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a b s t r a c t

Suppose that U = (U1, . . . ,Ud) has a Uniform([0, 1]d) distribution, that Y = (Y1, . . . , Yd)
has the distribution G on Rd

+
, and let X = (X1, . . . , Xd) = (U1Y1, . . . ,UdYd). The resulting

class of distributions ofX (asG varies over all distributions onRd
+
) is called the ScaleMixture

of Uniforms class of distributions, and the corresponding class of densities on Rd
+
is denoted

by FSMU(d). We study maximum likelihood estimation in the family FSMU(d). We prove
existence of the MLE, establish Fenchel characterizations, and prove strong consistency
of the almost surely unique maximum likelihood estimator (MLE) in FSMU(d). We also
provide an asymptotic minimax lower bound for estimating the functional f → f (x)
under reasonable differentiability assumptions on f ∈ FSMU(d) in a neighborhood of x. We
conclude the paper with discussion, conjectures and open problems pertaining to global
and local rates of convergence of the MLE.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and summary

Fix a non-negative integer k, and suppose that X1, . . . , Xn are i.i.d. random variables distributed according to a density in
the convex family of k-monotone densities (with respect to Lebesgue measure) on (0, ∞):

Fk :=


fk,G(·) ≡


∞

0
k
( y − ·)k−1

+

yk
dG( y)

 G ∈ G1


, (1.1)

where G1 will denote the set of all distribution functions on (0, ∞) grounded at 0. Here, we use the notation x+ ≡ x · 1[x≥0]
for any x ∈ R. It has been shown byWilliamson [59] that the familyFk is identifiably indexed by G1. In other words, if G1,G2
are distinct elements in G1, then fk,G1(·) and fk,G2(·) differ on a Lebesgue non-null set. Note that Fk is exactly the collection
of all scale mixtures of Beta (1, k) densities.

The Beta (1, 1) distribution is the standard uniform distribution, U(0, 1). Therefore, the class F1 coincides with the
class of all scale mixtures of uniform densities on (0, ∞). A well-known theorem by Khintchine (see, e.g., [16, p.158])
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asserts that the class of densities on (0, ∞) with concave distribution functions is one and the same with our class F1.
It can be seen that F1 is also the class of all upper semi-continuous, non-increasing densities on (0, ∞). This class is
induced by order restrictions, a term we use to explicitly mean that there exists a partial ordering (≪) on the common
support X of the densities in F1 such that f ∈ F1 if and only if f is isotone with respect to this ordering: i.e., f ∈ F1
if and only if f (x) ≤ f ( y) whenever x, y ∈ X such that x ≪ y. In this case, (≪) is the natural partial ordering, (≥),
on (0, ∞).

Non-increasing, upper semi-continuous densities (in short, monotone densities) arise naturally via connections with
renewal theory and uniform mixing (see, e.g., [60]). Maximum likelihood estimation of monotone densities on (0, ∞) was
initiated by Grenander [18,19], with related work by Ayer et al. [3], Brunk [11], van Eeden [51–55]. Asymptotic theory of the
MLE in F1 (the Grenander estimator) was developed by Prakasa Rao [44] with later contributions by [20,21,8,9,30]. See [4]
for descriptions of the behavior of the Grenander estimator at zero.

Nonparametric estimation in families of densities described by order restrictions goes back at least to the work of
[18,19,11,12,45], with further development by Wegman [56–58], Sager [48,49]. Also see the books by Barlow et al. [5]
and Robertson et al. [46]. [40–43] addressed estimation in various order restricted classes of multivariate densities from
the perspective of the excess mass approach studied previously by e.g., [48,49,36]. Polonik shows that (under reasonable
assumptions) the MLE in such classes exists and coincides with an estimator he constructs and calls the silhouette. Forcing
the elements of the class to be upper semi-continuous, the MLE is seen to be unique. Brunk [11] also gives a graphical
construction of the maximum likelihood estimator, and establishes L1-consistency of the MLE.

In this paper, our goal is to extend the notion of ‘‘monotone densities’’ to higher dimensions; i.e., to densities on (0, ∞)d

with d > 1. Such an extension is not unique: for example, we may consider the family, FBDD(d), of ‘‘block-decreasing
densities’’ (a term coined by Biau and Devroye [6]) that contains all upper-semicontinuous densities on (0, ∞)d that are
non-increasing in each coordinate, while keeping all other coordinates fixed. This class was perhaps first introduced by
Robertson [45]. The particular proper subclass ofFBDD(d) studied here is the familyFSMU(d) of all multivariate scale mixtures
of uniform densities; i.e., the family of upper semi-continuous densities on (0, ∞)d of the form

fG(x) =


(0,∞)d


1
|y|

1(0,y](x)


dG(y), x ∈ (0, ∞)d (1.2)

for some G ∈ Gd, the set of all distribution functions on (0, ∞)d that are grounded (zero) at 0; here we use the notation
|y| ≡

d
i=1 yi for y = ( y1, . . . , yd)′ ∈ (0, ∞)d. For any fixed G ∈ Gd, it is clear that if Y = (Y1, . . . , Yd)

′ is distributed
according to G on (0, ∞)d and if U1, . . . ,Ud are i.i.d. U(0, 1) (and independent of Y ), then the vector X := (U1Y1, . . . ,UdYd)
is distributed according to fG(·) on (0, ∞)d.

Whereas the family FBDD(d) is characterized by order restrictions (and thus the results by Polonik apply), its subclass
FSMU is not; as will be made more explicit in Section 2, densities in the class FSMU also satisfy non-negativity restrictions on
their d-dimensional differences around all rectangles. Because of this additional shape restriction, estimation in this family
requires separate treatment.

A univariate parallelism to the latter point would be to consider the family F2 in (1.1), induced by mixtures of triangular
densities; this class can easily be seen to be exactly the class of all non-increasing, convex (and hence continuous) densities
on (0, ∞). ThusF2 ⊂ F1 is not an order-constrained class of densities, in contrast to its superclassF1. Convex densities arise
in connection with Poisson process models for bird migration and scale mixtures of triangular densities (see, e.g., [26,2,32]).
Estimation of non-increasing, convex densities on (0, ∞)was apparently initiated byAnevski [1] andwas further pursued by
Anevski [2] and Jongbloed [28]. The asymptotic distribution theory and further characterizations of the nonparametric MLE
of such a density and its first derivative at a fixed point (both under reasonable assumptions) was obtained by Groeneboom
et al. [24,25]. These authors show that the local rate of convergence of the MLE of the functional f → f (x) is of the order
n2/5, whereas the Grenander estimator (the MLE in F1) converges locally at the rate of only n1/3.

The developments here have several motivations. One of these is to provide a multivariate family of shape-constrained
densities with convergence rates for reasonable estimators which are (nearly) independent of the dimension d of the
underlying space. As will be seen from the lower bound calculations in Section 4, it seems that the SMU class studied here
may provide such a class. Another motivation comes from problems concerningmultivariate analogues of interval censored
data; see e.g. [27,61,62]. These apparently quite different models involve very similar mathematical considerations, and
it might be helpful to develop methods for multivariate interval censored data problems by first studying the somewhat
simpler SMU model.

