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Efficient estimation in the bivariate normal 
copula model: normal margins are least 
favourable 
C H R I S  A . J .  K L A A S S E N '  and J O N  A .  W E L L N E R ~ '  

'Department of Mathematics, University of An~sterdam, Plantage Muidergracht 24, 
1018 TV  Amsterdam, The Netherlands, 2~epartment  of Statistics, University of Washington, 
B0.x 354322, Seattle W A  98195-4322, USA 

Consider semi-parametric bivariate copula models in which the family of copula functions is 
parametrized by a Euclidean parameter 0 of interest and in which the two unknown marginal 
distributions are the (infinite-dimensional) nuisance parameters. The efficient score for 6' can be 
characterized in terms of the solutions of two coupled Sturm-Liouville equations. Where the family 
of copula functions corresponds to the normal distributions with mean 0, variance 1 and correlation 0, 
the solution of these equations is given, and we thereby show that the normal scores rank correlation 
coefficient is asymptotically efficient. We also show that the bivariate normal model with equal 
variances constitutes the least favourable parametric submodel. Finally, we discuss the interpretation 
of 6 '  1 in the normal copula model as the maximum (monotone) correlation coefficient. 

Keywords: bivariate normal; copula models; correlation; coupled differential equations; information; 
maximum correlation; normal scores; projection equations; rank correlation; semi-parametric model; 
Sturm-Liouville equations 

1. Introduction: copula models 

A distribution function C on the unit cube [0, 11" in Rm with uniform marginal 
distributions is called a copula. A classical result of Sklar (1959) relates an arbitrary 
distribution F on Rm to a copula function C via the marginal distribution functions 
F I , .. . , F ,  ofF :  

Theorem 1.1 (Sklar 1959). Suppose that F is a distribution function on Rm with one-
dimensional marginal distribution ,functions F I ,. . . ,F,. Then there is a copula C such that 

F(.x ' ,. . . , .x,) = C ( F l( . x ~ ) ,. . . ,F,(.x,)). (1.1) 

I f F  is continuous, then the copula C satisfying (1.1) is unique and is given by 

C(.l , . . . ,urn) = F ( F I ' ( U I ) ,. . . , ~ ; ' ( ~ r n ) )  (1.2)  

* To whom correspondence should be addressed. 
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for u = ( u ~ , .. . ,u,) E ( 0 ,  l ) m  where F; ' (u )  = infix: Fi (x ) 2 u ) ,  i = 1 , . . . , m .  Conversely, 
if C is a copula on [O,  11" and F1 ,  . . .F, are distribution functions on R,then the function F 
defined by ( 1 . l )  is a distribution function on Rm with one-dimensional marginal distributions 
F l , . . . ,F,. 

See Sklar (1959)and Schweizer (1991)for some history. It seems that Hoeffding (1940)also 
had the basic idea of summarizing the dependence properties of a multivariate distribution 
by its corresponding copula, but he chose to define the corresponding function on [- 4 , 4Im 
rather than on [O,1Im.In particular, see the translation of the Hoeffding (1940) paper in 
Hoeffding (1994). 

Our goal in this paper is to investigate efficient estimation for semi-parametric copula 
models 9defined as follows: suppose that 

{C,: 0 E O )  (1.3) 

is a parametric family of copula functions on [0,1Im with densities {co: 0 E O )  with respect 
to Lebesgue measure on [O,1Im.For 0 E O and arbitrary distribution functions F l ,  . . . ,Fm 

O n R >  let F o , ~ , ,. . . , Fm be the distribution function on Rmdefined by 

F Q , F I , . . ., F ,  (x~i...,xm)=C~(F~(x~),...,Fm(xm))f o r ( x ~ , . . . , x m ) ~ R * .  (1.4) 

Then with Pg,Fl ,. . . ,F denoting the corresponding probability measures on ( R m ,g m )  
and 9 denoting the cofection of all distribution functions on R ,  

y = {pO,F,,. . . , F,: O ~ @ , F ~ ~ 2 F , i = l , . . . , r n )  ( I . 5 ]  

is a semi-parametric copula model. Natural submodels of 9are those with 9replaced by 
FC,
the collection of all continuous distribution functions F on R ,  or by Fa,, the collection 
of all absolutely continuous distribution functions. 

