPMLE in 
Using the definition of a hazard function and A(x) = -log (1 - F(x)) when F is continuous, 
we may write 

l(A) = E bi log I F(T ) +log(I -FF(T))}=E {6j log(,A(T1)) -A(T;)}. 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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The NPMLE in of A is an increasing step function maximizing the log-likelihood function. 
If A is constant on the intervals [T(j> 1), T(j)), then it follows that 

A(T(j)) = (T( j) -T(j - l1,)A(T( j,), 
j=1 

where T(o) = 0. Then l(A) can be written as 

n i 
E 6(i)log (2(T()) - E (T() - T( l))2(T(i))} 

i=l j=l 

n 

= E {(i) log (A(T(j))) - (n - i + 1)(T(i) - T(_ i))(T(w))}. 
i = 1 

Hence the NPMLE is given by the vector In = (1.,. An)Te lc2n, maximizing the function 

n 

1(z) = {6() log (zi) - (n - i + 1)(T(i) - T(O i))zi} (15) 

over the cone l = {z = (zI, Zn): 0 1< Z1 < * *< Zn .} As in ex. 1.5.7 of Robertson et al. 
(1988), the solution to the maximization problem (15) can be written as 

E 6(j) 

j=s 
Notice that unlike the NPMLE of a monotone density f, here we have an explicit solution 
for the NPMLE of a monotone hazard. 

Now define 

VA (t) = J{x < Y A t } dQn(x,y) = Huc(t) (17) 

and 

Wn(t)= j[(XAY){XAY,<t}+t{XAY>t}]dPn(X,Y)= { (1 Hn(s)) ds, (18) 

where HfuC is the sub-empirical distribution of the uncensored data, ll iS the empirical 
distribution of T, . . ., Tn, and On is the empirical distribution of the (unobserved) (Xi, Yj) 
pairs, i = 1, . . ., n. Then 

Vn(T(i) 

Wn(T(i))= - ? (n -j + 1)(T(j) - T(j - 1)). 

Using the graphical representation of the isotonic regression, see e.g. th. 1.2.1 of Robertson 
et al. (1988), we have the following characterization of In. 

Theorem 3.2 
Let V,7 and Wn be defined by (17) and (18), respectively. Then In is the left derivative of the 
greatest convex minorant of the cumulative sum diagram, consisting of the points 

Pj = (WJ(T(j)), Vn(T(j))), j = 0, 1, . . ., n; 

where PO = (0, 0) and T(j), j = 1, . . ., n are the order statistics of Tj, j = 1, . . ., n. 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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Similarly, for decreasing A, we have the following characterization for its NPMLE ,n. 

Theorem 3.3 
Let Vn and Wn. be defined by ( 17) and ( 18), respectively. Then in is the left derivative of the least 
concave majorant of the cumulative sum diagram consisting of the points 

Pj = (Wn(T(j)), Vn (T(j))), j = 0, 1, . n, 

where PO = (0, 0) and T(j), 1, . . .n are the order statistics of Tj, j = 1, . . ., n. 

4. Consistency 

We first prove that the estimators jn, and 2n of f and A based on the Kaplan-Meier or 
Nelson-Aalen estimators are consistent. The proof is based on a minor modification of 
Marshall's lemma. Let 11 ||b denote the supremum norm over the interval [a, b]. For concave 
F or convex A, we have the following lemma. 

Recall from section 1 that Gn denotes the least concave majorant of the Kaplan-Meier 
estimator Fn and An denotes the greatest convex minorant of the Nelson -Aalen estimator Aln 

Lemma 4.1 
(A) If F is concave on [0, ox) with either F(0) = 0 or F(0) > 0 and G{0} = 0, then 

11F G-F 11 H _< || Fn - FITH 0.O 

(B) If A is convex on [0, TH), TH = TG < ZF, and either A(0) = 0 or A(0) > 0 and G{0} = 0, then 
a.s. 

I|Jn -A 11o _< II|A -X AIIH 0 O 

Proof. (A) The following proof is an adaptation of the proof given by Robertson et al. 
(1988, p. 329), in the uncensored case. It is also related to Marshall's (1970) lemma. 

Let En- Fn - FjlJH. First note that concavity of F on [0, oo) implies continuity of F on 
(0, oo). Therefore F{TH } = 0 and either F(O) =0 or F(O) > 0 and G{0} = 0 imply that F and 
G have no common jumps. It then follows from Stute & Wang (1993, corol. 1.3, p. 1595), 
that Ena - 0. Now the function F+vn is concave and it majorizes the Kaplan-Meier 
estimator Fn: FG(x) < F(x) + En for all 0 < x TZH. Hence it follows from the definition of F, 
that 

Fn(x) 1< n(x) < F(x) + En for all 0 < x < TH, 

and hence that 

-En < Fn(X) - F(x) < n(X) - F(x) < En for all 0 < x < TH. 

This yields the desired conclusion: 
a.s. 

IlEX-F||O ?n-||Gn-ITOH >O. 

(B) First note that since TH = TG <TF, A(TH) < oo, and An is a uniformly strongly 
consistent estimator of A on [0, T]: IlAn - A |IOH 0. The rest of the proof is as in the proof 
of (A). DG 

Lemma 4.2. (Huang & Zhang, 1994) 
If ^n is the NPMLE of F under the assumption that f is non-increasing, Fn is the least concave 
majorant of the Kaplan -Meier estimator Fn, and H(z) > 0, then 

JIT - F ~~~~~~~~~~~~~~~(19) B na - Fn the < Rndatin ofn theScn a J 
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where 

R,= ( v1 (20) 

and Gn is the Kaplan-Meier estimator of G. 

Proof of lemma 4.2. See Huang & Zhang (1994). C: 

Remark 4.1. As proved by Lo & Phadia (1992), following the arguments of Kiefer & 
Wolfowitz (1976) in the uncensored case, 

||Gn -G Fllo = op(n -l1/2 

Hence it also follows from (4.19) that 

11 Gn Fn I IO = op(n -1/2 

and that 

O1 G-|o=O(n -12;(21) 

that is, Gn and Gn are asymptotically equivalent to Fn as estimators of F on [0, c] with X <-TH. 

In our proof of theorem 5.2 we will only need (21). C: 

For convex F or concave A, the results are similar. So we will not state them here. 