Here is an outline of the remainder of the present paper. In Section 2, we provide characterizations of the family FSMU(d)
that will prove useful in the sequel. Section 3 addresses existence, strong, pointwise consistency as well as L1 and Hellinger
consistency of a sequence of maximum likelihood estimators inFSMU(d). In Section 4, we derive a local asymptotic minimax
lower bound for estimation of f (x) at a fixed point x under for which f satisfies ∂df (x)/(∂x1 · · · ∂xd) ≠ 0. The lower
bound entails a rate of convergence of n1/3 for all dimensions d and yields a constant depending on f which reduces to
the known lower bound constant for d = 1. The paper concludes in Section 5 with a discussion of conjectures and open
problems related with both the local (pointwise) and the global (L1 and Hellinger) rates of convergence of the MLE in
FSMU(d).
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2. Properties of the Scale Mixtures of Uniform family of densities

2.1. Properties of FSMU(d)

A density function, f , on (0, ∞)d will be called a (multivariate) Scale Mixture of Uniform densities if there exists a
distribution function, G, on (0, ∞)d such that

f (x) = fG(x) =


(0,∞)d

1
|v|

1(0,v](x) dG(v) (2.1)

=


v≥x

1
|v|

dG(v) for all x ∈ (0, ∞)d. (2.2)

It is clear from (2.2) that a SMU density is also a block-decreasing density: fG(·) is non-increasing in each coordinate, while
keeping all other coordinates fixed. Also, the map G → fG is identifiable in the following sense: if G1 ≠ G2, then fG1 ≠ fG2 on
a set of positive Lebesgue measure; also see Theorem 2.3 below. The following lemma gives a formal statement of a slightly
more general result. The proof is standard.

Lemma 2.1. Two upper semi-continuous and block-decreasing functions f and g on Rd differ nowhere in the interior of their
support or else on a Lebesgue non-negligible set.

The distribution function FG corresponding to X ∼ fG is given by

FG(x) =


(0,∞)d

|x ∧ v|
|v|

dG(v), (2.3)

where ≤ denotes the natural partial ordering on Rd, while

x ∧ v ≡ (x1, . . . , xd) ∧ (v1, . . . , vd) = (min{x1, v1}, . . . ,min{xd, vd}),

and x∨ v ≡ (x1, . . . , xd)∨ (v1, . . . , vd) = (max{x1, v1}, . . . ,max{xd, vd}). The distribution function FG of X is generally not
concave when d > 1, unlike the case when d = 1. An SMU density (and a block-decreasing density, in general) can possibly
diverge at the origin, whereas the pointwise bound f (x) ≤ 1/|x| holds since, for x ∈ (0, ∞)d we have

1 =


(0,∞)d

f (y) dy ≥


(0,x]

f (y) dy ≥ |x|f (x).

Further, a d-dimensional analogue of the proof of [13, Theorem 6.2, p. 173] can be used to show that

lim
|x|→∞

{|x|f (x)} = lim
x↓0

{|x|f (x)} = 0, (2.4)

whenever f is a block-decreasing density on (0, ∞)d.
For any two points x, y ∈ [0, ∞)d, such that x ≤ y, we write [x, y] ≡ [x1, y1] × · · · × [xd, yd], [x, y) ≡ [x1, y1) × · · · ×

[xd, yd), (x, y] ≡ (x1, y1] × · · · × (xd, yd], (x, y) ≡ (x1, y1) × · · · × (xd, yd) for the natural closed, lower-closed upper open,
lower open upper closed, and open rectangles respectively. Note that the closed rectangle [x, y] has (at most) 2d vertices,
the points u = (u1, . . . , ud) where each ui is either xi or yi. Following [7], we write sgn[x,y](u) ∈ {−1, 1}, the signum of the
vertex u, according as the number of i, 1 ≤ i ≤ d, satisfying ui = xi is odd or even respectively.

Thus any two vertices defining an edge of the rectangle have alternating signs. Then, if u = (u1, . . . , ud) is some vertex
of [x, y] and δ ∈ {−1, +1} is its signum, then (δ, u) is an element of the set

∆d[x, y] =


(−1)

d
i=1


1[ui=xi]


, u

  u ∈ {x1, y1} × · · · × {xd, yd}

 .

Definition 2.1. For an upper semicontinuous and coordinatewise decreasing function g : (0, ∞)d → [0, ∞) define the
g-volume of a (possibly degenerate) rectangle [x, y) by:

Vg [x, y) =


(δ,u)∈∆d[x,y]

{δg(u)} , (2.5)

provided that g is defined and is finite for all u in the summand. Correspondingly, for an upper semicontinuous and
coordinatewise increasing function g : (0, ∞)d → [0, ∞), we define the g-volume of a rectangle (x, y] by the sum on
the right side of (2.5).
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It is easily seen that for an SMU density, fG, the fG-volume of any rectangle [x, y) is always of the sign (−1)d: indeed,
consider (2.2) and observe that

(−1)dVfG [x, y) =


[x,y)

1
|v|

dG(v) ≥ 0. (2.6)

From (2.6), or, alternatively, from the fact that the class of sets [x, y) is a π-system which generates the Borel σ -field of
subsets of [0, ∞)d and then extending as in [7], it is clear that (−1)dVf extends uniquely to a (non-negative) measure on
the Borel σ -field Bd

+
= Bd

∩ [0, ∞)d given by

(−1)dVf (A) =


A

1
|v|

dG(v) for A ∈ Bd
+
;

in particular,

(−1)dVf (x, y] =


(x,y]

1
|v|

dG(v).

This argument extends easily to an arbitrary upper semicontinuous function g with the (−1)dg-volumes of all rectangles
[x, y) non-negative.

Lemma 2.2. Suppose that g is a non-negative, upper semi-continuous function satisfying (−1)dVg [x, y) ≥ 0 for all lower-closed
upper open rectangles [x, y), and vanishing if any coordinate tends to ∞. Then (−1)dVg can be extended to a countably additive
measure on Bd

+
.

Of course it is easy to exhibit a block-decreasing density that is not an SMU density: consider the uniform density on the
closed triangle in R2

+
with vertices (0, 0), (0, 1) and (1, 0). Then,

(−1)2Vf [(1/8, 1/8), (1/2, 3/4)) = −2 < 0,

showing that this density is not an SMU density, even though it is block-decreasing.
The following theorem establishes identifiability of the mixing distribution G as well as providing a useful

characterization of SMU densities.

Theorem 2.3.

(a) For the class of SMU densities FSMU(d) = {fG : G ∈ Gd} with fG as given in (2.1), f ∈ FSMU(d) if and only if f ≡ fG, where
G ∈ Gd is given by

G(x) =


(0,∞)d

(−1)dVf (u, x] · 1[u≤x] du. (2.7)

Thus there is a one-to-one correspondence between G ∈ Gd and fG ∈ FSMU(d).
(b) Suppose that the Lebesgue density f on (0, ∞)d is such that it converges to zero in each coordinate, while keeping all other

coordinates fixed. Then, f is an SMU density if and only if (−1)dVf [x, y) ≥ 0 for all 0 ≤ x ≤ y.

Proof. (a) Suppose that f ≡ fG, forG ∈ Gd (recall that this implies thatG(0) = 0), is an SMUdensity evaluated at an arbitrary
x ∈ (0, ∞)d as:

f (x) =


(0,∞)d

1
|y|

1(0,x] dG(y) =


y1≥x1

· · ·


yd≥xd

1
|y|

dG(y), (2.8)

so that df (x) = (−1)d|x|−1 dG(x) and thus,

G (x) =


(0,∞)d

1(0,x](y)|y| d{(−1)df (y)}

=


(0,x]


(0,x]

1(0,y](u) du d{(−1)df (y)}

=


(0,x]


y∈(u,x]

d{(−1)df (y)}


du

=


(0,x]

(−1)dVf (u, x] du,

where the second to last equality follows by Fubini–Tonelli.
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Wewill now show that G is unique: suppose that (2.8) above holds for G = Gi ∈ Gd and i = 1, 2. Recall that this implies
that G1(0) = G2(0) = 0 and, thus, G0(·) ≡ G1(·) − G2(·) is such that G0(0) = 0,


(0,∞)d G0(x) dx = 0 and

0 =


(0,∞)d

1
|y|

1(0,x] dG0(y) =


(0,x]

1
|y|

dG0(y) (2.9)

holds for all x ∈ (0, ∞)d and, thus, necessarily G0(x) has to be independent of x and therefore everywhere equal to its value
at 0: G0(0) = 0. This completes the assertion of uniqueness, since G1 ≡ G2.

(b) If f is in FSMU, there exists G ∈ Gd such that

f (x) =


(0,∞)d

1
|y|

1(0,y](x) dG(y) =


y≥x

1
|y|

dG(y),

so that it is easily seen that (−1)dVf [x, y) =

[x,y) |y|−1 dG(y) ≥ 0 holds true for all 0 ≤ x ≤ y.