One simple example, which is our main focus in this paper, is provided by the family of 
copulas resulting from multivariate normal distributions on R m .  Suppose that F,,, is the 
multivariate normal distribution with mean p = ( p l ,. . . ,p,) and covariance C with 
elements p i j a i a j ,  1 < i ,  j 6 m .  Let @ denote the one-dimensional standard normal 
distribution function, and @* the m-dimensional standard normal distribution function 
with mean 0 ,  variances 1, and correlations pi j ,  0 = ( p1 2 ,  . . . ,pm- I,,). Then 

and hence C = CQsatisfies 

in this case. Note that the resulting semi-parametric copula model 9given by (1.4)and (1.5) 
contains the family of normal distributions: if Fi(x i )= @ ( ( x i- p i ) /a , )  for i = 1 , . . . , m ,  

then F o , ~ ,. . . , F = F ~ , ~ :  
For other copaa families of considerable interest, see Kimeldorf and Sampson (1975a; 

1975b),Clayton (1978),Genest and MacKay (1986a; 1986b), Genest (1987),Joe (1993)and 
Genest et al. (1995). Copula models are also strongly connected with frailty models, 
typically via a reparametrization to obtain uniform marginals (Sklar's theorem): for 

mailto:O~@,F~~2F,i=l,..
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interesting frailty models, see, for example, Marshall and Olkin (1988). For work on related 
transformation models, see Clayton and Cuzick (1985; 1986) and Klaassen (1988). 

For ease of exposition, we will discuss first the bivariate case with m = 2 in detail. As 
we will see in Section 5.1 by a direct argument, our results will hold for the general 
m-dimensional case too. 

We will formulate our estimation problem as follows. Suppose that m = 2 and the 
parametric family of copula functions on [O, 112 is given by (1.6): thus 

Then we suppose that we observe a sample from the distribution F*,,,, of X = (Y, Z )  given 
by 

for some 0 and distribution functions G and H on R. 
Note that 8 is one-dimensional here, and equals the correlation coefficient of Y and Z 

when X is normally distributed. In fact, in this normal copula model, 181 equals the 
maximum correlation coefficient of Y and Z. We will discuss this together with related 
concepts and their history in more detail in Section 2. We observe n i.i.d. copies X I , .  . . ,X, 
of X and we want to estimate the unknown parameters 8 asymptotically efficiently in the 
presence of the unknown, arbitrary nuisance parameters G and H. 

Our main result is that the normal scores rank correlation coefficient is an efficient 
estimator of 8 with asymptotic variance (1 - 82)2,just the same as the asymptotic variance 
of the usual sample correlation coefficient in the case of normal marginal distributions. The 
normal scores rank correlation coefficient is also called the Van der Waerden rank 
correlation coefficient; see Section 111.6.1 of Hajek and ~ i d a k  (1967). A precise formulation 
of our main result is given in Section 3 together with a proof. The asymptotic performance 
of this locally regular estimator follows directly from Ruymgaart (1974). To show that this 
performance is optimal, we need a bound stating that this performance cannot be 
improved. We will obtain such a bound by a simple study of a most difficult (least 
favourable) parametric submodel of our normal copula model. Such a model happens to be 
the model with X bivariate normal with mean 0 and unknown covariance matrix with equal 
variances. This extremal property of the multivariate normal distribution will be discussed 
in Section 2, together with other extremal properties of the normal distribution. 

Viewing G and H as unknown monotone transformations, we see tha the normal copula 
model is a transformation model in the following sense: for all distribution functions G 
and H ,  

PB,G,H(G(Y)< u, H ( Z )  < v)= Co(u, v) = f'o,a,~(@(Y)< u, @(Z) < u) .  (1.9) 

Here we might choose the class of bivariate normal distributions with mean 0, variances 1 
and correlation coefficient B as the core model. In this sense all copula models are 
transformation models, the discussion of which has been initiated in Sections 4.7 and 6.7 
of Bickel et al. (1993). In particular, formula (4.7.33) (Bickel et al. 1993, p.162) shows that 
the semi-parametric paradigm of projection of the score function for 0 on the nuisance 
parameter tangent space leads to Sturm-Liouville differential equations. For copula 
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models with both marginal distributions unknown, this becomes a pair of coupled Sturn- 
Liouville equations. This approach will be discussed in Section 4, and yields another proof 
of the efficiency of the normal scores rank correlation coefficient. In fact, the simple proof 
given in Section 3 was discovered only after doing the information calculations as in Section 
4, and for copula models other than Gaussian it seems unlikely that simple proofs or 
computations will be possible: the Gaussian case is the only example in which we have been 
able to compute the efficient scores and information explicitly, even though we know that 
the efficient scores and information exist in a large subclass of such models. 

Since 10 I equals the maximum correlation coefficient in the normal copula model, one 
wonders if the maximum correlation coefficient can be estimated by a locally regular 
estimator in the nonparametric model of all bivariate distributions (or even some appro- 
priate subset thereof). This is not the case. The maximum correlation coefficient cannot 
even be estimated locally consistently, since it is not a continuous parameter on any 
appropriately large class of bivariate distributions, as will be shown in Section 5.2. 