Theorem 4.1 
Suppose that F is concave and 0 < to < TH. Then 

(a) f (to + ) < lim infn In oOg(to) 1< lim SUPn ocl'(to) <f (to ) 
(b) f(to + ) < lim infn Inf(to) < lim Supn IJn(t) <f(to-) 

Proof. The proof of (a) is completely analogous to that in Robertson et al. (1988, p. 330). 
(b) follows from the results of Huang & Zhang (1994). O 

Theorem 4.2 
Suppose A is convex and 0 < to < TH. 

(a) A(to +) < lim infn,, , A(tO) < lim SUPn,o AJ(tO) (to -)t 

(b) A(to +) < lim infn , 00 "(to) 1< lim SUP,,,, X ntO) -< A(t-) 

Proof. (a) can be proved by the same methods used in Robertson et al. (1988, p. 330). (b) 
is proved by Mykytyn & Santner (1981, th. 4.2, p. 1379). O 

We close this section with a consistency result which will be needed in the proof of lemma 
7.1, a key step in the proof of theorems 2.1 and 2.2. It is also the first step in proving 
consistency of the NPMLE 2,A in the case of an increasing hazard rate A, via its characteriza- 
tion given in theorem 3.2. Let V(t) = EVn(t) = J0 G(x)f (x) dx = Huc(t), and W(t) = 

EWn(t) = fI H(x) dx. Then dV/dW = A, or dV(W-1(z))/dz = At(W- (z)) where W` is the 
inverse of W. By the assumption that A is non-decreasing, V o W-'(z) is convex. 

Lemma 4.3 
Suppose A is convex on [0, TH] and that TH < oo. Let {(Wn(t), Pn(t)), 0 < t < T(n) } be the 
GCM of the cumulative sum diagram {(Wn(t), Vn(t)), 0 < t < T(n, } as in theorem 3.2. Then 

|| Ba o VFlono te S . 
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Proof. First, by the Glivenko-Cantelli theorem and tH = W(TH) < ??, 

|| Vn - V||OH 0 and TH 0- (22) 

Since Wn(t) is strictly increasing in t, the inverse function Wn-1 is well defined on [0, Wn(T(,))] 
and W,-, o Wn(t) = t for 0 < t < T(n). We extend W,, and W,-1 to all of [0, oo) by defining 

Wj(t) = Wn(T(fl)) + (t - T(,)) for t ) T(n) so that Wn,'(z) = T(n) + (t - W,(T(n))) for 

t > W(T(,)). Similarly extend W to all of [0, oo) by defining W(t) = W(TH) + (t - ZH) for 

t >1 TH. Note that Pn a Wn'(z) is the GCM of Vn a Wn'(z) on [0, Wfl(T(fl))]. Set 

=| Vn J'WV,7 - Va W' 1 Wn (T(n)) 

< |(Vn - V) a Wn- 
I | Wn(T(n)) + ?| V. Wn-I - V. W-I lW (T(n)) 

TH|Vnv| + || V.o W- 
I - V.? W- 

I 
|| 
Wn (T(n) ) O 

by (4.22), uniform continuity of V on [0,TH], and the fact that (22) implies 
|| I - W -I llon (T(n) )0. 

Now consider the function V W1 - En . Since A is convex on [0, TH], V a W-1 is convex 

on [0, H] Now Va W- e,n minorizes V,Wa W,n on [0, Wf(T(f))], and hence by the 

definition of n? Wna 

Va W(z)) gn W Va W (z) for O< z < Wn(T(n)). 

Hence 

|| 
. Wn 

- 
V_ 

W-' ln(T(n)) < ?n 

This implies 

|| Vn - 
Vj'OT(-) 

=(Cn - 
V), Wn-1 

|Wn(T(n)) 

a Wn- 
I V. W 1 lWn (T(n)) + V. W1 - V. Wn-I |Wn (T(n)) 

? +| V? W 
I - V. Wn- 1 Wn (T(n)) 

| Vn -V|OH+ 2V1 Va? W-1 - V? Wn-1 Wn(T(n) ) > Fl 

5. Local convergence theorems 

In this section, we first introduce the local processes needed to prove theorems 2.1 and 2.2. 
We then state all the limit theorems for these local processes, including the fundamental 
asymptotic equivalencies upon which the asymptotic equivalencies in theorems 2.1 and 2.2 
are based. 

Our proofs, which rely on the strong approximation results of Burke et al. (1988), are 
given at the end of this section. 

Recall the definitions of V' and Wn given in (17) and (18). Now for fixed 0 < to < z and 

=-A(to), define local processes CU and U' by 

(t) = {n2[ V +(t+ n t) - V'(to)] -n n20[Wn(to + n t) - Wn(to)DIR(to) 

-n(t) n 213{An(tO + n 11t) -An(tO) -n - 
3(to)t} (23) 

for t eR, with the convention that the processes are zero fort0 + n -13t <0. CU will be used 
to study the estimator 2J(tO) of A(to), while C' will be used to study 2J(t0). 

? Board of the Foundation of the Scandinavian Journlal of Statistics 1995. 
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Recall the definitions of Vf and characterization of Fn given in ( 13) and corollary 3.2. For 
fixed 0 < to <T, define local processes Uf and Uf by 

Uf(t) =-n213[ VF_(to+n-13t) -VF-(t0) -G(to)(F (to + n-113t) - Fn(to))] -n113(to)f(to)t, 

Uf(t) =n213[ V(to+n -1/3t) - VF"(to) - G(to)(tF-(t +n113t) -3F(t0))] -n'13f(to)f (to)t, 

for t eR, again with the convention that the processes are zero for to + n - 1/3t < 0. Here Fn is 
the Kaplan-Meier estimator of F and Fn is the non-parametric MLE of F under the 
assumption of a monotone density f. 

Let B10c(RRd) denote the space of all locally bounded real functions on Rd endowed with the 
topology of uniform convergence on compacts. Here are the limit theorems for the local 
processes Ut, and C{, C%. 