On the other hand, assume that the Lebesgue density f is such that it converges to zero in each coordinate, while keeping
all other coordinates fixed, and satisfies (−1)dVf [x, y] ≥ 0 for all 0 ≤ x ≤ y. By Lemma 2.2, this implies that for x1 ≤ x2 ≤ x,
elements of (0, ∞)d, we have (−1)dVf [x1, x) ≥ (−1)dVf [x2, x) and, letting x → ∞, this yields f (x1) ≥ f (x2) because we
assumed that f vanishes as any one of its coordinates diverges to infinity, so that Vf [xi, x) → (−1)df (xi) for i ∈ {1, 2}. Thus,
f is block-decreasing.

Hence, by appealing to part (a), it thus suffices to show that G, as defined on (0, ∞)d by (2.7) is a valid distribution
function. Indeed, this is easily shown along the lines of the following sketch. In particular, (i) G is grounded at 0 trivially by
inspection: G(0) = 0. (ii) By virtue of the fact that f is block-decreasing, 0 ≤ lim|x|→∞ f (x) ≤ lim|x|→∞{1/|x|} = 0 is true
and this can be used to show straightforwardly that limx1∧···∧xd→∞ G(x1, . . . , xd) = 1. (iii) Similarly, it is an easy task to
show that VG(x, y] ≥ 0 for all 0 ≤ x ≤ y. Conditions (i)–(iii) are necessary and sufficient for G to be a bona-fide distribution
function. This completes the proof. �

2.2. Lebesgue measurability of block-decreasing functions

Nowwenote a technical fact concerning the (Lebesgue)measurability of block-decreasing functionswhichwill be needed
in our proofs in Section 3.2.

Proposition 2.4. Let f be a real-valued, non-negative function on (0, ∞)d that is non-increasing and convergent to zero in each
coordinate xj, keeping all other coordinates fixed, as xj coordinate tends to ∞. Then:

(a) f is Lebesgue-measurable.
(b) There exists such a function f that is not Borel-measurable. Such an f exists with f also satisfying sup{f (x) | x ∈

(0, ∞)d} < ∞.

Proof. Proposition 2.4 (a) follows from Theorem 3 of [31]. Proposition 2.4 (b) is standard and follows from Proposition 1.2.2
in [50]. �

3. Existence and consistency of the MLE

Let X1, . . . ,Xn be i.i.d. random vectors distributed according to some density f0 = fG0 ∈ FSMU(d) where f0 is unknown.
Our goal is to estimate the unknown SMUdensity, f0, based onX1, . . . ,Xn.Wewill be interested inmaximizing the likelihood
function f →

n
i=1 f (Xi) or, equivalently, the log-likelihood function f → nPn log{f (X)} over f ∈ FSMU(d) where

Pn = n−1 n
i=1 δXi is the empirical measure of the data. Any such maximizer,fn ∈ FSMU(d), should one exist, will be called

a (nonparametric) maximum likelihood estimator of f0, based on X1, . . . ,Xn. Since f0 = fG0 is given by (2.1) it follows from
Theorem 2.3 that estimation of f0 ∈ FSMU is equivalent to estimation of G0.

3.1. On existence and uniqueness of an MLE

We begin with a definition followed by the main theorem of this subsection.

Definition 3.1 (Rectangular Grid Generated by Data). Suppose that x1, . . . , xn are ( fixed or random) elements in (0, ∞)d and
suppose that xi = (xi1, . . . , xid)′ where i = 1, 2, . . . , n. Define thematrix A = [xij] ∈ Mn×d((0, ∞))whose ith row is exactly
x′

i , for i ∈ {1, 2, . . . , n}. Also let A♯
= { (x(i1),1, x(i2),2, . . . , x(id),d) | i1, . . . , id ∈ {1, 2, . . . , n}} denote the rectangular grid

generated by A, where x(i),j denotes the ith smallest element among x1j, . . . , xnj where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d}.
In particular, x∗ = (x(1),1, x(1),2, . . . , x(1),d) and x∗

= (x(n),1, x(n),2, . . . , x(n),d) denote the element-wise minimum and
maximum of x1, . . . , xn, respectively. For each fixed j ∈ {1, 2, . . . , d}, let nj(A) := card({xi,j | i = 1, 2, . . . , n}), and notice
that we have: card(A♯) =

d
j=1 nj(A) ≡ N ≤ nd.
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Theorem 3.1 (Existence and Characterization of an MLE in FSMU(d)).

(a) A maximum likelihood estimator (MLE),fn ≡ fGn ∈ FSMU(d) of f0 ≡ fG0 ∈ FSMU(d) almost surely exists, whereGn ∈ Gd is a
purely-atomic probability measure, with at most n atoms, all of which are concentrated on A♯—the rectangular grid generated
by the data X1, . . . ,Xn.

(b) For almost all ω, the unique MLE,fn ≡ fGn ∈ FSMU(d), is completely characterized by the following Fenchel conditions:

Pn


1[X≤x]fn (X)


≤ |x|; for all x ∈ (0, ∞)d, (3.1)

and Pn


1[X≤y]fn (X)


= |y|; if and only if (3.2)

y ∈ (0, ∞)d satisfiesGn({y}) > 0; or, equivalently,

(−1)d lim
ϵ↓0


Vfn [y, y + ϵ1)


> 0.

Maximum likelihood estimation inmixturemodels has been studied in general by Lindsay [34], and thismaterial is nicely
summarized in [35, Chapter 5]. To prove the present theorem, we will therefore appeal to the results in [35, Chapter 5]
and [47]. We begin with three lemmas.

Lemma 3.2. The support set Y ≡ supp(Gn) of the mixing measure Gn of any MLEfn is contained in the grid A#
⊂ (0, ∞)d

generated by the observed data X1, . . . ,Xn; i.e., Y ⊂ A#.

Proof. First we show that Y ⊂ (0,X∗
] where X∗

≡ X1 ∨ · · · ∨ Xn and the maximums are taken coordinatewise. Iffn
maximizes Ln( f ) = nPn log f (X) over f ∈ FSMU(d) and there is some y ∈ (0, ∞)d \ (0,X∗

]with y ∈ Y, thenfn( y) > 0. Sincefn is block decreasing, this implies that 0 <

(0,X∗]

fn(x)dx ≡ β < 1. Then consider f̃ (x) ≡ (fn(x)/β)1(0,X∗](x); it is easily
seen that f̃ ∈ FSMU(d) and has greater likelihood thanfn, contradicting the assumption thatfn maximizes the likelihood.
Thus Y ⊂ (0,X∗

], and we may restrict attention to the class of estimators with support contained in (0,X∗
], say K∗(d).

Suppose thatfn ∈ K∗(d). Consider the mixing measure G̃n defined by

G̃n ≡


j : Wj∈A#

πjδWj

 
j : Wj∈A#

πj ≡ C


j : Wj∈A#
πjδWj

where

πj ≡ (−1)dVfn [Wj,W+

j ) · |Wj|, for Wj ∈ A#

whereW+

j ∈ A# defines the smallest rectangle above and right ofWj in the partition of [0,X∗
] defined by the data. Then it

is easy to see that

f̃ (x) =


(0,∞)d

1
|u|

1(0,u](x)dG̃n(u)

satisfies

f̃ (Wj) = C


k : Wk≥Wj

πj

|Wj|

= C


k : Wk≥Wj

(−1)dVfn [Wj,Wk)

= C(−1)dVfn [Wj, 2X∗) = Cfn(Xj),

and this implies that

f̃ (x) = C


j : Wj∈A#
1(W−

j ,Wj]
(x)

whereW−

i defines the smallest rectangle below and to the left ofWj in the partition of [0,X∗
] defined by the data. Iffn ≠ f̃ ,

then there exists y ∈ (W−

j ,Wj] for some Wj ∈ A# such thatfn(y) ≠ f̃ (y), and then necessarilyfn(y) > f̃ (y) = f̃ (Wj).
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This yields, since f̃n ∈ K∗(d),

1 =


(0,X∗]

f̃ (x)dx = C


j : Wj∈A#

fn(Wj)


(W−

j ,Wj]

dx



< C


j : Wj∈A#

fn(Wj)


(W−

j ,Wj]

fn(x)dx = C


(0,X∗]

fn(x)dx = C

since f ∈ K∗(d). Thus f̃ has a greater log-likelihood thanfn, and it follows that supp(Gn) ⊂ A#. �

Now we can prove uniqueness of the MLEsfn andGn.