2. Correlation and extremal properties of normal distributions 

Many measures of dependence in bivariate distributions have been proposed. The first and 
most important of these is still the correlation coefficient, which may be ascribed to Galton 
(1888); see, for example, Stigler (1986). However, it has the unpleasant property that it can 
vanish for dependent variables. The maximum correlation coefficient, as proposed by 
Gebelein (1941), does not have this drawback. If ( Y , Z ) is a random vector one may 
consider the correlation coefficient p(a(Y) ,  b ( Z ) )  of a ( Y ) and b ( Z ) for transformations a 
and b from R to R.Taking the supremum over all a and b such that var(a(Y) )and 
var(b(Z) )are positive and finite, we arrive at the maximum correlation coefficient 

Clearly, pM(  Y ,  Z )  = 0 if and only if Y and Z are independent; take a and b to be indicator 
functions (cf. Feller 1971, p. 136). If ( Y ,  Z )  is normal, then the maximum correlation 
coefficient equals the absolute value of the correlation coefficient, that is, 

We will give a short proof of this equality and discuss its history in Section 6. 
Within the normal copula model (1.7), it is straightforward to check that ( Y ,  Z )  and 

( G - ' ( G ( Y ) ) ,H-' ( H ( Z ) ) )have the same distribution function a O ( F 1  W 1 ( H ( z ) ) ) ,( G ( y ) ) ,  
and that (a ( ( Y ) )  ' ( H ( Z ) ) )has the standard normal distribution with correlation 
coefficient 0. Together with (2.1 l), this yields 
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and in the normal copula model the maximum correlation coefficient of Y and Z equals 10 1, 

Since the copula model is a transformation model with monotone transformations, it is 
natural to restrict a and b in (2.10) to monotone functions. This leads to the (maximum) 
monotone correlation coefficient p,(Y,Z) as defined in Section 4 of Kimeldorf and 
Sampson (1978). Again by (2.12), we see that 

Note that (2.13) and (2.14) imply that we are essentially estimating the maximum 
correlation coefficient and the maximum monotone correlation coefficient in our normal 
copula model. However, the parameter 0 itself is the correlation coefficient proper of the 
normal core model, that is, after transformation of the marginals to normal distributions. 
Therefore we will call 0 the normal correlation coefJicient. As indicated above, we will show 
in Sections 3 and 4 that a least favourable parametric submodel of our copula model in 
estimating the normal correlation coefficient is the symmetric normal scale model. As a 
matter of fact, this shows that the information I(Poj8,9)  (cf. Bickel et al. (1993, (3.1.2) and 
(3.3.24), pp. 46 and 63) about 0 at any distribution Po= H, within our normal copula 
model 

9= {Po,G, H: 0 E (- 1, l ) ,  G, H continuous d.f.s} (2.15) 

equals the information I(Po,,a,a(O, 9 , )  about 0 at within the symmetric normal 
scale model 

We formulate this more precisely as follows: for Po= E 9 ,Poo,Go,Ho 

I - ' (P~  JO ,9 )  = sup{I-' (Po 1O,A?): A? c9,2?regular parametric) 

or equivalently, 

I (Po Id, 9 )  = inf{I(Po 10, A?): 22 c9,22regular parametric} 

Thus the regular parametric submodel 9,c 9 is least favourable. This is a surprising 
extremal property of the bivariate normal distribution which is similar in nature to the well- 
known fact that information for location, given the variance, is minimal at the normal 
distribution; cf. Huber (1981, p. 83), and Barron (1986, p. 337). An extension of this 
extremal property runs as follows. Fix the natural number n. Let T, be a translation 
equivariant estimator of the location parameter v of n i.i.d. random variables with 
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symmetric densityf ( - u)  and Fisher information for location I(f ). Then Theorem 2.3.2 
of Klaassen (1981, p. 25), presents a sharpening of the Frechet-CramCr-Rao inequality 

and proves that equality can hold here if and only iff is a normal density. Inequality (2.19) 
itself has been given by Frechet (1943, p. 191), without explicit mention of regularity 
conditions. Note that for n = 1 this reduces to the earlier result. 

A related extremal property of the normal density is that it maximizes the Shannon 
entropy - Jf log f for a given variance; again cf. Barron (1986, p. 337). Finally, we 
mention another extremal property of the normal density. Let, for the moment, X be a 
random variable with densityf .  Forf normal and g an absolutely continuous function with 
derivative g', Chernoff (1981) proved 

This inequality has been generalized by Klaassen (1985) to generalf .Borovkov and Utev 
(1983) defined 

and showed 

U' < 1) 

with equality if and only iff is normal. 