Theorem 5.1 
Suppose that 11(to) > 0, )'(to) 0 O, and i'(t) is continuous in a neighborhood of to. Then 

II -n n -k ? (24) 

for any k > 0, and both Un and Un converge weakly in B1.(JR) to the process U0 defined by 

OA(t) _ W( f(to) t) + I2 dot t W(t) + I 
A(to)t2 

for t e R where W is a standard two-sided Brownian motion process. 

Theorem 5.2 
Suppose that 11(to) >0, f'(to) # 0, f'(t) is continuous in a neighborhood of to, and 
G(to + t) - G(to) - 0(t 1/2). Then 

||U"- Un ||k ? (25) 

for any k > 0, and both Uf and Uf converge weakly in B0,,(R) to the process uf = UTf defined 
by 

d 
Cf(t) W(G(to)f(to)t) + 2G(t )f(t 2)t2= f (t) + 2G(t0)f'(t0)t2 

for tell where W is a standard two-sided Brownian motion process. 

Our proofs of theorems 5.1 and 5.2 will proceed via the following general result. 
Suppose that A is a function which is to be estimated with a(to) = A'(to) #0, 

a'(to) = A "(to) # 0. (Think of A as A or F, and a as A orf.) Suppose that A, estimates A and 
that 

Zn n-(An-A)= Z 

in D[O, T1 where @(t) = f3(t)B(y(t)) and B is standard Brownian motion. Moreover suppose 
there is a construction ,n 2 of Zn , Z on a common probability space so that 

172n - 1 < bn (26) 

X3 Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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where bn -+0 and 11x 1=sup {lx(t)I: 0 < t <? 4. Then we have: 

Theorem 5.3 
Suppose that 0 < to < r and an -+0. Suppose that (26) holds with bn /an -+0, and that ,B and y 
are differentiable at to. Then 

1 {fn(to + tan) - ;n(to)} => fl(to)W(y'(to)t) 

in B1,0(1R) where W is standard two-sided Brownian motion. If, in addition a(to) 0 O, a'(to) #A 0, 
and a'(t) is continuous in a neighborhood of to, then 

2n {An 00 + n- 13t) - A t) -n -1/3 a(to)tj => fl(to)W(Y'(to)t) + 'a t(t )t2 

in B10c(DR). 

Proof. For any fixed k > 0, 

1 2bn a.s. 
!|2n(to + tan) - 2n(to) - (2(to + tan) - 2(to)) I-k k< O 

so it remains only to show that 

1{2(to + tan) - 2(to)} I /3(to)B(y'(to)t) in C[ -k, k]. 

But, for 0- t ? k, 

1{2(to + tan) -2(tO) 

= I {/(to + ant)B(y(to + ant)) - fl(to)B(y(to))} 

d (/(to + ant) - /3(00l 
= a{ an B(y(to + an t)) + #(to) 

-.,fa- 
{B(y(to + ant))- B(y(to))} 

- >a{ an tOp(I) + fl(to)B( an ) 

=> 0 + /3(to)B(y'(to)t) = B(fl2(to)y'(to)t). 

Arguing similarly for -k < t < 0 completes the proof of the first claim. 
To prove the second assertion, write 

n 2/3{An (to + n - 113t)- An(to) -n -' /3 a(to)t} 

n n2/3 An(to + n- 113t) -An(to) -A(to + n -' /3 t) + A(to)} 

+?n213{A(to +n"l3t) -A(t0) -n'1l3a(to)t} 

by the first part of the theorem with an = n - 1/3 and the hypotheses on a and a' at to. ? 

Proof of theorem 5.1. The convergence of CU stated in theorem 5.1 is an easy consequence 
of theorem 5.3 together with the strong approximation results of Burke et al. (1988). An 
alternative proof could be based on the asymptotic linearity results of Lo & Singh (1986) or 
Lo et al. (1989) together with the empirical process methods of Kim & Pollard (1990). 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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From Burke et al. (1988, corol., p. 53), (5.26) holds for An = An and A = A with 

bn= (log n)n - 1/2 where the corresponding limit process Z has ,B 1 and 
y =Jf-2 dHuc = F-2G-1 dF = C. Since an = n -13, bn Ian = (log n)2n -2/3 = o(1), and 
hence the convergence of UO asserted in theorem 5.1 follows from theorem 5.3 with 

bn = (log n)n-1/2, y'(to) = C'(to) = A(to)/fi(to), and a'(to) = {'(to). 

To complete the proof of theorem 5.1, it remains only to prove (24), since the claimed 
weak convergence of UO follows from (24) and the convergence of &n already proved. First 
we prove another corollary of theorem 5.3, for a natural local process defined in terms of the 
Kaplan-Meier estimate for Fn; although this process will not be used in the sequel, it could 
be used to give an independent treatment of the estimator ]n of f. The corollary further 
illustrates the use of theorem 5.3. 

Corollary 5.1 
If Fn is the Kaplan -Meier estimator of F, f(to) =A 0, f'(to) < 0 and f' is continuous in a 
neighborhood of to, then 

n2/3{12Fn(t0 + n -113t) - Fn(t) - n -13f(to)t} => F(to)W(A(to)t/Ji(to)) + If'(to)t2 

d 
= W(f(to)t/G(to)) + If'(to)t2. 

Proof of corollary 5.1. From Burke et al. (1988, corol., p. 53), (5.26) holds with 

bn =(logn)n-112. Since an =n-13, b2/an =(logn)2n-213 =o(l), and hence the corollary 
follows from theorem 5.1 with An = 0n, A = F, [a, b]= [0, T] for T < TH, 3 = F, 

y = f) fl-2 dHUC = JOF-kJ -1 dF- C, and bn = (log n)n-1/2. D 

Proof of theorem 5.1, continued. It suffices to prove (24). First, by standard results from 
empirical process theory, for any a > 0 and O < z T, 

n 12 1/f 1- 1/ft ||o O and n l/2-a UC _ H qC 1T 

These are in particular true for 1/2- c = 1/3. We will use these two facts repeatedly in the 
following. We prove 

II l'n n 0n|k 

The other part can be proved in a completely analogous way. N4ow the Nelson-Aalen 
estimator can be expressed as A1n(t) = Jt (1 - Hn) dlnc, where l-l (t) =Hn(t -); see 

Shorack & Wellner (1986, p. 295). We have, letting tn - to + n -1/3t, 

-A ~ 2/ In(fl(to) N 2 UIt , 'tz 
H(t0)(Un(t) - Un(t)) = -_2/3 I - 1) dHllc-n213)n(t0) (Hn(s) - (to)) ds 

-o I n-I't 
= -II -I2, 

say. We can write the first term as 

i 2/3 {tJr( - HOO) d(lC - HUC) +n2/3 

H 
(ito) -) d( 

+ n2/3 (H(to) Ho)) dHuc + n2/3 
{(N) 

- 1)dH c 

_III + II2 + II3 + II4 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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By lem. 2 of Lo & Singh (1986), for any z > to + n -'/3k, 

IIIII llo < 2n213H(to) fH ( H - HUC) 0. 

