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ON THE DISTRIBUTION OF BROWNIAN AREAS 

BY MIHAEL PERMAN A. WELLNER'AND JON 

University of Ljubljana and University of Washington 

We study the distributions of the areas under the positive parts of a 
Brownian motion process B and a Brownian bridge process U :  with 
A + =  l i B + ( t ) d t  and A;= l i U f ( t ) d t , we use excursion theory to show 
that the Laplace transforms P + ( s )= E exp(-sA+) and *o+(s) = 

E exp(-sA;) of A+ and A ;  satisfy 

~ - l / ~ A i ( , i ) (1/3 - ]ghAi(t) d t )  
Lme-*'*+ (&s"') ds = 

f i ~ i ( A )- Air( A) 

and 

where Ai is Airy's function. At the same time, our approach via excursion 
theory unifies previous calculations of this type due to Kac, Groeneboom, 
Louchard, Shepp and TakLcs for other Brownian areas. Similarly, we use 
excursion theory to obtain recursion formulas for the moments of the 
"positive part" areas. We have not yet succeeded in inverting the double 
Laplace transforms because of the structure of the function appearing in 
the denominators, namely, f i ~ i (A) - Air( A). 

1. Introduction. Our goal in this paper is to study the distributions of 
the random areas 

(1.1) A i ( t )  o ds and A:= / l u i ( t )  d t ,= / ( B ' ( s )  0 

where B is a standard Brownian motion process, U is a Brownian bridge 
process and ff denotes the positive part of any real-valued function f on 
[O, 11: f t ( t )  = f ( t )  v 0. We also compare our calculations for A +  and A: with 
similar calculations for the related Brownian areas 

where e ( t ) is a Brownian excursion process and d ( t ) is a Brownian meander 
process; see, for example, Durrett and Iglehart (1977).We show how excur- 
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sion theory leads to a common structure for calculations for all of these 
Brownian areas. 

The "double Laplace transform" of the distribution of A, was found by 
Cifarelli (1975) and independently by Shepp (1982). The first level of inver- 
sion of this transform was accomplished by Rice (1982), and the second level 
was carried out by Johnson and Killeen (1983). In the case of A, the Laplace 
transform was found by Kac (19461, and this has been inverted and the 
density function tabled by Takacs (1993a). 

The double Laplace transform of A,,,,, was computed independently by 
Louchard (1984a) and Groeneboom (1989) (Groeneboom's paper was written 
in 1984), and the first stage of inversion was accomplished by Louchard 
(198413). Takhcs (1992b) carried out the second stage of inversion to obtain the 
distribution function explicitly. Takhcs also gave recursion formulas for the 
moments and pointed out an interesting connection between the distribution 
of A,,,,, and the supremum of a certain Gaussian process which was studied 
by Darling (1983). See Borodin (1984) for related results. 

Despite the considerable knowledge of the distributions of A, A,, A,,,,, 
and A,,,,, the distributions of A+ and A,f are apparently unknown. 

This paper presents two approaches to computing the double Laplace 
transforms. The first one uses random scaling and the master formulas from 
excursion theory and uses known results derived by Kac (1951) and Shepp 
(1982) for the double Laplace transforms of the random variables A and A,. 
This approach offers some new insight into the structure of such transforms. 
The second approach is the same as that used by Shepp (1982) and Louchard 
(1984a, b): we use Kac's formula [Kac (1951) and It6 and McKean (197411, or 
an appropriate conditioned version in the case of Brownian bridge U , to find 
formulas for the double Laplace transform of the general additive functionals 

and 

K,(t)  = l t k ( u ( s ) )  ds, 
0 

where 

for p ,  y 2 0. Specializing these formulas to the case y = P gives back the 
double transforms found by Kac (1946) and Shepp (1982), while taking the 
limit as y -t 0 yields the desired double transforms for the distributions of 
A+ and A:. 

We then use these double transforms to derive recurrence formulas for the 
moments of A+  and A:, and these in turn yield expansions for the distribu- 
tions of A+ and A,f in terms of Laguerre series much as in Takacs (1993a). 
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We have not yet succeeded in direct inversion of the double Laplace 
transforms. This requires more detailed knowledge about the function 

&Ai(u) -Air(u) 

in both cases. 