Lemma 3.3. There exists a set of points Y = {y1, . . . , ym} ⊂ (0, ∞)d with m ≤ n such that a FSMU(d) densityfn with
corresponding mixing measureGn is the MLE only if supp(Gn) ⊂ Y. Thus any MLE has the form

fn(x) =

m
j=1

πj
1

|yj|
1(0,yj](x) (3.3)

where πj ≥ 0,
m

j=1 πj = 1. Moreover, the vector (fn(Xi))
n
i=1 is unique.

Proof. As in [34,35], define Γ (u) ∈ (0, ∞)n by

Γ (u) :=


1
|u|

1(0,u](X1), . . . ,
1
|u|

1(0,u](Xn)


,

and define the set Γ ≡ {Γ (u) | u ∈ (0, ∞)d}. Then Γ is a closed and bounded, hence compact, subset of [0, ∞)n. Thus by
Rockafellar [47, Theorem 17.2] conv(Γ ) = conv(Γ ) = conv(Γ ) is also a compact subset of [0, ∞)n. Thus the continuous
function

n
i=1 zi attains its supremum on conv(Γ ). Let S = argmaxz∈conv(Γ )

n
i=1 log zi. Since the intersection of Γ and the

interior (0, ∞)n of [0, ∞)n is not empty, we have S ⊂ (0, ∞)n. Since
n

i=1 log zi is strictly concave, S consists of a single
point, f̂ = (f̂i)ni=1 > 0. Therefore for any MLEfn it follows that the vector (fn(Xi))

n
i=1 is unique. Note that the gradient ofn

i=1 log zi at f̂ is proportional to 1/f̂ ≡ (1/f̂i)ni=1.
Nowdim(conv(Γ )) = n; ifwe consider thenpointsui = Xi, then then vectorsΓ (ui) = (1(0,Xi](X1), . . . , 1(0,Xi](Xn))/|Xi|,

i = 1, . . . , n, are almost surely linearly independent. (In fact, thematrixM with rows |Xi|Γ (Xi), i = 1, . . . , n has det(M) = 1
a.s. if the Xi’s are i.i.d. with any density f .) By Rockafellar [47, Theorem 27.4] the vector 1/f̂ belongs to the normal cone of
conv(Γ ) at f̂ . Since 1/f̂ > 0 we have f̂ ∈ ∂(conv(Γ )) and the plane τ defined by

n
i=1 zi/f̂i = n is a support plane of

conv(Γ ) at f̂ . Thus for vi = 1/(nf̂i), i = 1, . . . , n, it follows that

q(u) ≡ |u| −

n
i=1

vi1(0,u](Xi) ≥ 0

for all u ∈ [0, ∞)d and q(u) = 0 if u = 0 or Γ (u) ∈ τ . We let Y denote the set of vectors u such that Γ (u) ∈ τ ;
i.e., Γ (Y) = τ ∩ Γ .

The intersection τ ∩ conv(Γ ) is an exposed face of conv(Γ ); see e.g. [47, p. 162]. By Rockafellar [47, Theorem 18.3],
τ ∩ conv(Γ ) = conv(Γ (Y)), and by Theorem 18.1, supp(Gn) ⊂ Y. This implies that for any MLEfn, the support of the
corresponding mixing measureGn is a subset of Y, and thus any MLE has form (3.3) with yj ∈ Y for j = 1, . . . ,m. To see
thatm ≤ n, note that yj ∈ Y ⊂ A# satisfy

|yj| =

n
i=1

vi1(0,yj](Xi) = ⟨v, |yj|Γ (yj)⟩, j = 1, . . . ,m. (3.4)

Suppose that the vectors {|yj|Γ (yj)}mj=1 are linearly dependent; i.e.,

m
j=1

bj|yj|Γ (yj) = 0

inRn for some bj, j = 1, . . . ,m. Since all the coordinates of the |yj|Γ (yj) vectors take values in {0, 1}, this systemof equations
is algebraically equivalent to the same system in which all the bj’s take only integer values, i.e., bj ∈ Z for j = 1, . . . ,m.



78 M.G. Pavlides, J.A. Wellner / Journal of Multivariate Analysis 107 (2012) 71–89

Then it follows on the one hand that
m
j=1

bj⟨v, |yj|Γ (yj)⟩ =

m
j=1

bj
n

i=1

vi1(0,yj](Xi)

=


v,

m
j=1

bj|yj|Γ (yj)


= ⟨v, 0⟩ = 0,

and hence, by (3.4),
m

j=1 bj|yj| = 0, or, since yj = Wij ∈ A# for some ij,

m
j=1

bj|Wij | = 0

with all bj ∈ Z. But this equation has at most countably many solutions {|Wij |, j = 1, . . . ,m}, and hence occurs with Pn
0 -

probability 0. That is, for any fixed vector b = (bj)kj=1 with all bj ∈ Z, the function fb(X1, . . . ,Xn) =
k

j=1 bj|Wij | has at
most a finite number of zeros, so Pn

0 (fb(X1, . . . ,Xn) = 0) = 0, and since Z is countable Pn
0 (∪b∈Zk{fb(X1, . . . ,Xn) = 0}) = 0.

Thus Pn
0 (∩b∈Zk{fb(X1, . . . ,Xn) ≠ 0}) = 1. Hence it follows that the linear dependence condition only holds on an event with

probability 0.
Thus the vectors |yj|Γ (yj), j = 1, . . . ,m are linearly independent almost surely Pn

0 , and hence m ≤ n (Pn
0 -almost

surely). �

Lemma 3.4. The discrete mixing measureGn which defines an MLE is Pn
0 -almost surely unique.

Proof. Suppose that there exist two different MLE’sf 1n andf 2n . then
f ln(x) =

m
j=1

π l
j
1

|yj|
1(0,yj](x), l = 1, 2,

where π l
j ≥ 0 and

m
j=1 π l

j = 1 for l = 1, 2. Therefore

δn(x) ≡f 1n (x) −f 2n (x) =

m
j=1

rj
1

|yj|
1(0,yj](x)

where rj ≡ π1
j − π2

j has at least n zeros (since we know that

(f 1n (Xi))
n
i=1 = (f 2n (Xi))

n
i=1 = (fn(Xi))

n
i=1

is unique). So, uniqueness holds if the vectors

(1(0,yj](Xi))
n
i=1 ∈ {0, 1}n, for j = 1, . . . ,m ≤ n

are (almost surely) linearly independent. But this follows from the proof of Lemma 3.3. �

Theorem 3.1 does not assert that the MLE is always unique. An MLE is Pn
0 almost surely unique, but we now present an

example in which there exist an infinite number of MLE’s.

Example 3.1 (AMLE in FSMU is Not Always Unique). To be able to graphically illustrate the set Γ , in the proof of Theorem 3.1,
we need to restrict consideration to n = 2 and in order thatwe be able to graphically illustrate theMLE(s) we need to restrict
consideration to d = 2. Suppose that X1 = (1, 3) and X2 = (3, 2) are the observation points. The set

Γ ≡


1

u1u2


1(0,u](X1),1(0,u](X2)

  u = (u1, u2) ∈ (0, ∞)2


and its convex hull, Conv(Γ ), are illustrated in Fig. 1.
Using [35, Theorem 22, p. 118], it follows that any MLE,f2, will have a unique value forf ≡ (f2(X1), f̂2(X2)) that is given

byf = (w̃−1
1 , w̃−1

2 ) where w̃ = (w̃1, w̃2) maximizes the function (w1, w2) → log(w1w2) on the set
(w1, w2) ∈ (0, ∞)2

 w1

3
≤ 2 and

w2

6
≤ 2


.