For the II2 term, we use a maximal inequality. Consider the classes 'Wn defined as 

-n {n 16(11(to)/l-1(s) - l)l[to to +n-113t](5)sb 0 < t < k}. 

For each n, in is a class of increasing functions, so it is a VC-hull class. Hence the uniform 
entropy numbers of 3n grow polynomially of the order (l /e)r with r < 2 as e -+0. See Dudley 
(1987) or lem. 2.42 of Van der Vaart & Wellner (1994). This allows us to use the maximal 
inequality with the envelope 

Rn(s) = n 1/6(H(to)/H(to + n -'13k) - 1) 1[to, to+n-113k](5) 

By Kim & Pollard (1990, inequality 2.1, p. 199), there is a constant C such that 

El |II2 IlOk '< C_ R'2 

But, 

ERn =-nn3(H(t )/H(t +n'13k) -f)2(f(t)-l(to + n13k)) 

= n 1/3(i(to) -(to + n-13k))3/I1(to + n 13k)2 

=O(n- 2/3 ) 

So E "II2 110 = O(n I/3). This implies II12 10 - 0. 

For the II3 term, we have 

113 < n213f( n -1/fl Huc(tn) - HuC(to) Ic 0 0. 

We will see that the II4 term combined with a term from I2 converges to zero. The second term 

'nt 

I2 n n213A(to) (HUn(S) -H(to)) ds 
.to 

- n 213(to ) J (H(s) -H n (s)) ds + n 2/32(to) J (H(s) - 11(to)) ds 
.t 0 to 

-2 + I22 

say. But 

n213 T (H(s)- Hl-l(s)) ds 3kn 1l-k 11 -Hn -?H 0, 
.to 0 

so 1 21 || O. Thus 

Un- n0 1II4 + I22 o+OP(1) 

< 2/3 Jn (f(0J I)dHuc + n213)(to) J 
(H(s) - f(to)) ds + op( 1) 

= n 2/3 (f(to) - fi(s)))(s) ds + n213A(to) (H(s) - fi(to)) ds + op( 1) 

f(Hto ).t 
= n 1 to (H7(to) - Ms))(A(s) -A(to)) ds: + op( l ) O C O 

To prove theorem 5.2, we will use lemma 4.2. 

? Board of the Foundation of the Scandinavian Journal of Statistics 1995. 
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Proof of theorem 5.2. We first show that the asserted weak convergence of Uf holds. To 

do this we use the definition of Vf and the corresponding identity for F: 

VF(t) = F-t)(t)- J - dln(s) 
F(s) n 

and 

F(t) = H(t)- F( J ) dHc(s). 

Thus it follows that 

Vn"(t) - F(t) = Hn(t)- H(t)- dHcl(s) + 10 ' dHc(s) JIo ~,(s) 
n J F(s) 

= ( - H(t)-H(t)) - t - (t) d(H-n - Hc)(s) - (1 - F(t) F(t) SF(s) dG(s). 
Jo 1 n - (s) IJ0 tn -,(s) F(s)J 

Integrating by parts for the second term, we have 

Jo 1 - ( <) d(c -HnH)(s) = Hcl(t) Hc(t) (Hc (s- Hc(s_)) (1 - , (s) dF 

For the third term, we have 
rt (1 

-Fn(t) F(t) IFs 
Gs t1 

Fn(t) Jo K - F,1(s) - 5F(s) dG(s) = 1 - F F(s) dG(s) - F(t)G(t) 

1 I F (t) = 2 
- F (S) (F(s) -(1 - Fn(s))) dG(s) + G(t)(1- n (t)- F(t)). 

Thus 

Vln(t) = F(t) + ( Hnuc(t)- Huc(t)) + G(t)( Gn (t) -F(t)) + An (t), 

where RA(t) = &1n(t) + A2n(t), 

'iln(t,= I c 
(ns Hc(sd))( - FF(t) (s), 

and 

2n(t) I=- - Fn (t) (F(s) -(1 - 
n(s))) dG(s). 

It follows that 

-f(t) = n213[F(to + n- 113t) - F(to) -n13tf NA GOO 

+ n23[lHuc(to + n- 13t) - Huc(to) - Huc(to + n -113t) + HUC(t0)] 

+ n2/3[n(to + n-l13t) -F(to + n -13t)][G(to + n-113t) - G(to)] 

+ n2 3[Rn(to + n R13t) - n(t)]. (27) 

Now for any k > 0, by lemma 5.1 and our hypothesis on G, 

n23||Iln(tO + n - 13t) -F(to + n -'I3t)][G(to + n - 113t) -G(to)] Ilk-k 

- n213Op(n -112)o(n"6) = op(l). (28) 
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Furthermore, by lemma 5.1 

n23 IR,,(to + n 13t) -k,(to) k-k 0. (29) 

By the hypotheses on f, 

n JI|F(to + n -t -F(to) - n - 'n t o -n 3(o)||_k ?(0) 

Finally, from Koml6s et al. (1975), (26) holds for A = H fUc A = HUC with bn = n -12 log n 
where the limit process Z(t) = fl(t)B(y(t)) with /3(t) = 1 - Huc(t), y(t) = HuC(t)I(1 - HuC(t)), 
and y'(t) = G(t)f(t)/(1 - HUc(t))2. Hence it follows from theorem 5.3 that 

n2/3( Huc(to + n - 1/3t) - Huc(to) - HUc(to + n -1/3 t) + Huc(t0)) 

= (I 1-Huc(to)) W( OX _ 
(to)) t) 

d 

= W(G(to)f(to)t) (31) 