2. Statistical background. Suppose that XI,.  . . , Xn are i.i.d. with dis- 
tribution function F ,  and let F, be a fixed continuous distribution function. 
Consider testing 

H: F =  Fo versus K: F + ,  F,; 

here F +, F, means F(x) 2 F,(x) for all x and F(x) > F,( x) for some x. 
Under H the variables U, = Fo(Xi) are i.i.d. Uniform(0, 1)) while under K the 
Ui's have a distribution function G given by 

Note that G +, Go, where Go is the Uniform(0,l) distribution function. 
One simple statistic for testing H versus K is 

T: = - 6 ( U n  - 1/2) = j 1 6 ( ~ , ( t )- t )  dt =o j lu , ( t )  dt ,  
0 

where G,(t) = n-lC?= ,l,O,,l(U,) is the empirical distribution function of the 
U,'s, and U,,(t) = fi(Q3,(t) - t)  is the uniform empirical process (under H). 
The statistic Tz was apparently proposed by L. Moses; see Chapman (1958) 
and Birnbaum and Tang (1964). Under the null hypothesis H we have 
T,* -+, N(O,1/12), and for small sample sizes the distribution can even be 
calculated exactly; see, for example, Feller (1971)) Theorem la ,  page 28. Of 
course, another formulation of the limiting distribution is that 

here U is a standard Brownian bridge process on [0, 11. This follows from 
standard weak convergence arguments. 

Another appealing statistic for testing H versus K is 

-,CU+ = A:.( t )  dt  

Thus the limiting distribution of T,f is not normal, and is, in fact, unknown. 
This is part of the motivation for studying the distribution of A:. Another 
statistic related to Tn+ is the statistic S,f proposed by Riedwyl (1967): 
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Riedwyl tabulated the null distribution of S,+for 1I n r 12. I t  is easily seen 
that the asymptotic distribution of S,f under H is the same as T:, namely, 
that of A:. Riedwyl also considered the two-sided statistic S ,  defined by 

and tabulated its null distribution for 1In 12. Here S,  has the same 
asymptotic limiting null distribution as the two-sided test statistic 

o = j l l ~ , ( t ) l d t ,  

namely, the distribution of A, = /i/U(t)l dt. 

T, = l 1 1 6 ( ~ , ( t )- t)l d t  o 

3. Double Laplace transforms via excursions. Define q,h and 9' to 
be the Laplace transforms of the random variables K,(1) and K(1) defined in 
(1.4) and (1.5) for some ,f3, y 2 0, k(x) = p x + +  yx-: 

9,h(s) = E exp ( -SL 'k (~ ( t ) )  d t ) ,  

where B is standard BM and U is a standard Brownian bridge on [0, 11. This 
section will be concerned with the computation of the double Laplace trans- 
forms: 

The approach will be based on excursion theory and properties of Poisson 
point processes. Theorems 3.3 and 3.5 give suitable conditional versions of 
(3.9) and (3.10) from which the above transformations will follow by integra- 
tion. 

First some preliminary facts about excursions need to be established. 
Throughout this section let B be standard Brownian motion and let ( I , :  
t 2 0) stand for its local time process a t  level 0 in the standard normalization 
such that M = IBJ- 1 is a martingale. Furthermore, let g, = sup{u < t:  
B, = 0) denote the last exit time from 0 of B before time t. The following 
lemma is well known [see L6vy.(1948), Dynkin (1961) and Barlow, Pitman 
and Yor (1989)l. 

L E M , ~  The distribution ofg, = sup{u I 1:B, = 0) is Beta(l/2,1/2). 3.1. 
Given g,, the process (B,: 0 r t Ig,) is a Brownian bridge of length g,, and 
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the rescaled process ( B ( g , u ) /  6: 1) is a Brownian bridge indepen- 0 5 u I 

dent of g,. 


Let SA be an exponential random variable with parameter h independent 
of B. It  is clear from Lemma 3.1 that the process (B,: 0 Iu IgSh)is a 
Brownian bridge randomly rescaled to the interval [0 ,  gsA] by Brownian 
scaling. On the other hand, it is well known that the excursion of B that 
straddles S ,  can be thought of as the first marked excursion in the Poisson 
process of excursions with marks assigned independently with probability 
1 - e-"("1, where R ( e )  is the duration of the excursion e. The results on 
marked excursions are well known; for a detailed treatment, see Rogers and 
Williams (1987), page 418. The precise statement of the assertions is as 
follows. 