It is immediate that w̃ = (6, 12) from which we conclude that f̃ = (1/6, 1/12) has exactly two representations as convex
combinations in terms of pairs of the points {A1, A2, A3} (see Fig. 1(a) again):

1
6
,

1
12


=

1
2


0,

1
6


+

1
2


1
3
, 0


, and


1
6
,

1
12


=

1
4


1
3
, 0


+

3
4


1
9
,
1
9


.
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(a) Γ . (b) Conv (Γ ).

Fig. 1. The sets Γ and Conv(Γ ) based on two observations: X1 = (1, 3) and X2 = (3, 2).

These two convex combinations yield two different maximum likelihood estimators, as shown in Fig. 2(a) and (b).
It should be noted, however, that infinitely many maximum likelihood estimators exist in this case since each convex

combination of these two MLEs is again an MLE, by virtue of linearity of fG (recall (2.1)) as a function of the mixing
distribution, G. �

3.2. Strong pointwise consistency of the MLE

Let X1,X2, . . . ,Xn, . . . be the coordinate random elements on the (completed) infinite product space (Ω∞, A∞, P∞)
such that these coordinates are i.i.d. according to f0 ≡ fG0 on (0, ∞)d. Let A ∈ A∞ be the event (with P∞-probability one)
that for each n ∈ N there exists a unique SMU density,fn ≡ fĜn , maximizing the log-likelihood.

From Theorem 2.3 we have that for each n ∈ N and a fixed ω ∈ A, there exists a unique Borel probability measure,Gn on
((0, ∞)d, ∥ · ∥2), such that

fn(x) =


(0,∞)d

1
|u|

1(0,u](x) dGn(u) =


u≥x

1
|u|

dGn(u) (3.5)

holds true for all x ∈ (0, ∞)d. We are ready to formulate and prove the following proposition.

Proposition 3.5 (Strong Consistency of the MLE in FSMU).
(a) (i) The sequence of maximum likelihood mixing distributions {Gn}

∞

n=1 converges weakly to G0 as n → ∞, P∞-almost surely.
(ii) In addition, for Lebesgue almost all x ∈ (0, ∞)d,fn(x) →a.s. f0(x) as n → ∞. In particular, if f0 is continuous at

x ∈ (0, ∞)d, thenfn(x) − f0(x)
 →a.s. 0 as n → ∞.

(b) The sequence ofmaximum likelihood estimators, {fn}∞n=1, is strongly consistent in the total variation (or L1) and in the Hellinger
metrics. That is,

(0,∞)d

f̂n(x) − f0(x)
 dx→a.s. 0 as n → ∞,

and, with h2(p, q) = (1/2)

{
√
p(x) −

√
q(x)}2dx,

h
fn, f0 →a.s. 0 as n → ∞.

Proof. (a) (i) To be able to apply Theorems 3.4, 3.5 and 3.7 of [39], with the refinement on page 143 of the same article, we
need to provide the relevant setup as well as establish the assumptions of Pfanzagl’s theorems. We do this below.

LetC0

(0, ∞)d, ∥ · ∥2


denote the set of all real-valued, continuous functions on (0, ∞)d that vanish at∞. LetΘ∗ denote

the set of all Borel sub-probability measures on (0, ∞)d, equipped with the vague topology, τ , which makes the space a
compact, metrizable, topological space, and thus with a countable base. It is also a convex subset of the linear space of all
finite, signed, Borel measures on ((0, ∞)d, ∥ · ∥2). For clarity, the vague topology is the smallest topology that makes the
functions

µ →


(0,∞)d

g(x) dµ(x)

continuous, for each g ∈ C0

(0, ∞)d, ∥ · ∥2


. By metrizability, the topology τ is completely characterized by convergent

sequences, θn
v

⇒ θ as n → ∞, on (Θ∗, τ ).
Let also Θ ⊆ Θ∗ be the set of all Borel probability measures on (0, ∞)d, and notice that µ ∈ Θ . Also, for each θ∗ ∈ Θ∗

there exists a unique c ∈ [0, 1] and a unique θ ∈ Θ , such that θ∗ = cθ . Further, notice that letting m(ν, ·) ≡ fν(·), for each
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(a) Example 3.1: MLE 1. (b) Example 3.1: MLE 2.

Fig. 2. Two maximum likelihood estimators in FSMU(2), supported on the grid generated by the data: X1 = (1, 3) and X2 = (3, 2). The two figures show
the contour/level plots of the respective maximum likelihood densities.

ν ∈ Θ∗, andMn(·) ≡ Pn log {m(·,X)}, we have

Mn(θ∗) = log{c} + Mn(θ) ≤ Mn(θ), since c ∈ [0, 1],

whence, supθ∈Θ∗
(Mn(θ)) = supθ∈Θ (Mn(θ)).

With reference measure the Lebesgue measure λ ≡ Q and for each ν ∈ Θ∗, let Pν ∈ Θ∗ be the sub-probability, Borel
measure on ((0, ∞)d, ∥ · ∥2) with Radon–Nikodym derivative with respect to λ being fν , Lebesgue almost surely. Then by
virtue of Fubini–Tonelli, Pν ∈ Θ when and only when ν ∈ Θ . Also, notice that for each fixed x ∈ (0, ∞)d, the functional
ν → fν(x) is not vaguely continuous at any ν ∈ Θ∗ with a discontinuity point on the boundary of [x, ∞). However, since
for a fixed x ∈ (0, ∞)d, the function y → 1[x,∞)(y)/|y| is easily seen to be an upper semi-continuous function on (0, ∞)d—
vanishing at ∞, Doob [15, Theorem 10, p. 138], applies and asserts that the function ν → fν(x) on (Θ∗, τ ) is itself (vaguely)
upper semi-continuous. Since this holds for all x ∈ (0, ∞)d, it holds almost-surely. Also, the mapping ν → fν(x) is affine on
Θ∗ (and hence concave also).

It remains to establish that for each fixed τ -open subset U of Θ∗, the real-valued function TU(·) on (0, ∞)d defined by

TU(x) = sup
ν∈U


(0,∞)d

1
|u|

1(0,u](x) dν(u)


is a A-measurable function. We can choose to take A to be the Lebesgue σ -field, in which case measurability follows by
observing that TU(·) is a block-decreasing function and appeal to Proposition 2.4.

We now apply Theorem 3.4 of [39] to our setting and further appeal to the fact that a vaguely convergent sequence
of probability measures with limit a probability measure, is, in fact, weakly convergent. This gives the desired conclusion:
the random sequence of maximum likelihood mixing probability measures {Ĝn}

∞

n=1 converges weakly to G0 as n → ∞,
P∞-almost surely.

(ii) Combining the fact that, for each fixed x ∈ (0, ∞)d, ν → fν(x) is vaguely upper semi-continuous on Θ∗ with the
conclusion of part (a)(i), we get

lim
n→∞


fGn(x) ≤ f0(x); P∞-a.s. for all x ∈ (0, ∞)d. (3.6)

Let

FG0(·) =


(0,∞)d

|· ∧ u|

|u|
dG0(u)

and

FGn(·) =


(0,∞)d

|· ∧ u|

|u|
dGn(u)

be the distribution functions corresponding to the densities f0(·) andfn(·), respectively, n ∈ N. These distribution functions
are everywhere continuous on the Euclidean set (0, ∞)d. In fact, since for each fixed x ∈ (0, ∞)d, the function u →

|x ∧ u| / |u| is bounded (by 1) and continuous on (0, ∞)d,we then have that

FGn(x) →a.s. FG0(x) for all x ∈ (0, ∞)d (3.7)
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follows directly by the definition of almost sureweak convergence of themixing randommeasures {Gn}
∞

n=1 toG0, established
in part (a)(i).