Combining (28)-(31) with (27) yields the weak convergence of Uf as claimed. 
To prove the asymptotic equivalence of Uf and Uf asserted in (25), we use the definition 

of Vf and the identity for F again, but now with Fn replacing Pn, to write 

-f (t) = n213[F(to + n 113t) -F(to) -n 1/3 tf (to)]G(to) 

+ n 2/3 [HUC(to + n -1/3t) - HUC(to) - Huc(to + n -13t) + HUC(t0)] 

+ n213[Fn(tO + n -13t) -F(to + n -'/3t)][G(to + n'-13t) -G(to)] 

+ n 213[,n(to + n - '13t)- (to()] (32) 

where An is defined analogously to Rn, but with Fn replacing tn. Since (29) continues to hold 
if An is replaced by An, and (28) holds if Pn is replaced by Fn, subtraction of (32) from (27) 
yields the claimed asymptotic equivalence. DG 

We close this section with an easy lemma which will be ne-ded in the following section. 

Lemma 5.1 
Let Wn be defined by ( 18). Then, for any k > 0, 

sup in 3[WWn(to + n n W,(to)] -tH(to) |--->?- 
-k < t < k 

Proof. This follows easily from the Glivenko-Cantelli theorem applied to Hn: from (4) it 
follows that 

in 1/3L[ Wn (to + n -'/3t) -Wn (t0)] -tH(to0) 

rto + n- 1/3t tto+n-/3t 
-n 13 J (1-Hn(s))ds-n 13 J (1-H(s))ds 

Jt J to 

"to+n-113t 

+ + n /3 ( 1-H(s)) ds-ttfl(to) 
.,to 

H ||H 11 | It| + ||H(to + n - 13t) -H(to) Ilk |, 

and hence the claim follows from the Glivenko-Cantelli theorem and continuity of H. O 
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6. Inverse processes 

In this section, we consider some random processes which can be regarded as the inverse 
processes of the estimators for monotone f or A, and are easier to deal with analytically. In 

the following we consider estimation of a monotone increasing hazard rate A and a monotone 
decreasing density f. 

We first define four processes 2', 2 and Zf, Zf on R 2 by 

nA(t, a) - Un(t) -a n 13[W(t+n13t) - n(to)]l(to) 

Z (t, a) = CA(t) - at, (33) 

Z(t, a) = C{(t) -at, 

2n(t, a) = fJ{(t) -at 

for (t, a) Ec R2. Let the inverse processes 9', SA and Sf, 3f be defined for a > 0 by 

S (a) sup {te[0, T(n)]: V"(t) -at is minimal}, 

,9 (a) sup {te[0, T(n)]: An(t) -at is minimal}, (34) 

Sf(a) sup {t e[O, T(n)]: V'n(t) -G(to) )n(t) - at is maximal}, 

3f (a) = sup {t c[0, T(n))]: V'n(t) - G(to)G(t) - at is maximal}. 

From the characterizations given in theorem 3.2 and corollary 3.2 in section 3, it follows that 

{2n(t) > a} = {S9(a) < t}, 

{Pn(t) > a}- = {3(a) < t,(35) 

{G(to)jn(to) < a} = {St(a) < to}, 

{G(tO).n,(to) a} =3(a) < to} 

Then with Z,?, Z and Zf, Zf as defined in (33), it follows by scaling arguments that 

{nl/3(2n- A)(t0) > a} = {n113(Si(.(to) + n-113a) - t) <0O} 

= {sup [t eR: Zit a) is minimal] <0O}, 

{n 1/3(2n - A)(to) > a} = {n 1/3(gl(A(to) + n -1/3a) -to) < 0} 

-{sup [t eR: 2(t, a) is minimal] <0}, (36) 

{n 113G(to)(tg f)(to) a a} - {n"13(S(f(to) + n 1 a /3a)-to) - 0 } 

= {sup [t eR: Zf(t, a) is maximal] < O}, 

{n"13G(to)(7 _-f)(to) (a} - {n113(S>(f(to) + n-1/3a) - to) < O} 

= {sup [t cR: Zf(t, a) is maximal] < 0}. 

Now our proof of theorems 2.1 and 2.2 will use the following slight extension of the 

argmax continuous mapping theorem of Kim & Pollard (1990). We let Cmax .a(R( denote the 

(separable) subset of continuous functions x() in B1oc(Rld) which satisfy x(t) - - oo as 

Itt |- oo, and x achieves its maximum at a unique point in Rd. Similarly, Cmin ( Ri') is the subset 
of continuous functions x( ) which satisfy x(t) -+ oo as It| -i oo, and x achieves its minimum 
at a unique point in Rd, 
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Theorem 6.1 
Let (n 7Zn) be random maps into Bl.c(Rd) x B10c(Rd) and (Sn, Tn) be random maps into 
Rdx Rd such that: 

(i) (Yn 4Z) => (V, Z), P{(V, 7Z) Cmax(Ra) X Ca.(Rd)} = 1; 
(ii) S, Tn = OpM; 

(iii) 'Yn(Sn) ? supt Yn(t) - o, and 7Zn(Tn) > supt Zn(t) - fn, where an 1n = op(l). 
Then (Sn, Tn) (S, T) = (argmax (E'), argmax (Z)). 

The proof of theorem 6.1 will be deferred to the end of this section. Of course there is a 
completely analogous argmin continuous mapping theorem with Cmax replaced by Cmjn and 
the "near maxima" condition in (iii) replaced by the corresponding "near minima" condi- 
tion. Here we will only apply theorem 6.1 to prove theorem 2.1. The proof of theorem 2.2 
is similar. Details can be found in Huang & Wellner (1993). 

Proof of theorem 2.1. Fix a, be 1R. By theorem 5.1 and lemma 5.2 it follows that 

(Z?(t, a), Z{(t, b)) =. (Uf(t) - at, Uf(t) - bt), 

where Of is as defined in theorem 5.2. This gives the first hypothesis of theorem 6.1 with 

(iYng Zn) = (Zf, Zf) as processes in Bloc(R). The third hypothesis of theorem 6.1 holds by the 
identities (36) with 

(Sn' Tn) = (n113(Sfn(f(to) + n-13a) -to), n113(Sg(f(to) + n-13a) -to)). 