3. Approach 1: estimation by rank correlation 

Let X = (Y,2 )  and suppose there exist known transformations a and T such that 

For example, we might have a(x) = r(x)  = log(x) and hence X log-normal. Suppose that 
we observe XI = (Y1,Z1),. . . , X, = (Y,, 2,) i.i.d. as X = ( Y ,  2 ) .  By applying a and T to 
the Ys and Zs, respectively, we arrive at the well-known situation of data with bivariate 
normal distribution with unknown covariance matrix and mean zero; see, for example, 
Example 2.4.6 of Bickel et al. (1993, pp. 36-38). The parameter of interest is 8, which can be 
estimated efficiently in the presence of the nuisance parameters 71,772 by 
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attaining the information lower bound (1 - d212; cf. Bickel et al. (1993, p. 38). In fact, this 
estimator is asymptotically linear with efficient influence function (at v1 = v2 = 1) 

Furthermore, this information lower bound for 8 is valid also in the submodel of (3.22) with 
the one-dimensional nuisance parameter r12 = rl: = rl:. In the case of the normal copula 
model with known marginal distributions G and H, the estimator (3.23) becomes 

If a and T are unknown, then we have a semi-parametric model for which the parametric 
information lower bound (1 - 82)2 is still valid. In fact, we have the following model now: 
there exist monotone transformations 6 and ? such that (c?(Y),?(Z)) - ae,the bivariate 
normal distribution with standard normal marginal distributions and correlation 8. In 
agreement with Section 1 above and with Example 4.7.4.111 of Bickel et al. (1993, p. 157) we 
call this model the normal copula model. In this normal copula model, it is natural to 
consider properties of the normal scores rank correlation coefficient obtained from 8, given 
in (3.25) by estimating G and H by the corresponding marginal empirical distributions Gn 
and MIn rescaled by n/(n + 1): with 

the normal scores rank correlation coefficient fin is 

where Rni = nIHI,(G;' i = 1, . . . , n; see Hajek and ~ i d a k  (1967, p. 11 3). (i)), 
In our present context, however, we need to consider the large-sample behaviour of ,?jn 

not only under the usual (independence) null hypothesis, but also under the normal copula 
model as specified above with 0 # 0. Fortunately, a very general study of the large-sample 
theory of rank correlation statistics under fixed alternatives has already been done by 
Ruymgaart et al. (1972) and Ruymgaart (1974). In particular, we will use Theorem 2.2 of 
Ruymgaart (1974) which treats the case of local sequences converging to a fixed alternative. 
When specialized to our normal copula model and p,, we obtain the following theorem. 
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Theorem 3.1 (Asymptotic linearity and efficiency of the normal scores rank correlation 
coefficient estimator). I f  (Y 1 ,  Z 1 ) ,  . . . , (Y,, Z,) are i. i.d. P = Po,,G, E 9,then p, is a locally 
asymptotically linear estimator of 8 with (eficient) influence function 

io(y, z )  = io(y, z;  8, G ,  H )  

e 
= - 1 ( ~ ( ~ ) ) - 1 ~ ( ~ ) )' G * + ' H ~ .- (3.29) 

Thus, for 8, = O0 + O ( l / h ) ,  we have under Po,,G,H 

Before proving the theorem, we note that the normal scores rank correlation coefficient 
fin is, in fact the eficient score equation estimator of 8 with G, H estimated by GE, HE: the 
solution 0 of 

is just 8 = f in .  

Proof. We first give a heuristic development showing why the result is true, followed by a 
formal proof based on Ruymgaart's (1974) theorem. 

First note that 

( a p 1( ~ ( y i ) ) ,  (3.32)am'( ~ ( z i ) ) )  

the bivariate normal distribution with mean 0, variances 1 and correlation 8. Since 
n-' C;=[a-'( i / ( n+ I ) ) ] *  - 1 = ~ ( n - 'log n ) , we can rewrite ,hi($, - 8) as 

h ( j n- 0)  = 
1 + ~ ( n - 'log n)

{ 
" 

a ( H E ( Z ; ) )  8 )  + o ( n - ' l 2 log n )1( ( Y ~ ) ) '  -
Jt; i= 1 
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where the o p ( l )comes from replacement of @-' (H; (Z i ) )  by ( P P 1 ( H ( Z i ) )in the second 
term. 

Now we rewrite the second term, using ( d / d u ) W 1 ( u )= 1 / 4 ( @ - ' ( u ) )  and Taylor 
expansion: 

I 
(G):- G)(Y i )  W 1( H ( z ~ ) )  

here the third equality comes from computing conditionally on Y = y and noting (3.32). An 
analogous development for the third term on the right-hand side of (3.33) shows that it can 
be rewritten as 

Combining (3.33), (3.34) and (3.35) yields the conclusion - with the understanding that the 
arguments for the o p ( l )terms have been only heuristic. 

We proceed with the formal proof by verifying Assumptions 2.1-2.3 and 2.5 of 
Ruymgaart (1974) with 2'= {PBn,G,H:n = 0 ,1 ,2 , .. .) and E = 114. (Note that regularity 
of the estimators is automatic as far as the nuisance parameters go.) First, note that 
J = K = a-1.  

