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Abstract

Distributions of functionals of Brownian bridge arise as limiting distributions in non-parametric
statistics. In this paper we will give a derivation of distributions of extrema of the Brownian bridge based
on excursion theory for Brownian motion. The idea of rescaling and conditioning on the local time has
been used widely in the literature. In this paper it is used to give a unified derivation of a number of
known distributions, and a few new ones. Particular cases of calculations include the distribution of the
Kolmogorov–Smirnov statistic and the Kuiper statistic.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Distributions of functionals of Brownian bridge arise as limiting distributions in non-
parametric statistics. The distribution of the maximum of the absolute value of a Brownian bridge
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is the basis for the Kolmogorov–Smirnov non-parametric test of goodness of fit to give one
example. For an overview of statistical applications see [23].

Let (Ut : 0 ≤ t ≤ 1) be the standard Brownian bridge and define

M+
= max

0≤t≤1
Ut , M−

= − min
0≤t≤1

Ut (1.1)

and

m = min{M+,M−
} and M = max{M+,M−

}. (1.2)

The derivation of the distribution of M was given by Kolmogorov [12]. For an elementary
derivation see [9]. In this paper we give a derivation of the joint distribution of M+ and M−

based on excursion theory for Brownian motion. The distributional results can be used to derive
known distributions like the distribution of the Kuiper statistic K = M+

+M−, or the distribution
of the difference D = M+

− M− which seems to be new.
Let (Bt : t ≥ 0) be standard Brownian motion. Define the last exit time from 0 of B before

time t as

gt = sup{s ≤ t : Bs = 0}. (1.3)

The following lemma is well known and will be used to derive distributional equalities needed
later. See [15,7,1].

Theorem 1. The distribution of g1 is Beta(1/2, 1/2). Given g1, the process (Bt : 0 ≤ t ≤ g1)

is a Brownian bridge of length g1, and the rescaled process (B(g1u)/
√

g1 : 0 ≤ u ≤ 1) is a
Brownian bridge independent of g1.

Let Sθ ∼ exp(θ) be independent from B. From scaling properties of Brownian motion and
Theorem 1 it follows that the process BtgSθ

√gSθ
: 0 ≤ t ≤ 1


(1.4)

is a Brownian bridge independent of gSθ . Furthermore, the law of gSθ is equal to the law of
g1Sθ where g1 and Sθ are assumed to be independent which is known to be Γ (1/2, θ); here
X ∼ Γ (a, b) means that X has the Gamma density

p(x; a, b) =
b(bx)a−1

Γ (a)
exp(−bx)1(0,∞)(x).

Let U be the standard Brownian bridge. Let γ ∼ Γ (1/2, θ) be independent from U and let

Ũt =
√
γ Ut/γ (1.5)

for 0 ≤ t ≤ γ . The process (Ũt : 0 ≤ t ≤ γ ) is called the randomly rescaled Brownian bridge.
From the independence of gSθ and the process defined in (1.4) we have

(Ũt : 0 ≤ t ≤ γ )
d
=

Bt : 0 ≤ t ≤ gSθ


. (1.6)
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This equality in law can be exploited to derive Laplace transforms of distributions of functionals
of Brownian bridge. From (1.6) it follows that

√
γM+,

√
γM−

 d
=


max

0≤t≤gSθ

Bt ,− min
0≤t≤gSθ

Bt


. (1.7)

Excursion theory will provide the distribution of the pair on the right in (1.7) which in turn is used
to derive the Laplace transform of the cumulative distribution function of the pair (M+,M−).
The transform can be inverted in the form of infinite series. The method has been used widely
in the literature and is well known. See [18,4,19,17] for results based on this identity in law.
The contribution of this paper is a unified way to derive explicitly the distributions of functionals
related to the pair (M+,M−).

2. Brownian excursions

The paths of Brownian motion B are continuous functions, hence the complements of their
zero sets are unions of disjoint open intervals. The path of Brownian motion restricted to any such
open interval is called an excursion away from 0. Since Brownian motion is recurrent all open
intervals will be bounded. The path can thus be broken up into an infinite string of excursions
and every excursion can be identified with a function in the set of functions

U = {w ∈ C[0,∞), w(0) = 0, ∃R > 0, w(t) ≠ 0 iff t ∈ (0, R)}. (2.1)

To describe the structure of excursions let (L(t) : t ≥ 0) be the local time process at level 0 for
Brownian motion normalized so that

L(t) d
= max

0≤s≤t
Bs . (2.2)

Local time is an adapted nondecreasing process which only increases on the zero set of Brownian
motion and L(t1) < L(t2) for t1 < t2 whenever the interval (t1, t2) contains a zero of B. Hence
the local time during two different excursions is different and constant during each excursion.
See [20] for definitions and fundamental results on local time. Let τs = inf{u : L(u) > s} be
the right continuous inverse of the local time process L(t). From the properties of local time we
infer that every excursion of Brownian motion away from 0 is of the form

es(u) = 1[0≤u≤τs−τs−)(u) Bτs−+u (2.3)

for those s at which τs has a jump. Let e be the point process defined on the abstract space
(0,∞)× U defined as

e = {(s, es): s > 0, τs − τs− > 0}. (2.4)

The following theorem by Itô is one of his great insights.