If we can verify the second condition of theorem 6.1 for this (Sn' Tn), then (the argmax form 
of) theorem 6.1 implies that 

(n 1l3(Sf (f (to) + n-113 a) - to), n113(g{(f (to) + n1-/3a) - to)) (S^f(a), SP(b)), 

where 

Sf(a)-=argmax {Zf(t, a)} = argmax {W(G(to)f(to)t) + IG(to)f'(to)t2 - at} 

= Sf(O) + a/G(tO)f'(tO). 

This equality in distribution holds because, with d-G(to)f'(to), 

-^f(a)i-ad = sup {t - aId: /G(t0)f(to)W(t) + ' dt2 - at is maximal} 

= sup {t: G(t0)f(t0)W(t + aId) + ' d(t + aId)2 - a(t + aid) is maximal} 
d 
-sup {t: v/G(to)f(to)W(t) + 2 dt2 is maximal} 

=Sf(o). 

Hence it follows from the identities (36) that 

P(1l3G(to)(f _f-)(to) > a, n 1/3G(tO)(.Tn -f)(to) >_ b) 

=P(n 1l 3(9^ ( f (to) + n -1/3 a) -to) < O, n1l 3(gn( f (to) + n - l 33b) -to) 0 ) 

P(Sf(O) < a IG(to)f'(to), Sf(O) <, b IG(to)f (to)) 

= P( -G(to)f'(to)Sf(O) < a, -G(to)f'(to)S9(0) < b), 

which implies that 

(n (Ir n th )(to), n Tof t o)lof Staic 19(0)), 
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and hence that 

n 11(fl -Jn)(to) 0 

This implies the asymptotic equivalence stated in theorem 2.1. 
To identify the common limit law, the distribution of -f'(to)Sf(O), set R--G(to)l 

(f(to)f'(to)). Then the asymptotic distribution of 2-213R "13n 13( -f)(to) is that of 

V'(to) 2-213R '35f(0). But by the definition of ^f, 

If'(to) 2-213R 3Sf(0) = sup {If'(to) 2-213R13t: )f(to)W(t) +IG(to)f'(to)t2 is maximal} 

= sup {t: v#G(to)f(to)W( f'(to) - 122/3R - 1/3t) - 1G(to) f'(to) 1-24/3R -2/3t2 is maximal} 

= sup {t: G(to)f(to) fI(to) 1-1221/3R - 1/6W(t) - 2G(to) f'(to) -124/3R -2/3t2 is maximal} 

= sup {t: W(t) - t2 is maximal} 

=_Z 

where we have used the scaling property of Brownian motion and the equality 

,IG ((to)(f(t) f'to) |- 1221 3R-1/6 - G(to) If (to) 1-124/3R -2/3 

- 21/3G(to)113f(to)2/3[f(to)1-1/3. 

This yields the stated asymptotic distributions. 
It remains only to verify the second condition of theorem 6.1; these proofs are grouped 

together in section 7. D 

Proof of theorem 6.1. Invoke the representation theorem for the (Ydn, Zj processes; see 
e.g. Kim & Pollard (1990, th. 2.2), or Van der Vaart and Wellner (1994, th. 1.51): Write 
(fin(t), 2n(t)) for the composition ('JO(4n(J(), t), 2J(O/J(D)), t)), 3n for Sn(n(DA)) Tn for 
T(n(4l(D)), and so forth. 

We need to prove that P*h(Sn, Tn) converges to Ph(3, T) for all h that are bounded, 
uniformly continuous, real functions on Rd X Rd. By the perfectness of /, 

IP *h(Sn, T) -Ph(3, T) I =P*h(3n,, T) -P*h(g, T) I 

,<P* Jh(39n,Tj - h(39 T) 1. 

So it is enough to prove that 

P*{ f 7n>- 1 + IT}-PI > 0} for each q > 0. 

This means we only need to prove that 

{P*I|3 -3 > }+ 0 for each q > 0 and P* > 0 for each q > 0. 

However, each of the above two convergences follow from the proof of th. 2.7 of Kim & 
Pollard (1990). D] 

7. Boundedness in probability of the inverse processes 

The key ingredient in the proofs of theorems 2.1 and 2.2 via theorem 6.1 is verification of the 
condition (ii); i.e. the boundedness in probability of the inverse processes. This is the goal of 
the present section. We summarize the statements in the following lemma: 
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Lemma 7.1 
Suppose that the hypotheses of theorems 5.1 and 5.2 hold. Then, for each e > 0 and M1 > 0, 
there is an M2 > 0 such that 

P tmax n l13 ( (fo + n - 113a)-to|> M2} < , (37) 

P max n 1/319(fo + n -1/3a)-to > M2}< (38) 

P; max n"31313A()o + n-'13a) - to > M2} 

P max n1 /3 S1{(Ao + n -1I3a)-to > M2}< (40) 

for n sufficiently large. 

Remark 7.1. From (37), it is easy to see that the results of this lemma imply 

n 1/3 max II,n(to + n -113t) -f(to)l = Op(1), 

and similarly for fn, [n and An 

Proof of lemma 7.1. We first show the "upper half" of (37); i.e. with the absolute value 
sign in (37) replaced by +( ); the part with -( ) can be proved similarly. Since 3f(a) is 
decreasing in a, we have 

{ImaI 1/ - }PnI[ (fn113MI) max n 13[9{(fo + n 3a) -to] > M2 P{n 3 -n -to] > M2} 
lal < MIs 

sPP{Z{(t, -M1) >?0 for some t M2 

where Zf is defined by (33). By the continuity of f' in a neighborhood of to and f'(to) <0, 
we can find uo > 0 such that for any t, It - toI < uo, we have f'(t) < 0 and f'(t) is close to 
f'(to). By (33), for n - "/3t < uo, we can write 

Zf(t, -Ml) = n213[F(to + n - 113t) -F(to) -n - 113tf(to)]G(to) + MA t 

+ n2/3[lHuc(to + n -13t) - Huc(to) - HuC(to + n -1/3t) + HUC(to)] 

+ n2/3[Fn(t0 + n -/3t) - F(to + n -1/3t)][G(t0 + n -'/3t) - G(to)] 

+ n213[An(to + n -1/3t) - A,(to)]. (41) 