THEOREM3.1. Let (e,: s 2 0 )  be the excursion process of B in  the sense of 
1t8 and let SA  be an  exponential random variable with parameter h indepen-
dent of B.  

(i) The local time lsA during the excursion straddling S ,  has exponential 
distribution with parameter f i  and is independent of BSh. Moreover, Is* is 
independent of  the excursion e* = el(S,). 

(ii) Given IS*  = 1 ,  the process of excursions (e,: 0 < s < 1 )  is conditionally 
a Poisson process with It8 excursion law m given by m(de)  = e-AR(e)n(de) ,  
where n is 1t8's excursion law for B and R ( e )  denotes the duration of  the 
excursion. Moreover, (e,: 0 < s < 1 )  is independent of e* = el(,*,. 

(iii) The law n* of e* = is given by 

n*(e* E de)  = ( 1  - e - A R ( e ) ) n ( d e ) / f i .  

Let f be a measurable nonnegative function and define the additive 
functional F as 

F ( t )  = I t f ( ~ , )d u .  
0 

The following proposition can be derived from last exit theorems [see Getoor 
(1979)l.For an alternative discussion of the distribution of the two pairs of 
random variables defined in (3.11), see Biane and Yor (1988). Here a proof 
based on Theorem 3.1 will be given. 

3.1.PROPOSITION The two pairs of random variables 

(3.11) ( F ( g ~ A )  ( F ( S A )  F ( g s A )Bs*)7 l ( g s h ) )  and - 7 

are independent. 

PROOF. A simple calculation shows that gsA and S ,  - gsA are indepen- 
dent. By Lemma 3.1, given gSh,the process (B, :  0 I t I gsA)is conditionally a 
Brownian bridge on [0 ,  gSh].  On the other hand, the random pair on the right 
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is a functional of e*, as defined in Theorem 3.1, and S, - gSI. TO conclude, we 
need to argue that gSAis independent of e*. However, this follows from the 
independence of Is* and e* and the conditional independence of (e,: 0 < s < I) 
and e* , given 1 = I. Ci 

The master formulas for Poisson processes can now be applied to the 
process (e,: 0 < s < I(gsA)) conditioned on I(gsA). See Revuz and Yor (19941, 
page 452, for details. Denote Ig(Shj by I,. Using Theorem 3.l(ii), 

where F(u) = /f('"f(u(s)) ds is the integral over the lifetime of the excursion 
u and the integral on the right-hand side of (3.12) is over the space of 
excursions. In the sequel (3.12) will be applied with the function f equal to 
k(x)  = pxzl++ yx-. I t  will be convenient to introduce the function 

where now A(u) = /f(")Iu(s)I ds is the absolute area of the excursion u. By 
scaling properties of 1t6's excursion law, it is easy to see that h has the 
scaling property 

(3.13) h(  p ,  A) = h(c3I2p,CA) /& for c > 0. 

To compute h explicitly, note that the approach based on Kac's formula in 
Section 3 gives the double Laplace transform of A,, which agrees with the 
formula given by Shepp (1982). 

-AS Ai( A) 
(3.14) jmf ex^(- V % ~ ~ / ~ A , ) )= -67 

o 6 
ds 

Az (A) ' 

where Ai is the Airy function [see Abramowitz and Stegun (1965), pages 
446-4511. 

On the other hand, by Lemma 3.1 the process (B,: 0 I t IgSh)is just a 
randomly rescaled Brownian bridge and the process 

is a Brownian bridge on [O,l] independent of gsA. Therefore, 
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where A, and A(t) are defined in (1.1) and (1.2), and A, is independent of 
g,, This equality in law allows us to compute h explicitly. 