Let B be the set of points on (0, ∞)d at which f0 is continuous. Then Bc has Lebesgue measure zero, λ(Bc) = 0, exactly
because f0 is discontinuous on the boundary ∂[x0, ∞) for a (possibly non-existent) x0 ∈ (0, ∞)d where P0 is discontinuous
(i.e., such that P0({x0}) > 0). Since P0 can have at most countably many discontinuity points x0 ∈ (0, ∞)d and since
λ(∂[x0, ∞)) = 0, we get by countable subadditivity of λ that indeed λ(Bc) = 0.

Fix arbitrary x ∈ B and ϵ > 0. Then, since f0 is lower semi-continuous at x, there exists an open neighborhood Ux,ϵ
of x such that for every y ∈ Ux,ϵ we have that f0(y) > f0(x) − ϵ. In particular, there exists an Ux,ϵ ∋ xϵ > x satisfying
f0(xϵ) > f0(x) − ϵ. Since f0 is block-decreasing, we have:

VFG0
(x, xϵ]

λ ((x, xϵ])
=


(x,xϵ ]

{f0(y)} dy

λ ((x, xϵ])
≥ f0(xϵ) > f0(x) − ϵ. (3.8)

Further, for each fixed n ∈ N, sincefn(·) is block-decreasing (as a SMU density), we have

fGn(x) ≥


(x,xϵ ]


fGn(y) dy

λ ((x, xϵ])
(3.9)

=

VFGn (x, xϵ]

λ ((x, xϵ])
. (3.10)

Eq. (3.7) further implies that

VFGn (x, xϵ] → VFG0
(x, xϵ] , as n → ∞. (3.11)

Combining Eqs. (3.8)–(3.11) and the fact that ϵ > 0 was arbitrary, we get

lim
n→∞


fGn(x) ≥ f0(x); P∞-a.s. for x ∈ B. (3.12)

Eqs. (3.6) and (3.12) yield the assertion: for Lebesgue almost all x ∈ (0, ∞)d (and, in particular, at the points of continuity
of f ), fGn(x) →a.s. f0(x) as n → ∞ holds.

(b) Showing consistency in the L1 (total-variation) norm is a direct consequence of part (a) (ii) and Glick’s Theorem, [17];
see also [14, p. 25].

Convergence in the Hellinger metric follows from the following well-known inequalities of [33, p.46]:

h2(P,Q ) ≤
1
2
∥P − Q∥L1 ≤ h(P,Q )


2 − h2(P,Q )

 1
2 ,

where h2(P,Q ) = 2−1
 √

dP −
√
dQ

2
is the squared Hellinger metric and ∥ · ∥L1 is the L1-norm. �

4. A local asymptotic minimax lower bound

Let Xi := (Xi,1, . . . , Xi,d)
′ for i = 1, 2, . . . , n be i.i.d. random vectors from density f ∈ FSMU(d). For a fixed x0 ≡

(x0,1, . . . , x0,d)′ ∈ (0, ∞)d, we want to estimate the functional T ( f ) := f (x0) on the basis of X1, . . . ,Xn. We shall make
the following assumption:

Assumption 4.1. Suppose that f ∈ FSMU is continuously differentiable at x0, f (x0) > 0, and, in particular, there exists an
open ball A(x0) around x0 such that f is everywhere strictly positive on A(x0) and where (∂/∂xj)f (x0) < 0 exist for all
j ∈ {1, 2, . . . , d} and are continuous on A(x0) ⊆ (0, ∞)d. Further, we assume that the full mixed derivative of f exists, is
continuous on A(x0), and satisfies

(−1)d
∂df

∂x1 · · · ∂xd
(x)


x=y

> 0 for all y ∈ A(x0).

Proposition 4.1. Suppose that f ∈ FSMU satisfies Assumption 4.1 at the fixed point x0 ∈ (0, ∞)d. Then there is a sequence
{fn} ⊂ FSMU such that any estimator sequence {Tn} of f (x0) satisfies

lim
n→∞

max

Efn


n

1
3 |Tn − fn(x0)|


, Ef


n

1
3 |Tn − f (x0)|



≥
e−

1
3

2d


3d−1 1

3


(−1)d

∂df (x)
∂x1 · · · ∂xd


x=x0

· f (x0)

 1
3

. (4.1)
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Fig. 3. Perturbation rectangle In(k), for the case d = 2, with center x0 = (x01, x02) and h = (h1, h2).

Remark. The lower bound in Proposition 4.1 should be contrasted to a similar lower bound for estimation of f (x0) for
f ∈ FBDD which is derived by Pavlides [38]. In that case the natural hypothesis is ∂ f (x0)/∂xi < 0 for i = 1, . . . , d, and the
resulting rate of convergence is n1/(d+2).

To prove Proposition 4.1 wewill make use of the following lemma. It was established in the form presented here by [23];
see also Groeneboom and Jongbloed [22,29].

Lemma 4.2. Let F be a class of densities on a measurable space (X, A) and f a fixed element of F . Let Ff denote any open
Hellinger ball with center f ∈ F . Assume that there exists a sequence {fn}∞n=1 ⊆ F such that

lim
n→∞

√
nh( fn, f )


= α (4.2)

and

lim
n→∞

|T ( fn) − T ( f )| = β (4.3)

both hold for some constants 0 < α, β < ∞, andwhere T is a functional onF . Here, h2( fn, f ) ≡ 2−1

{
√
fn(x)−

√
f (x)}2 dµ(x),

is the Hellinger distance between the µ-densities fn and f . Let l(·) be a convex function, symmetric about zero, which is non-
decreasing on [0, ∞).

Then, it holds that

lim
n→∞


Rn,l(Ff )


≥ l


1
4
βe−2α2


(4.4)

where Rn,l(F ) ≡ infTn supg∈F Eg⊗n{l(Tn − T (g))} is the minimax risk for estimating the functional T ( f ) based on n i.i.d
observations from F .

In particular, for the loss l(x) = |x| on we have

lim
n→∞


Rn,|·|(Ff )


≥

1
4
βe−2α2

. (4.5)

Hereafter, fix an otherwise arbitrary vector h := (h1, . . . , hd) ∈ (0, ∞)d, and define H := diag(h) ∈ Md×d ((0, ∞)) . For
each k ∈ N, consider the perturbation rectangle

In(k) :=

d
i=1


x0,i − n−

1
k hi, x0,i + n−

1
k hi


,

only for those positive integers n ≥ n0(k, x0, h) for which In(k) ⊆ A(x0) for all n ≥ n0. The two-dimensional case, d = 2, is
illustrated in Fig. 3.

Recall Assumption 4.1. Let b := (∂d/∂x1 · · · ∂xd)f (x)

x=x0

and observe that (−1)db > 0. Finally, define the functions hn

on In(3d) as follows:

hn( y1, . . . , yd) := (−1)d
d

i=1


1

x0,i,x0,i+n−
1
3d hi

( yi) − 1
x0,i−n−

1
3d hi,x0,i

( yi)


,
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and

gn(y) := b

u≽y


1In(3d)(u) · hn(u)


du,

where we observe that gn(y) ≥ 0 for all y ∈ In(3d), since x0 is the center of the rectangle In(3d). In fact, consideration of the
geometry of the definition of gn(·) reveals that, for y ∈ In, gn(y) is equal to (−1)db > 0 times the volume of the rectangle
[vn(y) ∧ y, vn(y) ∨ y], where vn(y) is defined as that vertex of In that is closest in L2-distance from y ∈ In. Since In is a
decreasing sequence of compact sets, it is then immediately clear that gn(y) is (pointwise) non-increasing in n ∈ N, for each
fixed y ∈ (0, ∞)d.