Assumption 2.1 holds easily, since Bin = 0 if a,(i) = b,(i) = F 1 ( i / ( n+ 1) ) .  
As for Assumption 2.2, Jd = Kd = 0, Jc = J = Kc = K = is continuously differenti-

1 1able, r2 = rl = ( J (= (a- 1, r2 = rl = ( J ' (= 1/4(@-). 
Moving on to Assumption 2.3, the first supremum over 2' is finite since, for all 8, 

Let ql ( s )= 4' I 3  (a- I  ( s ) ). Then 
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and, by Holder's inequality, the second supremum is finite because 

E ~ , ~ ~ ~ ' / ~ - ' ( Y ) z I'+'I4< co (3.38) 

since 

By symmetry the last supremum is the same and Assumption 2.3 is satisfied. Finally, we 
verify Assumption 2.5: (a) is satisfied in view of Jd= Kd = 0. Thus Theorem 2.2 of 
Ruymgaart (1974) applies and yields the asymptotic normality claimed, since the 
random variable in Ruymgaart's (3.5) equals 0 + fo(Y,2 ) .  Asymptotic linearity follows 
from efficiency and the convolution theorem; see, for example, Theorem 3.3.2 of Bickel et al. 
(1993, p. 63). 

As noted immediately following the theorem, pn is the efficient score estimator of 8. It is 
interesting to note that it is also asymptotically equivalent to the 'pseudo-maximum 
likelihood' estimator obtained by estimating the unknown marginal distribution G and 
H by the marginal empiricals 6;and Wi and then maximizing the resulting 'pseudo-
likelihood' as a function of 8, or by solving the (ordinary) score equation with G and H 
estimated away by the marginal empiricals G;and IHI:: from the score for 0 (see, for 
example, Bickel et al. (1993, pp. 36-37) we find that this estimator 8imlis the solution 8 of 

In view of ~ t ; { n - ' C ~ =[W1(i / (n+ 1)12- 1) = 0(1), the above equation may be rewritten 
as 

which shows that 

Hence even the pseudo-maximum likelihood estimator 0;"' is asymptotically efficient in 
our present normal copula model. The pseudo-maximum likelihood method has been 
studied more generally in the context of copula models by Genest et al. (1995), who prove 
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asymptotic normality of 8Em'. When specialized to the normal copula model, their 
asymptotic variance formula yields (1 - d212 in agreement with the preceding argument, 
as has been shown by Hu (1995). 

4. Approach 2: information calculations for copula models 

In the framework of Section 1, suppose that the copula distributions Cg have densities ce 
with respect to Lebesgue measure on [0, 112. We assume that ci:' is Frkchet differentiable 
in 0 in the Hilbert space of square Lebesgue-integrable functions on the unit square. The 
resulting Frkchet derivative multiplied by 2cb1I2 11, > g is called the score function for B and 
denoted by lo. 

We will follow the development in Section 4.7 of Bickel et al. (1993), especially 
Propositions 4-7 (pp. 166-169), together with Proposition A.4.1 (p. 439). For copula 
models with two unknown marginal distributions, the equations determining the projection 
of the score function for B onto the nuisance parameter tangent space given in general by 
(A.4.11)-(A.4.13) can be written as 

and 

where n, = i,(iii,)-'ii is the projection operator onto @,, the tangent space of score 
functions for g, and IIh = ih(iTih)-'iz is the projection operator onto g h ;  here 

for a, b E L:([o, 11, Lebesgue) with 

while 

1 

1,' T  a(u) = a(u, u)ce(ul v)dv + (1,, ,I- s)iu (s, v)a(s, v)cg (s, v)dsdv, (4.46) 
s o  
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for a, b E L ~ ( c ~ ) .Actually, we only know that the nuisance tangent space contains 
@g + @h and that 

@, 3 [iga: a E L ~ ( [ o ,11, Lebesgue)] = 9( ig)  

and 

@, 3 [ihb: b E L ~ ( [ o ,11, Lebesgue)] = 9( ih) .  

Consequently, in (4.42) and (4.43), II, and IIhdescribe projections onto possibly proper 
subspaces of the nuisance tangent spaces @, and respectively. However this may be, the 
resulting projection onto a subspace of the nuisance tangent space will yield a valid 
information bound for our semi-parametric model, and, in fact, it will yield the efficient 
information bound and corresponding efficient score function (4.70) (cf. (3.29)); see the 
discussion in Bickel et al. (1993, pp. 76-77). Define two functions a ,  P by 

Note that by Proposition 4.7.6. of Bickel et al. (1993, p. 168), the sum space 9( ig)  + 9( ih )  is 
closed if a and ,B satisfy 

a )  < 1 - u ) } ~  0 < u < 1, 

and 

p(v) < M{v(l - u)}-~ ,  0 < v < 1. 