PROPOSITION3.2. The function h is given by 

PROOF. An elementary computation shows that the distribution of gsAis 
r(1/2, A). By multiplying (3.14) by 6and dividing by 6,the left-hand side 
becomes the Laplace transform of figi^/2~o.By (3.15), then, 

Formula (3.12) applied to A gives that the conditional double Laplace trans-
form (3.14) equals 

By Theorem 3.l(i) the distribution of 1, = lsA is exponential with parameter 
m,and integration gives 

This identity, the scaling property (3.13) of h and some straightforward 
calculations conclude the proof. 

The properties of Poisson point processes can now be used to derive 
expressions for the Laplace transform of Af(gsA)and A-(gsA) or the joint 
Laplace transform of these two. Recall that 1, = lsA,where S, is an exponen-
tial random variable with parameter h independent of B. Further, recall the 
definitions of K(t) and K,(t) in (1.5) and (1.4). 

THEOREM3.3. For 8 ,  y > 0 let k(x) = @xi+ yx-. Then, for h > 0, 

and, consequently, 

PROOF. By Theorem 3.1 conditionally on 1, = 1, the positive and negative 
excursions of (e,: 0 < s < 1) are independent Poisson processes with excur-
sion law m/2. Formula (3.16) now follows from (3.12). The second assertion 
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follows by integration noting that, by Brownian scaling and Lemma 3.1, 
K(gsA)=, gi!2K,, where gsAand KOare independent. 

We now turn to the computation of the double Laplace transform (3.10). A 
classical result by Kac (1946), which also appears as a special case in the 
proof given in Section 3, states the following. 

THEOREM3.4. For A > 0 one has 

Based on this result, an analogous formula for the double Laplace trans-
form of K(t) is given by the following result. 

THEOREM3.5. Let P, y > 0 and let k(x) = fixf + yx-. For A > 0 let 

6(3j ,"Ai(s)  ds - 1) 
+(A) = - 3Ai(A) 

and 4 ( x )  = +(%I 
Then 

(3.18) E(exp(-K(SA))) = E ( ~ x P ( - K ( ~ s ~ ) ) ) ( ~ (P)/2 + 6 ( ~ ) / 2 ) .  

Consequently, 

PROOF. By (3.1) the random variables K(SA)- K(gsA) and K(gsA)are 
independent. The Laplace transform of the second is given in Theorem 3.3. 
The compute the Laplace transform of the first term, note that the sign of the 
excursion straddling S, is independent of its absolute area and hence 

E(~~P( -K(s* )- W S A ) ) )  

(3.20) = E ( ~ X P (-B(A(SA)- ~ ( g s , ) ) ])/2 

+ ~ ( e x p ( - (A(sA) -A(.gSA)))j/2. 

By Proposition 3.1 again 
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The left-hand side of (3.21) is given in Theorem 3.4 and the second term in 
the product on the right-hand side is given in Theorem 3.3. Dividing, it 
follows, for p = a, 

However, by the scaling properties of BM, 

where A' = 21/3h/p2/3. The formula for the integral (3.19) follows by scaling 
because K(t) =, t3/'K(l). 

REMARK3.1. Note that l,"Ai(s) ds = 1/3 [Abramowitz and Stegun (19651, 
page 4481 and hence the function 4 can also be expressed as 

The above results have a few simple corollaries. 

C o R o ~ ~ m 3 . 1 .When / 3=  1and y =  O [ s o k ( x ) = x f l ,  wehave 

and 

A-'/'Ai(h) + (1/3 - lgAAi(t) d t )
(3.24) 1'6-"'Pf(fis3/') ds = 

o f i ~ i (A) -Ait(A) 

PROOF. Equation (3.23) follows from the master formula (3.12) because 
the positive excursions are a Poisson point process with mean measure m/2 
and hence the second term on the right-hand side of (3.16) disappears. The 
rest follows just as in Theorem 3.3. 

The second identity follows from (3.18). For y = 0 one has 

which follows easily from (3.16)) and 

E (~~P( -K( s , )  - ~ ( g s , ) ) )= 6(P ) / 2  + 1/29 

which follows from (3.20). Now take /3 = fi. 
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The following corollary is apparently known to Takhcs [see Takhcs (1993b)], 
but we do not know of any published derivation. 

COROLLARY3.2. Let A,,,, be the area of the absolute Brownian meander 
as  defined in (1.3), and let qmean(s)= E exp(-sAmean).For A > 0, 

PROOF. One needs to notice that, by the scaling properties of BM, 
3/ 2AA(',) -A( g ~ , )=S gs, mean 7 

where the two random variables on the right-hand side are independent. Now 
(3.25) follows from (3.22). 