Assume that f ∈ FSMU, and for fixed vectors x0, h ∈ (0, ∞)d we further assume that f satisfies Assumption 4.1. For
n ≥ n0(3d, x0, h), define the perturbed density, fn of f at x0, by

fn(x) =


f (x) + θgn(x)

dn
: if x ∈ In(3d)

f (x)
dn

: if x ∈ Icn(3d)
(4.6)

for some arbitrary but fixed θ ∈ (0, 1) and where dn is the normalizing constant for fn, uniquely determined by
(0,∞)d fn(x) dx = 1. We will see the importance of the value of b and the fact that 0 < θ < 1 in the following proposition

that establishes that {fn}n≥n1 ⊆ FSMU(d) for a sufficiently large n1 ∈ N.

Proposition 4.3. There exists a positive integer n1 := n1(d, x0, h) ≥ n0(3d, x0, h) such that fn ∈ FSMU for all n ≥ n1.

Proof. Since f ∈ FSMU(d), we get from Theorem 2.3 that

Vf [x, y] ≥ 0, for all d-boxes [x, y]. (4.7)

From the definition of gn(·), we see that its full, mixed partial derivative exists in a neighborhood of x0. Hence, by definition
and the fact that (−1)db > 0 and θ ∈ (0, 1), we have that

(−1)d
∂dfn

∂x1 · · · ∂xd
(x)


x=y

≥ (−1)d
∂df

∂x1 · · · ∂xd
(x)


x=y

− (−1)dbθ

=


(−1)d

∂df
∂x1 · · · ∂xd

(x)

x=y

− (−1)db


+ (1 − θ)(−1)db

≥ 2−1(1 − θ)(−1)db > 0, (4.8)

where the second to last inequality follows from Assumption 4.1 that the full mixed partial derivative of f exists and is
continuous at x0 from which we get, by definition of continuity, that there exists a large enough positive integer n1 :=

n1(d, x0, h) ≥ n0(3d, x0, h) such that

(−1)d
∂df

∂x1 · · · ∂xd
(x)


x=y

− (−1)db ≥ −2−1(1 − θ)(−1)db

holds true for all y ∈ In(3d) and n ≥ n1. The result in (4.8) suggests that

(−1)dVfn [x, y] ≡ (−1)d


(x,y]


∂dfn

∂w1 · · · ∂wn
(w)


w=u


du ≥ 0

holds true for all d-boxes (x, y] with x, y ∈ In(3d) and n ≥ n1.
The last case not considered is the one that is exactly one between x and y, in the d-box [x, y], is an element of In(3d).

See also Fig. 4. For this case, we can appeal to Lemma 2.2 by setting [x0, y0] := [x, y] ∩ In(3d)—the latter being well-defined
as the intersection of two rectangles is itself an rectangle. Then, from Lemma 2.2 and (4.7), we have,

(−1)dVfn [x, y] = (−1)dVfn [x0, y0] + (−1)d
m
i=1


Vfn [xi, yi]


≥ 0 + 0 = 0,

exactly since [xi, yi] ⊆ Icn(3d) for all i ∈ {1, 2, . . . ,m} (where m is as defined in Lemma 2.2). For completeness, notice that
we were not concerned above with end-point discontinuities of f (or fn) on the entailed rectangle, subsets of In(3d), as, in
fact, f (and fn) is (are) continuous there for n ≥ n1, by Assumption 4.1.

All these observations finally yield that (−1)dVfn [x, y] ≥ 0 holds true for all d-boxes [x, y] and thus Theorem 2.3 asserts
that fn ∈ FSMU for all n ≥ n1. �

We are ready to prove the main proposition of this section.
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Fig. 4. Perturbation rectangle In(k), for the case d = 2, with two rectangles intersecting In(k) but otherwise not subsets of it.

Proof. Recall Proposition 4.3. First, we establish that
In
gn(x) dx = (−1)db

d
i=1


h2
i


· n−

2
3 , (4.9)

where, hereafter, In will be the short-hand form for In(3d). By definition, notice that,

1
b


In
gn(x) dx =


In


In

d
i=1


1[xi≤ui]


hn(u) dudx

=


In
hn(u)


In
1(0,u](x) dx


du

=


In

d
i=1


ui −


x0i − hin−

1
3d


hn(u) du

=

d
i=i


 x0i+hin

−
1
3d

x0i−hin
−

1
3d

[ui − (x0i − hin−
1
3d )]

×


1

[x0i−hin
−

1
3d ,x0i]

(ui) − 1
x0i,x0i+hin

−
1
3d

(ui)

  dui


=

d
i=1


 x0i

x0i−hin
−

1
3d

[ui − (x0i − hin−
1
3d )] dui

−

 x0i+hin
−

1
3d

x0i
[ui − (x0i − hin−

1
3d )] dui


=

d
i=1


 hin

−
1
3d

0
[−y + hin−

1
3d ] dy −

 hin
−

1
3d

0
[w + hin−

1
3d ] dw


=

d
i=1


 hin

−
1
3d

0
(−2y) dy

 = (−1)d
d

i=1


h2
i n

−
2
3d


= (−1)d

d
i=1


h2
i


· n−

2
3 ,

thus yielding (4.9).
We next derive another equality, the most important fact about it being the factor n−1 on the right hand side:

In
g2
n (x) dx =


8
3

d

b2
d

i=1


h3
i


· n−1. (4.10)
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Before we start deriving (4.10), let us first define four rectangles Ri
j with j = 1, 2, 3, 4 for each i ∈ {1, 2, . . . , d}:

(i) Ri
1 =


x0i − hin−

1
3d , x0i


×


x0i − hin−

1
3d , x0i


,

(ii) Ri
2 =


x0i − hin−

1
3d , x0i


×


x0i, x0i + hin−

1
3d


,

(iii) Ri
3 =


x0i, x0i + hin−

1
3d


×


x0i − hin−

1
3d , x0i


,

(iv) Ri
4 =


x0i, x0i + hin−

1
3d


×


x0i, x0i + hin−

1
3d


.

Then, by definition:

1
b2


In
g2
n (x) dx =


In


In
hn(u)1[x≤u] du

2

dx

=


In


In


In
hn(u)hn(v)1[x≤u∧v] dvdudx

=


In


In


d

i=1


(ui ∧ vi) − (x0i − hin−

1
3d )


× hn(u)hn(v)


dvdu

=

d
i=1


Ri1+Ri3


(u ∧ v) − (x0i − hin−

1
3d )


dvdu

− 2

Ri2


(u ∧ v) − (x0i − hin−

1
3d )


dvdu



= 2d
d

i=1

{S1i + S2i − S3i} , (4.11)

where the last equality follows by symmetry and Fubini–Tonelli and the integrals in the braces are to be evaluated below:

S1i ≡

 x0i

x0i−hin
−

1
3d

 x0i

v


v −


x0i − hin−

1
3d


dudv

=

 x0i

x0i−hin
−

1
3d


(x0i − v)


v − x0i + hin−

1
3d


dv

=

 hin
−

1
3d

x0i+hin
−

1
3d


y

−y + hin−

1
3d


dy [change of variable]

while, again, by a change of variable argument:

S2i ≡

 x0i+hin
−

1
3d

x0i

 x0i+hin
−

1
3d

v


v −


x0i − hin−

1
3d


dudv

=

 x0i+hin
−

1
3d

x0i


(x0i − v) + hin−

1
3d

 
(v − x0i) + hin−

1
3d


dv

=

 hin
−

1
3d

0


−y + hin−

1
3d

 
y + hin−

1
3d


dy,

and similarly:

S3i ≡

 x0i

x0i−hin
−

1
3d


hin−

1
3d


v − x0i + hin−

1
3d


dv

= hin−
1
3d

 hin
−

1
3d

0


hin−

1
3d − y


dy.

