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OSCILLATING BROWNIAN MOTION 

JULIAN KEILSON AND 
JON A. WELLNER, University of Rochester 

Abstract 

An 'oscillating' version of Brownian motion is defined and studied. 'Ordinary' 
Brownian motion and 'reflecting' Brownian motion are shown to arise as special 
cases. Transition densities, first-passage time distributions, and occupation time 
distributions for the process are obtained explicitly. Convergence of a simple 
oscillating random walk to an oscillating Brownian motion process is established 

by using results of Stone (1963). 

OSCILLATING BROWNIAN MOTION; DIFFUSION PROCESS; TRANSITION PROBABILITIES; 

ARCSIN LAW 

1. Introduction 

Let (B(t)),,o be a standard Brownian motion process and let o+, o- > 0, be 
two positive numbers. (We allow one of o-+ or o-_ to be + oo, but not both.) 
Consider the process (Y(t)),0o obtained from B as follows: let o2(y) = o-, y _ 0, 

2_, y <0; let 

Ax (t) = 
o-2(B(s)+x)ds =1 L(t,y-x)m(dy) t O, x E R 

where m (dy) = 2o-2(y)dy and L is local time for B; and define 

Y(t)= B (A x'(t))+ 
x t 20. 

We call Y oscillating Brownian motion. Our definition of Y is just the recipe used 

by Ito and McKean (1965) to construct a diffusion process with speed measure m 
from Brownian motion; they prove (Chapter 5) that for an arbitrary speed 
measure m with support an interval Q C R, the process Y defined above is a 

strong Markov, conservative diffusion process on Q with the desired speed 
measure m. 

For our particular choice of the function -2 (and speed measure m) the 
additive functional Ax may be written as 
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Ax (t) 
= o-2t + (o2 - -I2)AS 5 t: B(s)+ x 

= 
0} tO 0 

where A denotes Lebesgue measure. Suppose temporarily that 0 < oa, < 0. For a 
fixed sample path, B(t)(co), Ax (t)(co) is a continuous piecewise linear function 
with slope 0-12 or 0+2 depending on whether B + x is < 0 or 

> 0. Similarly, 
A '(t)(w) is continuous and piecewise linear with alternating slopes 

0o- 
and a+. 

In fact, it is seen that A -' scales time by oUT or aT_ depending on whether B + x is 

= 
0 or <0. Since Brownian motion starting from zero changes sign very 

frequently, the process Y 'oscillates' in that it behaves like a Brownian motion 
which changes variance parameter each time it crosses zero. This will be made 
more precise in the sequel. 

In the well-known special case o+ = a = a, Y is clearly ordinary Brownian 
motion with variance parameter T2. Another case of interest is o- = a, - = 
+ o; then Y is reflecting Brownian motion (in this case Ax (t) = o-2A{s 

- t: 
B(s) + x 

= 
0}; now see Ito and McKean (1965), pp. 81-82). 

Our object here is to calculate the distributions of several functionals of the 

process Y and to identify these as the limiting distributions of the corresponding 
functionals of a simple oscillating random walk, Y,. We calculate the transition 
densities, first-passage time distributions, and some occupation time distribu- 
tions for the process Y; these calculations are standard using the techniques of 
Ito and McKean (1965). The occupation time distributions obtained are related 
to results of Lamperti (1958) and Dwass and Karlin (1963). 

Far less standard is the convergence of an 'oscillating random walk' process Y, 
to the process Y which is discussed in Section 4. We use results of Stone (1963) 
to establish the convergence in the case of a simple oscillating random walk, Y,, 
but have been unable to prove the convergence in the case of more general 
increment distributions. This problem has connections with the work of Kemper- 
man (1974) concerning the recurrence of oscillating random walks, and the 
convergence to diffusion processes with discontinuous diffusion coefficients. 

2. Distributions of some functionals of Y 

Denote the transition densities of the process Y with respect to the speed 
measure m by p(t, x, y); thus 

Px (Y(t)E dy)= p(t, x, y)m(dy), (t, x, y)E R+ x R x R. 