For comparison, we also state the result of Louchard (1984a) and Groene-
boom (1989) for A,,,,, here. For an  equivalent statement with a different 
proof, see Biane and Yor (1987), page 75. Takhcs (1992a) has inverted these 
transforms and computed P(A,,,,, Ix). 

COROLLARP~.~ .Let 

%(s)  = ~ ( e x P j - S j o ~ e ( " )d u ) ) ,  

where e is the standard Brownian excursion on [0, 11. For A > 0, 

ds  
by scaling and n (R(e)  E ds) = -d 5 2  
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All the changes in the order of integration are justified by Fubini. The last 
line follows from the identity j(1 - e-"(")n(de) = m,which is contained 
in Theorem 3.l(iii). Substituting for h, one obtains (3.26). 

For p = y = 1and hence k(x) = 1x1, the double Laplace transform for A, 
has been inverted in terms of Airy functions in Rice (1982) and Johnson and 
Killeen (1983); the double Laplace transform for A(1) has been inverted by 
Kac (1946) and Takhcs (1992a, b); and the transform (3.26) has been inverted 
by Louchard (1984b) and TakAcs (1992b). We have not yet accomplished a 
similar inversion for the case y = 0, but we do use the transforms in Section 4 
to develop recursions for the moment sequences of A t  and A'. 

4. The double Laplace transforms via Kac's formula. Theorems 3.3 
and 3.5 can also be derived via Kac's formula by solving a differential 
equation. For completeness, the proof of the two main results in the previous 
section is repeated here. 

PROOFOF THEOREMS3.3 AND 3.5. First, writing E, for expectation condi-
tional on the process B starting at x a t  t = 0, Kac's formula [see, e.g., It6 and 
McKean (19741, page 541 says that 

is the bounded solution of 

(4.28) (A - D,)u = f ,  
where Dh is the differential operator 

(4.29) Dhu(x)  $urr(x)- k(x)u(x) .  

Hence, letting 0 < g,r and 0 < g,L be two independent solutions of the 
homogeneous equation 

and writing W = gig,-glgLfor the Wronskian, 

for the Green's function, it is classical that the solution of the inhomogeneous 
equation (4.28) is given by 

(4.32) u(a) = 2 / ~ ( a ,b) f (b)  db. 

Hence, in particular, when f = 1and a = 0 we have 
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By arguing as in Shepp (1982),it is easily seen that the corresponding result 
for l;k(U(s))ds is as follows: 

We now use (4.33)and (4.34)for the particular k given in (1.6).For this k the 
homogeneous differential equation (4.30)becomes 

It is easily verified that the two solutions g ,  and g ,  that we seek are given 
by g,(x) = g2 ( - x ;  y, p ) ,  where g2  = g2(.;p ,  y )  is defined by 

where Ai and Bi are the two standard independent solutions of w"( z )-
z w ( z )  = 0 with Ai decreasing and Bi increasing on (0,a);see Abramowitz 
and Stegun (1965),page 446. Here C, and C2 are constants chosen so that 
g2(0 + ) = g,(O - ) and gh(O + ) = gh(O - ). It follows by straightforward 
calculation that 

- ~ i ' ( ( 2 y ) ' / ~ A / y )~ i ( ( 2 y ) " ~ A / y ) ]  

and 

c2 = [ - (  P / Y )  1 / 3 ~ i ( ( 2 y ) 1 / 3 b / Y ) ~ i ' ( ( 2 ~ ) 1 1 3 h / ~ )  

- ~ i ( ( 2 ~ ) ~ / ~ h / ~ ) A i ' ( ( 2 ~ ) ~ / ~ h / y ) ]  

x [ ~ i ( ( 2 ~ ) ~ / ~ b / y ) ~ i ' ( ( 2 y ) ' / ~ h / y )  

Substitution of these into (4.33)and (4.34)concludes the proof. 