Let now qi := hin−1/3d, for i ∈ {1, 2, . . . , d}, and observe that

S1i + S2i − S3i =

 qi

0


y(qi − y) + q2i − y2 + q2i − qiy


dy = · · · =

4
3
h3
i n

−
1
d ,

so that plugging all these in (4.11) yields the desired (4.10).
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Now, recall from the definition of fn that θ ∈ (0, 1) was arbitrary but fixed. Also, from

(0,∞)d fn(x) dx = 1 we can get an

explicit expression for the normalizing constant dn:

dn =


In
f (x) dx +


Icn

f (x) dx + θ


In
gn(x) dx

= 1 + θ


In
gn(x) dx = 1 + (−1)dθb

d
i=1


h2
i


· n−

2
3 , (4.12)

where the second to last equality follows from

(0,∞)d f (x) dx = 1, while the last equality follows from (4.9). Notice from

(4.12) that dn ↓ 1 as n ↑ ∞. Also, from the easily verifiable identity gn(x0) = (−1)db
d

i=1 {hi} n−1/3, we have

n
1
3 |fn(x0) − f (x0)| = n

1
3


f (x0) + (−1)db

d
i=1

{hi} n−
1
3

dn
− f (x0)


=

 n
1
3


1
dn

− 1

f (x0) +

(−1)dbθ
d

i=1
{hi}

dn


−→ (−1)dbθ

d
i=1

{hi} (> 0), as n → ∞. (4.13)

Also,

2nh2( fn, f ) = n

In


fn(x) −


f (x)

2
dx + n


Icn


fn(x) −


f (x)

2
dx

= n

In


fn(x) − f (x)

√
fn(x) +

√
f (x)

2

dx + δ2
n


Icn

f (x) dx, (4.14)

where,

δn ≡
√
n


1 −

1
√
dn


=

√
n

√
dn − 1
√
dn



=

√
n


1 + O


n−

2
3


− 1


√
dn

→ 0, as n → ∞,

with the convergence on the last display following from (4.12). Applying this to (4.14), we have:

2nh2( fn, f ) = n

In


fn(x) − f (x)

√
fn(x) +

√
f (x)

2

dx + o(1) (4.15)

as n → ∞, because 0 ≤

Icn
f (x) dx ≤ 1.

For fixed n ∈ N, such that f and gn be continuous and strictly positive on In, let x(n) and x(n) denote, respectively, a
minimizer and amaximizer of f on the compact set In. Let also y(n) and y(n) denote, respectively, aminimizer and amaximizer
of gn on the compact set In. Observe that, since In is a decreasing sequence of compact sets converging to {x0}, all of x(n), x(n),
y(n) and y(n) converge to x0 as n → ∞. Also,

sup
x∈In

 fn(x) − f (x)
f (x)

 = sup
x∈In

 1
dn

− 1


+
θgn(x)
dnf (x)


≤


1 −

1
dn


+

θ sup
x∈In

{gn(x)}

dn inf
x∈In

{f (x)}

→ 0, as n → ∞, (4.16)

because gn is pointwise non-increasing in n ∈ N, gn(x0) = O

n−1/3


and f (x0) > 0.
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Also,

D1(n) ≡


In

{fn(x) − f (x)}2 dx

=
1
d2n


In


θ2g2

n (x) − O

n−

2
3


f (x)gn(x) + O


n−

4
3


f 2(x)


dx

and noticing that

0 ≤


In

{gn(x)f (x)} dx ≤ f

x(n) 

In
{gn(x)} dx = O


n−

2
3


,

so that,

nD1(n) =
n
d2n


8
3

d

θ2b2
d

i=1


h3
i


· n−1

+ o

n−

4
3



−→


8
3

d

θ2b2
d

i=1


h3
i


, as n → ∞. (4.17)

Now, since f is block-decreasing, we have,

0 < f

x0 + n−

1
3d Idh


≤ f (x) ≤ f


x0 − n−

1
3d Idh


for all x ∈ In and n ≥ n1. Hence,

nD1(n)

f

x0 − n−

1
3d Idh

 ≤ n

In

{fn(x) − f (x)}2

f (x)
dx ≤

nD1(n)

f

x0 + n−

1
3d Idh


which, ahead with Eq. (4.17) and sandwich, yields

n

In

{fn(x) − f (x)}2

f (x)
dx −→


8
3

d

θ2b2 ·

d
i=1


h3
i


f (x0)

, as n → ∞.

Applying all of the above to (4.15), and appealing to Lemma 2 of [29], we get

nh2( fn, f ) =
1
8


In

{fn(x) − f (x)}2

f (x)
dx + o(1) (4.18)

→
8d−1

3df (x0)
θ2b2

d
i=1


h3
i


(4.19)

as n → ∞, so that by applying (4.13) and (4.19) to Lemma 4.2, we get

lim
n→∞

inf
Tn

max

Efn


n

1
3 |Tn − fn(x0)|


, Ef


n

1
3 |Tn − f (x0)|


≥

1
4


(−1)db


θc exp


−

23d−2

3df (x0)
θ2b2c3


=: Gf ,x0(c, θ)

where c ≡
d

i=1 {hi}. For a fixed θ ∈ (0, 1) the maximum of Gf ,x0(c, θ) is attained at

c(θ) =


3d−1f (x0)
23d−2θ2b2

 1
3

and is equal to

Gf (c(θ), θ) =
e−

1
3

2d


3d−1θ

 1
3


(−1)d

∂df (x)
∂x1 · · · ∂xd


x=x0

f (x0)

 1
3

,

the latter being an increasing function of θ ∈ (0, 1).
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This implies that

lim
n→∞

inf
Tn

max

Efn


n

1
3 |Tn − fn(x0)|


, Ef


n

1
3 |Tn − f (x0)|


≥

e−
1
3

2d


θ · 3d−1 1

3


(−1)d

∂df (x)
∂x1 · · · ∂xd


x=x0

· f (x0)

 1
3

.

Overall, we are allowed to take θ ↑ 1 in the above display, even if θ = 1 is not a valid configuration, yielding the lower
bound in the wording of the proposition. The proof is thus complete. �

5. Discussion and open problems

Once consistency has been established, interest focuses on rates of convergence of the MLE and other properties,
including the behavior offn at zero and pointwise limiting distributions. We have the following conjectures concerning
the MLEfn for the class FSMU(d). Work is currently underway on all of these further problems.

Conjecture 1. If f0(0) < ∞, then we conjecture that P0(fn(0) ≤ M(log n)d−1) → 1 for some M > 0.

Conjecture 2. If f0(0) < ∞ and f0 is concentrated on [0,M1] for some 0 < M < ∞, then h(fn, f0) = Op(n−1/3(log n)γ ) for
some γ depending only on d.

Concerning rates of convergence of the estimators at a fixed point, we do not yet have any upper bound results to accompany
the lower bound results of Proposition 4.1. Thus there remain the following two possibilities: (a) the pointwise rate of convergence
under Assumption 4.1 is n1/3, and we expect convergence in distribution with the rate n1/3, or, (b) the lower bound given
in Proposition 4.1 is not yet sharp, and we should expect log terms in the rate (as might be expected from the covering
number results of [10]). Our corresponding conjectures for these two possible scenarios are given below as Conjectures 3a and
3b respectively.

Conjecture 3a. Suppose that f0 has ∂df0(x)/∂x1 · · · ∂xd continuous in a neighborhood of x0 with

∂df0(x0) ≡
∂df0(x)

∂x1 · · · ∂xd


x=x0

≠ 0.

Let {W (t) : t ∈ Rd
} be a 2d-sided Brownian sheet process on Rd and let

Y(t) ≡


f0(x0)W (t) +

(−1)d

2d
(−1)d∂df0(x0)|t|2.

Then, in keeping with our lower bound results of Section 4, we conjecture that

n1/3(fn(x0) − f0(x0)) →d ∂dH(t)|t=0

where the process H is determined by

(i) H(t) ≥ Y(t) for all t ∈ Rd,

(ii)


Rd
(H(t) − Y(t))d(∂dH(t)) = 0, and

(iii) V∂dH[u, v) ≥ 0 for all u ≤ v ∈ Rd.

Partial results concerning Conjecture 3a were obtained in [37].

Conjecture 3b. As suggested in part by the covering number results of [10], the pointwise rate of convergence is
(n/(log n)d−1/2)1/3. This would entail an improved version of Proposition 4.1. In this case, we do not yet have conjectures
concerning the limiting distribution.
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