By Taylor expansion 

n213[F(t0 + n - /3t) - F(to) - n -' 3f(tO)t]G(tN) + Ml t = !f'(tn)G(to)t2 + Ml t, 

where Itn - toI < n -1/3t < uo. By the choice of uo and f'(to) < 0, we can find K > 0 such that, 
for any t > K, 

-Lf'(tn)G(tO)t2 + Ml t < jf'(to)G(to)t2 

for n sufficiently large. By Kim & Pollard ( 1990, lem. 4.1), for a =-1/8f'(to)G(to) > 0, and 
n -1/3t < uo, there exist random variables An = Op(1), 

n2/3 1 Hc(to + n 1/3t) -- Huc(to) - (Huc(to + n-l/3t) - HUC(to)) 

n213(Lxn-23t2 + n-213A2) = ct2 + A2 
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Moreover, the third and fourth terms on the right side of (41) are dominated by 

op(t 1/2) + Op(n -1/3) + O(tn -1/6), 

where the op and Op do not depend on t; to see this, use n,n |F-F||1 = Op(i), the Holder 
continuity hypothesis on G at to, and the definition of An given in the proof of theorem 5.2. 
It follows that, for t > some M2> K we have 

Zs(t, -lMI) < -_ f(to)G(to)t2 + A 2 + jf'(to)G(t0)t2 + op(1) 

= Vf'(to)G(to)t2 + A2 + op( 1) 

where the Op term does not depend on t. We choose M2 such that M2 > K and 

2{A '> _ (to)G(to)M2 + op (l)} I < 

for n sufficiently large. With this choice of M2, we have 

P{Zf(t-MI) > 0, for some M2?< t < n ' /3uo} 

< P{jf(t0)G(to)t2 + An + op(l) > 0, for some M2?< t < n1/3uo} 

= P{A2 '>-f_(to)G(to)t2 + op(l) for some M2 < t < n'/3uo} 

for n sufficiently large. 
For n -' 13t > uo, we will show that for n sufficiently large with probability close to 1, 

Zf (t, -MI) -<- Zf(n l /3Uo' _-MI ), 

and hence this term is controlled by the argument given above. Now we use the following 
self-consistency equation for the Kaplan-Meier estimator Fn: 

Fl(t) = l-l(t) -X dHc(s); (42) 

see e.g. Shorack & Wellner (1986, (7.0.11), p. 295, and (7.2.11), p. 304). Notice that, by the 
definition (3.12) of Vn' and by the identity (42) it follows that 

Zf(t,-Ml1) = G(to)n213(Fn(tO + n - 1/3t) - Fn(t) - n - 113f(to)t) + Ml t. 

By lemma 4.1 and the definition of the least concave majorant, we have, with probability one, 

Fn(t + uO) = F (t+ uO) + o(l) and Fn(tO+ n-113t) < Fn(to + n1-13t). 

Hence 

Fn(tO + n -' 3 t) - Fn(t + UO) <, G"nt + n - 13t) - n(tO + UO) + o(1 

<,7n(to + uo)(n -' /3 t - u) + of 1). 

The last inequality above is from the concavity of Fn. This implies 

Fn(tO + n -/3t)-Fn-F(t+ uO) -f(to)(n -1/3t -uo) + n-113MA (n-113t -uo) 

,<.7n (to + uo )(n - 13t _uO) + (n- 113MI -f(to))(n - 13t _uO) + o(1 

= (,,(to + uo) -f(to) + n 13M1)(n '13t-u1) + o(l) 

= (f(to + uO) -f(to) + n -113MA + o(l))(n -113t - u0) + o(l) 

B h 0 
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for n sufficiently large, since f is strictly decreasing at to. It therefore follows that 

P{Zf (t, -MI) > O for some t > n /3uO} 

P P{Z{(n'I3uo, _MI) >r } 

AP{Z{(t, -Ml) 0 for some M2<t n1/3uO} 

<E 

for n sufficiently large. This completes the proof of (37). D 

Yet another proof of this part of lemma 7.1 can be based on the strong approximation 
results for the product limit estimator Fn from Burke et al. (1988). 

The proof of (38) is exactly the same as the proof of (37) for n -13t < uo, but now also 
using (21) of lemma 4.1 in combination with the definition of AR given in the proof of 
theorem 5.2 to control the last two terms in the "hat" version of (41). However, for 
n- 13t > uo we can no longer use the identity (42). Instead, note that PVn - F,. Then the 
argument proceeds as above using the concavity of Fn. 

Sample size N=100 

1. 

0.0 
'- I 

0 1 2 3 

T 

Fig. 1. Estimation of a distribution with decreasing density under censoring. The solid step function is 
the Kaplan-Meier estimator. The solid line is the, concave majorant of the Kaplan-Meier estimator. 
The dotted line is the NPMLE. The dashed line is the true distribution function F0 (x) = 1 - exp (x). 
The censoring distribution is G(y) = 1 - exp ( -O0.5y). 
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The proof of (39) is exactly the same as the proof of (37), but now we need to use part 
(B) of lemma 4.1 The proof of (40) is also parallel to the proof of (37). However, we now 
should use lemma 4.3. The details are given in Huang & Wellner (1993). 

8. Illustrations and examples 

Now we illustrate the results obtained in sections 2-6 by calculating the estimators fn, In, 2n,, 
2n and their corresponding cumulative versions for simulated data. 

To compare the NPMLE with the estimators based on the Kaplan-Meier estimator in the 
estimation of a decreasing density, or the Nelson-Aalen estimator in the estimation of an 
increasing hazard, and also to see how censoring and sample size effect the estimation, we 
carried out two sets of simulations. 

8.1. Estimation of a decreasing density f 

The simulated random samples are generated in S as follows. The failure time X exp (1), 
i.e., the exponential distribution with mean one. The censoring distribution is exp (1/2), i.e., 
the exponential distribution with mean 2. Then P(X < Y) = 2/3, that is, the uncensored rate 
is two-thirds. Two different sample sizes are used, n = 100 and 800. 

Sample size N=100 

1.0| 

1. 

0. 