As is shown in Section 4.11 of Ito and McKean (1965), these densities exist, are 
continuous, and are symmetric in x and y: p (t, x, y) = p (t, y, x) for all x, y E R. 
The following theorem gives these densities for the oscillating Brownian motion 
process Y defined in Section 1. Here, and in the following, we denote the 
transition density of ordinary Brownian motion by p*(t, x, y): 

p*(t, x, y)= (2irt)-1/2 exp(- (y - x)2/2t). 
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Theorem 1 (transition densities for Y). Let 0 = a/(o.+ o-_)= (1 + r)-', 
r --= I/a_. Then 

p(t, x,y) = 

00a.+ (1 + r)p+(* t, tx 

, + 
* 

, 
0x.05y5=x 

00-.p * t- , y 5 0 - x 

10+t), p*t, , y x o0. +0 -+-* 

Since p (t, x, y) is a symmetric function of x and y, Theorem 1 determines 

p(t, x, y) for all x, y E R. Observe that in the special case a+ = - = a, r = 1, and 
we recover the transition density of ordinary Brownian motion with variance 

parameter o02. In the case o-+ = a, a- = + co, r = 0, and the densities given in 
Theorem 1 reduce to those of reflecting Brownian motion (cf. Ito and McKean, 
p. 41). Taking x = 0, we get the one-dimensional distributions of Y; these are 

'pieced half-normal' with variance parameters 0o2 
and oa2 and masses 1 - 0 and 0 

on the negative and positive half-axes respectively. 

Corollary 1. 

0p00+ *(t, O, (y/e_)) y < 0 

p(t, 0, y) = 
10p+p *(t, 0, (y /o+)) y > 0. 

This is the density with respect to the speed measure m; converting this to a 

density with respect to Lebesgue measure A (m is absolutely continuous with 

respect to A in our case) one obtains 

2(1-0) 
2(1- 0,2) 

exp(- 

y2/2o2_t) 

y <0 
(2wret)'" PA (t,0, y) = 

20 2 12 0 exp( - y2/20+t) y _ 0. 
(27 mrt) 

Using.this, the mean and variance of Y may be computed easily: for t > 0, 

Eo(Y(t))= 0 and Eo(Y(t)2)= . +-_t. 
Other variables of interest are the passage times 

T, = inf{s 
=0: 

Y(s)= y}. 

Recall that Y(0)= x E R with (Px) probability one (w.p. 1). Since Y 'acts like' 
ordinary Brownian motion with variance parameter o- 

or ot depending on 
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whether it is ? 0 or < 0, one expects that in the cases 0 < y < x and x < y ? 0, 
T, will have the same distribution as for an ordinary Brownian motion with 
variance ao' or ' - respectively. However, in the cases 0 ?= x < y, x = 0 < y, 
y < x =5 0, or y <0 ?S x, the passage time T, depends on the behavior of the 

process on both sides of zero and hence may be expected to have somewhat 
different distributions. That this is indeed the case is shown by the following 
theorem. 

Theorem 2 (passage time distributions for Y). For 0 = y < x, 

Px(To E dt)= (X7+) exp(- x2/2aut)dt; (2 rt3)1/2 

a similar formula holds for x < y = 0 by replacing (x/r-+) by (- x /_-). When 
0 = x < y, 

Po(T, 
d 2 (yt/)q) 

0 

qk(2k 1)exp(-(2k + 1)2y2 
/2•t)dt r +1P" (271rt3)1/2 k=O (+ 

where q (r - 1)/(r + 1); again a similar formula holds for y < x = 0 by replac- 
ing (y/l+) by (-y/-_) and r by r-1. 

In the case o+ = o_, r = 1, only the first term of the series contributes, and the 
formula above becomes the well-known passage time distribution for ordinary 
Brownian motion (as in the first part of the theorem). Using the strong Markov 

property and standard techniques, the Laplace transform of the first-passage 
time in the two-barrier case, T,ab = min {T,, Tb) with a < 0 < b, can be obtained 
from Theorem 2 (and some of the results of Section 3). The resulting expression 
is quite unwieldy and we will not pursue it here. We do, however, have the 

following obvious corollary of the second part of Theorem 2. 