Operating across (4.42) by 1; yields 

Here 

for a E L;(G), and 

with a as defined in (4.48) and 
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So differentiation across (4.50) yields, with A' = a, A" = a', 


To calculate the last term, we first calculate i:ihb. By (4.46) and the formula (4.45) for ih, we 
obtain, with B(v) = b(s)ds, 

Differentiation of (4.54) with respect to u yields 

By symmetry, we obtain 

Let K(u, v) = lU,(u, v)cO(u, v); then the coupled equations (4.42) and (4.43) become: 

with p as defined in (4.48) and 

To this point, our development has involved rewriting the equations determining the 
projection of ieonto the sum space 9( ig)  +9(ih)for a general bivariate copula model. Now 
we specialize to the case of the normal copula family given by (1.7). In this case the 
corresponding density ce is (with 4e denoting the density of QO) 
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Then we obtain by straightforward calculation that (see also (4.7.92) and (4.7.93) in Bickel 
et al. 1993, p. 174) 

and 

0 1 
Iuv(u1u)=-

1 - 0 ,  $(a- l  (u))$(@-'(u ) )' 

Note that a ( u )= o([u(l- u)]- ,  as u + 0 or u + 1, and (a natural generalization of )  
Proposition 4.7.6 of Bickel et al. (1993, p. 168) holds and shows that 9(ig)+9(ih)is closed. 
Calculations will become simpler and more transparent in this present case if we transform 
back to y and z corresponding to normal marginal distributions, so we define A and B by 

A ( Y )= A ( @ ( Y ) ) ,  A(u) = A ( @ - l ( 4 ) ,  (4.63) 

~ ( z )= B(@(z ) ) ,  B(v)= B(@- ' (u) ) .  (4.64) 

Then 

and 

1 -' ( u )  
= A"(@-' ( u ) )  + I/(@-'( u ) )~ " ( u )  

( L o )  $,(@-I ( ~ 1 )  
Using these in (4.57) and letting y = Q- ' (u ) ,we obtain a differential equation for A with a 
coupling term involving B: 

By symmetry, equation (4.58) becomes 

To solve equations (4.67) and (4.68), we simply 'guess' the answer up to a constant c, and 
then solve for c: by taking ~ ( y )cy$(y) -c4I(y),  ~ ( z )  cz$(z) -c4'(z),  it is easily = = = = 

mailto:B(@-'(u))
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checked that A, B satisfy (4.67) and (4.68) for c = 2T10/(1- 02) .This yields the efficient 
score function 1: for 0: 

I ; ( U ,  V )  = i , ( ~ ,V )  - iga(u,V )  - ihb(u,v ) ;  (4.69) 

again it is a little bit easier to continue calculation on the y, z scales, and indeed we find, 
upon substitution, that 

Hence, with ( Y ,Z) - aO,the efficient information for 0 in the bivariate normal copula 
model (1.7) is given by 

As already shown in Section 3, this means that the normal scale submodel of the bivariate 
normal copula is least favourable for estimation of 0. 

It should be emphasized that the short proof given in Section 3 was found only after we 
had performed the calculations presented in this section. Furthermore, we do not know 
solutions of the projection equations (4.57) and (4.58) for any other copula model. For 
example, it would be of interest to know more about the solution of (4.57) and (4.58) for the 
Clayton-Oakes and Frank models with 

and g O ( u )= (u-0 - 1)/0 or gO(u)= log{(l - 0 ) / ( 1- d U ) ) ,respectively. Such calculations 
may be possible via calculation of eigenfunctions and eigenvalues of the integral operator(s) 
with kernel K appearing in (4.57) and (4.58). In the normal copula model considered here, 

and hence Mehler's (1866) formula (6.89), which we will discuss in Section 6, yields an 
eigenexpansion of K (composed on in each argument) and of the integral operators in 
(4.57) and (4.58). 

5. Miscellanea 

5.1. EXTENSION FROM m = 2 TO GENERAL m 2 2 

Now suppose that X = ( Y l ,. . . , Y,) - N,(O, C )  where C E Y can be regarded as a vector 
in I W " ( " + ~ ) / ~ .It is well known that the maximum likelihood estimator 9 is an (asymp- 
totically) efficient estimator of C in this regular parametric model. Since the population 
correlation coefficient p12 is a differentiable function of C, say p12= $12(C) ,$12(9)is 
efficient in estimating $ y 2 ( C )= p12. But 9 is the sample covariance matrix, and hence 
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g l 2 ( 2 )is the sample correlation coefficient. Consequently, the efficient influence function in 
estimating p12 equals the influence function of 74y2(2),which (as we know) equals the 
efficient influence function for estimating p12within the bivariate normal model based on 
observing X = ( Y l ,Y 2 ) .It follows that the results of Sections 3 and 4 for the case of m = 2 
carry over immediately to the case m > 2: the normal scores rank correlation coefficient is 
(asymptotically) efficient for estimation of p12, and similarly for the other correlation 
coefficients p13,. . . ,p(* - l ) m .  

One issue which appeared in Section 2 is that of identifying useful extensions of the 
parameter v ( P ~ , ~ , ~ )= 0 beyond the normal copula model 9.As noted in Section 2 (and 
discussed further in Section 6), the maximum correlation coefficient equals 101 on the 
normal copula model, so the maximum correlation coefficient pM(P)gives an extension of 
Iv(P)I beyond the normal copula model 9 .  Similarly, the maximum monotone correlation 
coefficient pm(P) extends lv(P)I too. 