0 1 2 3 

T 

Fig. 2. Estimation of a decreasing density under censoring. The solid line is the slope of the concave 
majorant of the Kaplan-Meier estimator. The dotted line is the NPMLE. The dashed line is the true 
density function fo(x) = 1 - exp ( -x). The censoring distribution is G(y) = 1 - exp (-O.5y). 
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SaimpIz3 sizz NJ=800 

1.~~~~~~~~~~~~~~~~~~~~ 

0. _ 

O 1 2 3 4 

Sample 2ze3 NJ=BOO 

O 1 2 3 4 

Fig. 3. Estimation of a distribution with decreasing density under censoring. In the top panel, the solid 
step function is the Kaplan-Meier estimator. The solid line is the concave majorant of the Kaplan- 
Meier estimator. The dotted line is the NPMLE. The dashed line is the true distribution function 
Fo(x) = 1 - exp ( - x). The lower panel shows the corresponding slopes of the curves in the top panel 
with the same line types. The censoring distribution is G(y) = 1 - exp (-O.5y). 

Figure 1 shows the estimators of the distribution function. The step function is the 
Kaplan-Meier estimator. (In the figures, the step functions are either the Kaplan-Meier 
estimator of the distribution function, or the Nelson-Aalen estimator of the cumulative 
hazard function.) The solid line is the least concave majorant of the Kaplan-Meier 
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estimator. The dotted line is the NPMLE of the distribution function with decreasing 

density. The dashed line is the true distribution function, i.e., Fo(x) = 1 - exp (-x). The 

censoring distribution is G(y) = 1 - exp ( -y/2). 
Figure 2 shows the estimators of the decreasing density. The solid line is the slope of the 

concave majorant of the Kaplan-Meier estimator. The dotted line is the NPMLE of the 

decreasing density. The dashed line is the true density, i.e., fo(x) = exp (- x). 

We observe that the NPMLE and the estimators based on the Kaplan-Meier estimator 

are different, although they are very close when sample size is moderately large, e.g., n = 800, 

and with this sample size, J, and I, almost always have the same jump points. We also notice 

that both }n and /n tend to overestimate f at x = 0; see Figs. 2 and 3. We believe that both 

f,, and ]7n are actually not consistent at zero. For the estimation of a decreasing density 

without censoring, the NPMLE coincides with the slope of the least concave majorant of the 

empirical distribution function. Woodroofe & Sun (1993) showed thatfn is inconsistent, and 

in fact that 

Jn(O) d k 
sup - , 

f(0 +) 1_k<cx< Fk 

Sample size N=100 

1.0 

I AV I~~~~~~~~~~~~~~~ 

0.0-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

o.o 0.2 0.4 0.6 0.8 1.0 

Fig. 4. Estimation of cumulative hazard with increasing hazard rate under censoring. The solid line is 

the concave majorant of the Nelson-Aalen estimator. The dotted line is the NPMLE. The dashed line 

is the true cumulative hazard function Ao (x) = x3/2. The censoring distribution is uniform(0, 1). 
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where Fl, F2, . .. are partial sums of i.i.d. standard exponential random variables. From 
Pyke (1959), or see Wellner (1977, p. 1008), it follows that P{supI Sk<,> kIFk > x} = l/x, for 
x > 1. Consequently, P{supI <k<co kIFk > 1} = 1. 

8.2. Estimation of increasing hazard rate 

The simulated random samples are generated in S as follows. The failure times are from 
a Weibull distribution, i.e., X 1 - exp (- x3/2). The censoring distribution is fixed 
to be uniform(0, 1). Thus the expected proportion of uncensored observations is 
P(X < Y) = 0.3002 .... Two different sample sizes were used, n = 100, 800. 

Figure 4 shows the estimators of the cumulative hazard function. The step function is the 
Nelson-Aalen estimator. The solid line is the greatest convex minorant of the Nelson-Aalen 
estimator. The dotted line is the NPMLE of the cumulative hazard with increasing hazard 
rate. The dashed line is the true cumulative hazard curve, i.e., AO(x) = x312. The censoring 
distribution is uniform(0, 1); G(y) = y, 0 < y < 1. 

Figure 5 shows the estimators of the increasing hazard rate AO. The solid line is the slope 
of the greatest convex minorant of the Nelson-Aalen estimator. The dotted line is the 

Sample size N=100 

1.0A 

,/~~~~~~~~~~~~~~~~~~~o 
/~~~~~~~~~ 

,~~~~~~~~ 

1.5 

0.0 0.2 0.4 0.6 0.8 1.0 

T 

Fig. 5. Estimation of increasing hazard rate under censoring. The solid line is the slope of the concave 
majorant of the Nelson-Aalen estimator. The dotted line is the NPMLE. The dashed line is the true 
hazard function AlO(x) = (3/2)x'/2 . The censoring distribution is uniform(0, 1). 
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Samnplea size4 N=800 

1.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 

0.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 

0. , . 

0.0 0.2 0.4 0.8 0.8 1.0 

Sample4 size N=800 

2.0 

1. 

1., 

0.0 0.2 0.4 0.8 0.8 1.0 

Fig. 6 Estimation of increasing hazard rate under censoring. In the top panel, the solid line is the 
concave minorant of the Nelson-Aalen estimator. The dotted line is the NPMLE. The dashed line is the 
true cumulative hazard function A_O(x) = x312. The lower panel shows the corresponding slopes of the 
curves in the top panel with the same line types. The censoring distribution is uniform(O, 1). 

NPMLE of the increasing hazard rate. The dashed line is the true hazard rate, i.e., 

-(x) = (3/2)x1/2 
Similar to the case of estimating a decreasing density, the NPMLE and the estimators 

based on the Nelson-Aalen estimator are different, although they are very close when 
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sample size is moderately large, e.g., n = 800, and with this moderate large sample size, 2n 
and An almost always have the same jump points. We also notice that both 2n and 2n behave 
badly at the right end point. (In our simulations, the right end point is 1.) We believe that 
both 2n and 2,n are not consistent at the right extreme point. The problem of the behavior of 
2n and 2n at the right extreme point has not been worked out yet, although it might be solved 
along the lines of Woodroofe & Sun (1993) in dealing with jn(O). Notice that when there is 
no censoring, unlike in the estimation of a decreasing density, the NPMLE of an increasing 
hazard rate is not the same as the slope of the convex minorant of the Nelson-Aalen 
estimator. 
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