5. Moments of A; and A+.  Now we use the methods developed in 
Shepp (1982) and Takhcs (1993a) to obtain recursion formulas for the mo-
ments 

kph+= E(A,+) , V h + =  E ( A + ) ' ,  k = 1 ,2  . . . ,  
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of A,+ and A+. For comparison, we first state the recursion relations found 
by Shepp (1982) and Takrics (1993a) for 

p , = ~ ( ~ ; ) ,  v , - ~ ( ~ k ) ,  k = o , i , 2, . . . .  

For n = 0,1,2, .:. , define 

and 

3n -I- 2 
(5.38) ~n %'jTjT 

and set yo - 1, p, = 1and 

r (3n  + 1/2) 1 
(5.39) y G" r ( n + 1 / 2 )  (36)"n! 

and 
(5,40) Bn ~ r c+ z3 ( 2 ~ '- 1)PrL - I 

for n =  0,1,2, . . .  . 

THEOREM5.1 [Shepp (1982) and Takrics (1993a)l. For n = 1,2, .. . , 

and 
n 6k + 1 

(5.42) Kn = pn + C K n - ~  ----
k = l  6k - 1Y h '  

PROOF. The recursion for {L,) follows by rewriting Shepp (19821, formula 
(1.8): divide both sides of Shepp's (1.8) by n!(36In and rearrange to obtain 
(5.41). The recursion for {K,) is exactly Takrics (1993a), formula (24). 

A recursion for the moments of A,,,,, is given by Takrics (1992b). 
Now, for n = 0,1,2, . .., define 

In the sequel we will also need the moments of the Brownian meander area: 

3n + 1 
(5,45) pn = E(A",.,) and Bn = ~ ~ I ' ( ~ , ) ( f i ) ~ / n ! r ( 1 / 2 )  
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for n = 1,2, . . . . Now let S,  be an exponential random variable independent 
of the Brownian motion B, and define A(S,), A(gsA), A+(S,)  and A f ( g s A )  
just as in Section 2. The quantities L,, K,, L,f and K; can also be rewritten 
using the scaling properties of BM and the independence property from 
Proposition 3.1 as 

and 

and 

(5.51) 

The identity (5.49) follows from the fact that the sign of the excursion 
straddling S ,  is independent of A + ( g s l )and of A ( S l )  - A(gsl) .  To derive 
recurrence formulas similar to those in Theorem 5.1, note the following 
result. 

PROPOSITION5.1. Let f , ,  f ,  be the densities of A(gsA) and A i (gSA) ,  respec- 
tively. The densities satisfy the equation 

(5:52) f 2  = 2 f l  - f 1 * f 2 ,  

where * denotes convolution. 
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PROOF. From Theorem 3.3 we know that the Laplace transforms f; and 
f2  are 

For (5.52) to hold the Laplace transforms would have to satisfy the relation 

f 2  = 2 6  - A f 2 .  

That they do is checked by straightforward calculation. 

COROLLARY5.1. For n = 1,2, ..., 

PROOF. Multiplying (5.52) by x n  and integrating, one obtains 

Substituting the expressions for L, and L,+ gives (5.54). 

For two sequences a,, a,, .. . and b,, b,, ... we will write a * b for the 
convolution: (a  * b), = Ct=,akb,-,. In this notation, setting L, = 1 and 
L> 1,the identity (5.54) can also be written as 

(5.55) L + =  2L - L * L+. 

COROLLARY5.2. For n = 0,1,2,..., 

and 

(5.58) 

PROOF.For k = 0,1,. .. denote 7, = 2yk/(6k - 1). The recurrence for-
mula (5.41) can be rewritten as 

(5.59) O= y + L * y + L * j J .  
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From (5.55) we have L = ( L f+ L * L ' ) /2 .  Plugging this into the above 
formula, we get 

0 = y +  ( L + + L * L f p y / 2 +  ( L f + L * L + ) * j / 2 .  

Rearranging the terms using associativity and commutativity of convolutions 
and multiplying by 2 yields 

0 = 2 y + L + * y +  j * L T + ( L * y + L * y ) * L T .  

However, the term in parentheses equals - y by (5.59), so we obtain 

(5.60) L f * j =  - Z Y ,  

which is precisely (5.56). 
To prove (5.57), note that (5.42) says 

(5.61) O = p + K * y + K * j .  