Let the model Y e3 9 be an extension of 9 .  For the maximum correlation coefficient 
PM(P)to be consistently estimable (uniformly on compact subsets of Pe in the variational 
distance), it is necessary that pM(P)be continuous on ge;see, for example, Proposition 
2.2.1.Aof Bickel et al. (1993, p. 20). If Yeis a sufficiently large extension of 9 this is not the 
case, as we will show in this subsection. In fact, we will prove the stronger result that both 
pM(P)and pm(P) are discontinuous on appropriate extensions Yeof the core model of P, 
that is, the normal model. Indeed, let Yebe the class of all distributions on I@2 with smooth 
density with respect to Lebesgue measure. Many definitions of smoothness will do for our 
proof of Theorem 5.1 below, for example if all partical derivatives of any order of the 
density exist. 

Theorem 5.1 (Discontinuity of p l ~and p,). Both pM(P)and pm(P)are (weakly) discontin-
uous functionals on ge at any Po E Pe with pM(Po)< 1 and pm(Po)< 1 ,  respectively. 
Furthermore, pM(P)and pm(P) are lower semi-continuous on ge and hence continuous at 
those Po with pM(Po)= 1 and pm(Po)= 1, respectively. 

Remark 5.1. Discontinuity of p, at any bivariate distribution with independent marginals 
was proved by Kimeldorf and Sampson (1978): their Theorem 1 (p. 897)exhibits a sequence 
of distributions Pn on the unit square in IE2 (now known as 'shuffles of min' distributions) 
which satisfy: 

pM(Pn)= 1 for alln = 1 ,2 , .  
Pn +d Unform([O,112). 

Since pM(Unform([O,1 1 2 ) )  = 0, this proves that pM is discontinuous at 'independence' 

This was strengthened by Mikusinski et al. (1991), who show that shuffles of min are 
dense in the collection of all copulas on [0,lj2 in the sense of Kolmogorov (supremum 
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norm) distance between distribution functions. Stated another way, this says that for 
copula C on [O, 112 with arbitrary maximal correlation p,(C), there exists a sequence of 
copulas {C,} on [O, 112 with pM(Cn)= 1 for all n and 1 1  Cn- C I],+ 0. Since 

1 1  Cn- C ]I,+ 0 implies that C, jdC ,  this implies that p, is weakly discontinuous at 
every copula C,  and hence also at every bivariate distribution P. 

Now we turn to p,. Preservation of pm(P)= 1 under weak convergence was proved by 
Kimeldorf and Sampson (1978): their Theorem 3 (p. 899) can be rephrased as follows. If 
Pn jdP and p,(P,) = 1 for each n, then pm(P)= 1. (This is not the same as continuity of 
p, at 1, which would assert that if P, +d P and p,(P) = 1, then p,(Pn) + 1.) 

Proof. First consider p,(P). Fix Po and 6 > 0 so that p,(Po) +6< 1. Let a, b be monotone 
functions satisfying 

with 

Without loss of generality we may assume that both a : R + Ii! and b :R +@ are 
continuous and unbounded on the support of Y and Z ,  respectively. We may even 
assume them to be strictly increasing. (If a :R + Ii! is not continuous, unbounded, or 
strictly increasing, first truncate a to obtain al ( y )  = ( - M )  V ( a ( y )A M )  with M sufficiently 
large such that J(al- is sufficiently small; here F is the marginal distribution function a ) 2 d ~  
of Y .  Second, convolve al with a smooth density, getting a2(y )= hereJ a l  ( y  + ~ u ) k ( u ) d u ;  
k is, for instance, the logistic density. If E > 0 is sufficiently small, then J(a2- isa 1 ) 2 d ~  
small. Note that a2 is continuous and strictly increasing unless a = 0. Furthermore, define 

a2(y )+E { ( F ( ~ ) ) - ' / ~  F ( ~ ) ) - ' / ~ } ,  ofa3(y )= + (1 - for y in the support Y ,  with E 

sufficiently small. Finally, normalize a3 such that the resulting a4 satisfies (5.74). For 
appropriate choices M and E it also satisfies (5.73).) 

For E > 0 we define the sets A, and B, by 

We choose P I ,  E gesuch that 

This may be done in such a way that both a ( Y )  and b ( Z ) have mean 0 under PI,. Note 
that 



72 C.A.J.Klaassen and J .A.  Wellner 

Now we define P, E ge by P, = (1 - E ~ ) P ~+E ~ P , , .Then E,a(Y) = E,b(Z) = 0,  and by 
(5.78) we obtain 

In view of pm(Po)+ S < 1, this yields 

lim inf pm (P,) 2 1 +~ m ( p o )- 6  > pm(po) .  
€ 1 0  2 

Since P, +d Po as E 0, P + pm(P) is not weakly continuous at Po. 
The same arguments without the monotonicity restrictions yield a proof for the 

discontinuity of pM(P)at Po. 
Again, fix Po and S > 0. Choose bounded continuous monotone functions a and b such 

that 

For any sequence {P,) converging weakly to Po we have 

as n + ca.Since 6 is arbitrary, the second part of the theorem follows from (5.81) and 
(5.82). Subsequently, the continuity property is implied by pm(P) < 1. 