Corollary 2 (distribution of supos:s, Y(s)). 

Po(supo?s_, 
Y(s) < y) = Po(Ty > t) 

4 C k (2k + l)y~ 1 
=r+1 ,=q 

1 \ cr+t/2 - 2 

where Q denotes the standard normal distribution function and q 
(r- 1)/(r + 1). 

Another functional of interest (when Y(O) = 0 w.p. 1) is the occupation time of 
the positive half-axis, 

M(t) = A {s t: Y(s) 0}. 

In the case r = 1, the distribution of M(1) = M(t)/t is well known to be the 
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classical arcsin law originally obtained by Levy (1939) (see also Ito and McKean 

(1965), p. 57 and Kac (1951), p. 192). This is extended to general r 0 by the 

following theorem, which is related to a theorem of Lamperti (1958) (take 
8 = 1/2 in (1.4) there). 

Theorem 3 (occupation time of R ). For t >0 M(1) = M(t)/t and, for 
0 < r < oo, M(1) has the distribution 

1 1 r 
P0(M(1)E du)= . 1/2 r2)du, O< u < 1. 

7r {u(1- u)}17 1- (1-r2) 

When r = 0, M(1) = 1 with probability 1; when r = c, M(1)= 0 with probabil- 
ity 1. 

In any case it follows that Eo(M(1)) = 0 and Varo(M(1))= 10(1 - 0). 
By calculations similar to those of p. 58 of Ito and McKean (1965), we also 

obtain the following conditional occupation time distribution, which is related to 
the computations on p. 1162 of Dwass and Karlin (1963). 

Theorem 4 (occupation time of R +, given Y(1) = 0). For 0 < r < oo, O < u < 1, 

Po(M(1) u I Y(1) = 0) = (r(r + 1)/r(u)(r(u) + 1))u, 

where r(u)= [1- u(1 - r2)-1/2 

3. Proofs; computation of the transforms 

As is well known, the continuous, positive, increasing and decreasing solutions 
of the equation 

d d 
(1) dm dx g = sg s > 0, 

play a basic role in diffusion theory; this is explained in considerable detail in 
Section 4.6 of Ito and McKean (1965). In our case the infinitesimal generator 
(dldm)(dldx) is simply 

1 2 d2 
? 
r2+ 

x >0 d d d2dx2 
(2) dm dx = 2( x 2)X d 

r_ dX2 < 0. 

Let g, and g2 denote positive increasing and decreasing solutions of (1) 
respectively with Wronskian B g 'g2 - g1g = 1 for all x E R. 

Lemma 1. For the infinitesimal generator given by (2), the functions gl and 

g2, for s > 0, are 
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(exp(- V2sI x J/-) x 0 

gI(x, s) 
(1 + 

r)exp(V2sx/-)+ 
(1 - r)exp(- 

V/2sxl/0-) 
x 20 

/2s 1 +- exp(V2slx /o-)+- 1-- exp(-Ns 
x 

2x/_) 

g2(X, S) = x 5 0 

- exp(- 
/2sx/l"+) 

x > 0. 

Proof. Straightforward differentiation and examination of derivatives. These 

functions were computed in series form for a more general class of diffusiotis by 
Stone (1963); take /3 = 0 on pp. 657 and 658. 

Now the theorems of Section 2 are easily proved using the functions g, and g2. 
For example, it is known (cf. Ito and McKean, pp. 149 ff.) that if r is defined by 

r(s, x, y) = e-"p (t, x, y)dt 

where p (t, x, y) is the transition density introduced in Section 2, then 

ggi(x, s)g2(y, s) x y 
r(s, x, y) = 

(xs)g(ys) 
,g2(X, s)gl(y, s) x _ y. 

Hence, r is easily obtained from Lemma 1: 

2 {a(1s + r)exp(- N/2s y - x 
/a,+) 

+ (1- r)exp(- V2s y + x 
I/0"+)} 

0 5 y x 

2es -Y_ x 0 r(s, x, y) exp - V•s -- 
--- 

y 
O-x 

Ou? ( 1 \ 
2 +- l exp(- V 2sy - x /a_) 

+(1--rexp(- V2s y + x 

/"_) 

Y S x S0. 