Substituting K = L * R and L = ( L + +  L f  * L ) / 2 ,  recalling that K f  = 

L f  * R / 2  + L + / 2  and rearranging terms gives 

O = p + K ' * y + K + s j +  ( L * y + L x j ) * K t
(5.62) 

- $ L f * ( L * y  + L * j )  - $ L r * y - $ L + * j .  

The term in the first set of parentheses is - y by (5.59), and similarly the 
term in the second set of parentheses is also - y. By (5.601, the above identity 
becomes 

O = p + y + K + * j ,  
which is (5.57). 

Multiply (5.59) by R in the sense of convolutions. Note that R * L = K .  
Comparing the resulting identity with (5.61) shows that 

y * R = P ,  
which is (5.58). 

Now define A, = / :Up( t )  d t  and Ap=/ i B P ( t )dt .  It follows by symmetry 
that A;=, A: and Ap=, A', but in both cases they are dependent. The 
following calculation of covariances and correlations follows easily from our 
moment calculations and A = A++ Ap,  A, = A:+ A; [or /,1B(t) d t  = A+-
A - ,  / i U ( t )d t  = A:- A,]: 

1 ?I-
COV(A,+,A,) = -- -,

120 128 

Tables 1 and 2 were computed using Mathematica; see Wolfram (1991). 
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TABLE1 

First 10 moments o f A o , A, A: and A +  


6. Expansions of the distributions in Laguerre series. Here we 
follow Takhcs (1993a) to express the distribution functions 

H ( x )  = P(A ,  4 x ) ,  

H + ( x )  -= P(A ,+<  x ) ,  

K ( x )  -= P ( A  4 x) 

and 

K + ( x )  = P ( A f  4 x) 

and their densities h -= H',  h + = Hk , k = K t  and k + = K+ in terms of 
Laguerre series. The generalized Laguerre polynomials, 

defined for n = 0,1,2 , . . . and oi > -1, are orthogonal on the interval 0 4 
x < rn with respect to the Gamma(& + 1 , l )  density 

ga+ l (x )  = e - x x a / r ( a  + 1) .  
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TABLE2 
Numerical values of the first 10 moments ofA,,  A ,  A,+ and A' 

Let 

be the corresponding Gamma(@ + 1 , l )  distribution function. 
Now we take the approach of Takacs (1993a) to expand the distributions 

H+ and K+ as Laguerre series. In the process, we will correct a few minor 
typographical errors on page 196 of Takacs (1993a). By using the results of 
Uspensky (1927) and Nasarow (1931) [Sansone (1959), Chapter 41, we can 
show that, for a distribution H of a nonnegative random variable Y which is 
determined by its moments pr = EYr,  r = 1 ,2 , .. . (such as the areas A, A,, 
A+  and A:), 

[this corrects formula (68) in Takacs (1993a)l and 

TABLE3 
Values of a and b 
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TABLE4 

Numerical values of a and b 


for x 2 0, where a > 0, b > 0 and 

for n = 0,1,2,. . . [(6.63) corrects formula (67) in TakAcs (1993a)l. 
As noted in TakAcs (1993a1, if we choose 

then the first and second Laguerre coefficients, c, and c,, are both 0, and the 
next term in the series to enter is the third term. Tables 3 and 4 give the 
values of a and b [and hence the leading Gamma(a, b) term] for the four 
random variables A,, A, A,+ and At. We have made numerical comparisons 
of H and k computed via the Laguerre expansions with H and k computed 
via the formulas obtained by inversion of the double Laplace transform in 
Johnson and Killeen (1983) and TakAcs (1993a), respectively, and have 
obtained excellent agreement. As seen in Table 5 ,  however, the Laguerre 
coefficients c& and c; decay much more slowly than the corresponding 

TABLE5 

Laguerre coefficients con ,c,, c,', and c,' 
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coefficients con and c,. This may be related to the fact that the leading term 
of the expansions, which is a Gamma(a,, b )  distribution, has a substantially 
greater than 1in the case of both A, and A, but a less than 1(so that the 
resulting Gamma density is unbounded at the origin) in the case of both A,f 
and A+. Thus it seems that the Laguerre series obtained by this method will 
require a very large number of terms to yield numerically accurate values of 
H+ and K+. 
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