5.3. EFFICIENT ESTIMATION OF G AND H? 

It would be very interesting to know information bounds and efficient estimators for 
estimation of the marginal distribution functions G and H in the bivariate normal copula 
model treated here, or in other copula models. It is clear that the marginal distributions G ,  
and W,provide &-consistent estimators of G and H, respectively, but because of the 
parametric dependence structure these will be inefficient in general. One approach to 
calculation of an information bound for estimation of G(xo)  for a fixed xo involves 
projection of the influence function 1(-,,,,1 - G(xo)of the inefficient estimator G n ( x o )  
onto the tangent space @ = [is]+@g +Phof the model. We have not yet succeeded in 
solving the (coupled) differential equations connected to this projection problem. 

6. Mehler's formula and the Gebelein-Lancaster theorem 

In his well-known paper 'On measures of dependence', RCnyi (1959) includes the following 
postulate among his list of requirements of a measure of dependence S ( Y ,Z )  between two 
random variables Y and Z: 'If the joint distribution of Y and Z is normal, then S ( Y ,Z) = 

I p ( Y ,  Z )  I where p ( Y ,Z) is the correlation coefficient of Y and Z.' In his discussion of the 
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maximum correlation p ~ ,Renyi attributes the verification of this postulate in the case of 
p~ to Gebelein (1941). This seems to be one thread in what we shall call the 'continental 
European' history of the maximum correlation and its properties, which seems to have 
begun with Gebelein (1941) and continued with Richter (1949), Sarmanov (1958), Renyi 
(1959) and Be11 (1962). 

On the other hand, there was a strong development of maximum correlation (or 
canonical correlation) in England, especially for discrete variables. The introduction of 
correlation seems to have begun with Galton (1888) and Pearson (1896); see Stigler (1986, 
pp. 297-299 and 342). Study of maximum correlation took off with Hirschfeld (1935), 
Fisher (1940) and Maung (1942). Lancaster (1957) renewed the investigation, and inde- 
pendently proved Gebelein's result in Lancaster (1958) (where he references Mehler 1866). 
Lancaster (1963) and Eagleson (1964) contain related results, and by Lancaster (1969) the 
'continental' and English developments have united: Lancaster (1969) references Renyi 
(1959). 

To the best of our knowledge, the only textbook containing a proof of the theorem noted 
by Renyi (1959) is Kendall and Stuart (1973), where the theorem is attributed to Lancaster 
(1957). 

It seems fairly clear that one major reason for the lack of contact between the two 
literatures ('continental Europe' and 'English') was the Second World War. That it took 
until 1969 for this contact or bridging to occur attests to the depth of the division. Because 
the proof in Kendall and Stuart is quite brief and apparently not well known, we include a 
proof here of the theorem due to Gebelein (1941) and Lancaster (1957). 

Theorem 6.1. If the joint distribution of X and Y is normal, then pM(X ,  Y)= Ip(X, Y)1 .  
Moreover, the supremum is attained for (and only for) linear transformations a and b of X 
and Y,respectively. 

Proof. The following formulae appear in Mehler (1 866), pp. 173- 174): 

with 
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The Hermite polynomials Hn(x) are defined (cf. Feller 1971, p. 532) by 

where $(x) = (2.rr)-1i2e-x2/2is the standard normal density. So 

and 

If (X, Y) N GPthen the density 4, of (X, Y) equals 

where H,' = (n!)-'l2Hn, n = 0,1 ,2 , .. . , the normalized Hermite polynomials, form a 
complete orthonormal system with respect to $ (see, for example, Abramowitz and 
Stegun 1972, Chapter 22). Either of these last two expansions is commonly known now 
as Mehler's expansion or Mehler's formula. For further information on general expansions 
of this type and references to related literature, see Buja (1990). 

Now we turn to the maximum correlation coefficient 

For functions a, b with var(a(X)) < oo,var(b(Y)) < oo,we can expand in terms of the 
normalized Hermite polynomials H:: 
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Then, using Mehler's expansion (6.89), 

where U and V are independent N(0 , l )  random variables. By the orthonormality of the 
h Gs this yields 

Since the marginals are standard normal, 

Consequently 

p ( a ( X ) ,b( Y ) )= 
CF=I anPnpn 

2 112{CE=1 4,CF=I P n )  

By the Cauchy-Schwarz inequality this yields 

where the last inequality is an equality if ,Bn = 0, n 2 2, PI # 0. Consequently 

SUP P(a(X) ,b( Y ) )= I P I = P(X,  Y )  V P(X,  -Y )  (6.99) 
a,b 

where equality holds if a and b are linear functions of X and Y, respectively. 
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