The statement of Theorem 1 now follows by (easy) inversion of the Laplace 
transform. Corollaries 1 and 2 are immediate consequences of Theorem 1. 

The proof of Theorem 2 is equally straightforward. From Section 4.6 of Ito 
and McKean, 

E, (exp ( - sTo)) = g2(x)lg2(O) = exp ( - V/2s x /+) x > 0 
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which inverts to give the first statement of Theorem 2. Similarly, for y > 0 

Eo(exp (- sTy )) = g,(0)/g(y) 
2 

1+ r exp(- Visy/a+){1 - q exp(- 2V/2sy/ /a,)-' 

2 
E q' exp(-(2k + 1) vsy/yr,) 1 + r k=O 

with q (r - 1)/(r + 1). Another easy inversion yields the second half of the 
statement of Theorem 2. 

Theorem 3 requires a little more effort. We first use the method of Kac (1951) 
as outlined in Ito and McKean, pp. 54-57 to compute 

a(s, v) = Eo { e-Ste-VM)dt1 s, v >0. 

Kac's formula says that 

u (x) = Ex e-"e-M(t)dt s, v > 0, x E R 

is the bounded solution of 

d d 
(3) dm dx u - (s + v lo[,))u = 1. 

(Here la is the function which is 1 for x E A and 0 otherwise.) Let hi and h2 

denote the increasing and decreasing solutions of (3). Then, from Lemma 1, 

hl(x, s)= g,(x, s) = exp (- V2s Ix /o-_) x 
- 

0 

h2(x, s)= g2(x, s + v) - exp(- V2(s + v)x/r-+) x 0, 

and the Wronskian is 

B = h (O)h2(0)- h1(0)h'(0)=0 r ( 2sv +1 

Hence 

a (s, v) = u(0) = e-'sdt f e-"wPo(M(t)E dw) 

= B -'{h2(O)j hi(x)m(dx)+ h(O) h2(x)m(dx)) 

rVs + v+ Vs 1 

v s'+ + rV's Vs(s + v) 



Oscillating Brownian motion 307 

and it remains only to invert this transform. We do this by way of the following 
lemmas. 

Lemma 2. For all t > 0, Po(M(t)/t - u) = Po(M(1) - u). 

Proof. This follows upon noting that A 
o'(tu) 

= tA 
o'(u) 

and hence, using the 

scaling properties of Brownian motion B, 

M = 
1[,)o,(Y(tu))du 

= 1 10,O)(B 
(A 

i(tu)))du 

= 1l0,->(B (tAM(u)))du 

=f 
[ 

10,o,(1/VtB 
(A o'(u)))du 

= fl o..O(Y(u))du = M(1). 

The lemma may also be proved by noting that a has the form ac(s,v)= 
s-f3(slv) and examining the inverse transform. 

Now let F(u) Po(M(1)-5 u), O: u -5 1; F is clearly 0 for u <0 and 1 for 
U ?1. 

Lemma 3. a(s, 1) = f(s + u)-'dF(u). 

Proof. By Lemma 2 and a change of variables 

a(s, v) = e-'dt e -"'Po(tM(1) E dw) 

001I 

= e ddt e ~V'dF(u). 

The statement of the lemma follows by setting v = 1, applying Fubini's theorem, 
and computing the inner integral. 

Lemma 3 identifies a (s, 1) as the Stieltjes transform of F (see Widder (1941), 
pp. 325 ff.). To complete the proof of Theorem 3 we must invert to find F or its 
density function f. The cases r = 0 and + ) are easy: when r = 0, a(s, 1)= 
(s + 1)-1, and F(u)= 1[I,.,(u); 

when r = oc, a(s, 1)= s-1, and F(u)= 
1l=,o(u). For 0 < r < o, first rewrite a(s, 1) as 
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a(,1 r (1- r2) 
v/ s(s + 1){1 + (1- r2)S)} 1 + (1- r2)S) 

then apply Theorem 7b of Widder, p. 340 to obtain, with f(u)= dF(u)/du, 

f(u) = rim {a(ue -', 1)- a(ue ', 1)}/27ri 

1 r 
lim 

e'/2 e-0/2 

r V\/u(1- u){1- (1- r2)u} o-7r 2i 

1 r 
0< u < 

15 Mr \/u(1-u){1-(1-r2)u} 1, 

since the second term of a(s, 1) is continuous at ue" = - u. This completes the 

proof of Theorem 3. 

To prove Corollary 3, we proceed by way of a moment generating function: let 

An = Eo(M(1)n) and set 

e(w) = 
~ 

nw 
0:5 w < 1. 

n=0 

Lemma 4. e(w)= - w-'a(- w-', 1)= z (r + z)/(1+ rz) where z 

(1 - w)-/2 

Proof. The first equality follows easily from Lemma 3 and an expansion of 

(1- uw)-' as a geometric series. The second equality is obtained straight- 
forwardly from the expression for a. 

Corollary 3 follows from Lemma 4 by easy differentiation. 

4. Convergence to Y 

Consider the 'oscillating random walk' {Y*}lo defined as follows: let {U.}nr 
be i.i.d. with P(Un = 1) = = P(U. = - 1); let {V. }.~, be i.i.d. with P(V, = 1) = 

p/2 = P(V = -1) and P(V.= 0)= 1-p with 
0=p 

< 1. Now set Y* = 0 and, 
for n 

-0, 
set 

Y* + U,+1 if Y* 
- 

0, 

Y* + V.+, if Y < 0. 

Define the normalized processes { Y. (t): 0 t < oo}no by Y. (t)= n-1/2 Y,]. The 

process { 
Y*},_o 

is a very special case of an 'oscillating random walk' as defined 
by Kemperman (1974). Kemperman obtained Wiener-Hopf type factorizations 
for such processes and studied recurrence questions. 
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Stone (1963) used probabilistic methods (local time for Brownian motion) to 
construct birth and death processes and random walks from Brownian motion 
and thereby prove the convergence of these processes to limiting diffusion 
processes. The crucial requirement in Stone's construction is that the processes 
be 'skip-free' in both directions. The processes Y, defined above satisfy this 
requirement and hence Stone's Theorem 2, p. 650, may be used to establish 

convergence of Y, to the oscillating Brownian motion process Y. 
More formally, for our process Y, we have, (in Stone's notation except that 

his W, is replaced by our Y,) for n 
= 

1, E. = {i/Vn: - c < i < o}, 0, = 1/n, 
xn = O, qi"'= O, al"'= i//n, 

n Vn n n 2 

P Yn Yn, i < 0 

P(YIYn(- 
i 

= 1 - 
PI i <0 n Vn n 

•n 
' 

and 

2n -1/2 
i-O0 

2p-n- 1/2 i < 0, 

so 

2x x 0 

lim m.(x) -m(x) x 
-2p-Vx x <0. 

This is just the speed measure for our process Y with o+p = 1, (_ = p. Now 
Stone's Theorem 2 yields the convergence of the processes Y,: since Y is 
continuous, Stone's J-convergence becomes uniform convergence on bounded 
time intervals, and hence 

PK (Y,, Y) - SupoK Yn (t)- Y(t) W0, n-- 

\ 
I, 

for all K > 0 where Y, denotes the process constructed as in Stone (1963) (and of 
course Y(0)= 0 w.p. 1). This implies that any version of the oscillating random 
walk process Y, converges weakly to the diffusion process Y. In particular, 

Y (1 ) = n 
•, 
Y (1), n - 

- 0 
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where Y(1) has the pieced half-normal law given by Corollary 1 with t = 1, 

o = 1, o2_ = p; and, if M,, 
= 

#{k :I n: Yk 
>- 

O}/n, then 

M, -_ 
M(1), n -- oo, 

where M(1) has the distribution given by Theorem 3. 
It would be interesting to have a proof of this convergence for more general 

increments than our U,, V, above; do zero means and finite second moments 
suffice for this convergence? Does the modified arcsin law of Theorem 3 hold 
under some sort of symmetry assumption (as in the case of ordinary random 

walk)? Here Stone's methods seem to break down and we have been able to 
establish the convergence only in special cases. 
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