Theorem 2. The point process e is a Poisson process on (0,∞) × U with mean measure given
by λ×n where λ is the Lebesgue measure on (0,∞) and n is a σ -finite measure on the functions
space U equipped with the σ -field generated by the coordinate maps.

For a proof see [20, p. 457]. Note that the excursions of the process (Bt : 0 ≤ t ≤ gSθ ) are
a portion of the excursion process of Brownian motion. It will be shown that the law of this
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portion can be described and used to derive the distribution of the pair of variables on the right
side of (1.7).

If the points of a Poisson process on an abstract space with mean measureµ are marked in such
a way that each point receives a mark independently of other points with probability depending
on the position of the point then the point processes of marked and unmarked excursions are two
independent Poisson processes. If at position x a mark is assigned with probability f (x) then
the marked and unmarked Poisson processes have mean measures f · µ and (1 − f ) · µ. See
[11, p. 55], for definitions and proof.

Marking will be applied to the Poisson process of excursions. Define the duration of an
excursion w ∈ U as

R(w) = sup{u:w(u) ≠ 0}

and assign marks to the points of the process of excursions with probability 1 − e−θR(w) for
θ > 0. Define T = inf{s: es is marked}.

Theorem 3. Let ẽ be the point process {(s, es): 0 < s < T }.

(i) The random variable T is exponential with parameter
√

2θ .
(ii) Conditionally on T = t , the point process ẽ is a Poisson process in the space (0, t) × U

with mean measure λ× n · e−θR(w) where λ is the Lebesgue measure on (0, t) and n is Itô’s
excursion law for Brownian motion.

(iii) Positive and negative excursions of ẽ are conditionally independent Poisson processes given
T = t .

Proof. For the Itô measure n we have

n(R ∈ dr) =
dr

√
2πr3

.

See [20, p. 459]. The probability that there is no marked excursion in (0, t)× U is given by

exp


−


(0,t)×U

(1 − e−θr ) dt n(R ∈ dr)


= e−t
√

2θ .

The integral above is given e.g. in [2, p. 73]. It follows that P(T > t) = e−t
√

2θ which proves (i).
The assertions in (ii) and (iii) follow from independence properties of Poisson processes bearing
in mind that positive and negative excursions of e are independent Poisson processes and that
marking is independent of the sign of excursions. �

The law of excursions of (Bt : 0 ≤ t ≤ gSθ ) is described in the following theorem. See also
[21, p. 418].

Theorem 4. The law of the point process ((s, es): 0 < s < L(Sθ )) is described by:

(i) L(Sθ ) is exponential with parameter
√

2θ .
(ii) Conditionally on L(Sθ ) = t the process ((s, es): 0 < s < L(Sθ )) is a Poisson process on

(0, t)× U with mean measure λ× n · e−θR(w).
(iii) Conditionally on L(Sθ ) = t the positive and negative excursions of ((s, es): 0 < s < L(Sθ ))

are independent Poisson processes.
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Proof. Let N be a Poisson process with intensity θ on (0,∞) independent of B. If es is an
excursion on the open interval of length R then by independence the open interval contains a
point of N with probability 1 − e−θR . Declare all excursions that contain a point of N to be
marked. By independence properties of N marks are assigned independently. The leftmost point
of N will be an exponential random variable Sθ independent of B. It follows that the excursion
straddling Sθ is exactly the first marked excursion of the excursion process e. Hence the excursion
process of (Bt : 0 ≤ t ≤ gSθ ) is exactly the portion of the excursion process e up to the first
marked excursion. The assertions (i), (ii) and (iii) follow from Theorem 3. �

Let M+,M− and M be as defined in Section 1. Let U be a Brownian bridge and γ a Γ (1/2, θ)
random variable independent of U. Some preliminary calculations are needed to find explicitly
the distribution of (

√
γM+,

√
γM−).

The reflection principle for Brownian motion states, see [3, p. 126, formula 1.1.8], that for
x > 0 and z < y < x

P


max
0≤t≤1

Bt ≥ x, z < B1 < y


= P (2x − y < B1 < 2x − z) . (2.5)

Brownian bridge is Brownian motion conditioned to be 0 at time t = 1 so by (2.5) for x > 0

P(M+
≥ x) = lim

ϵ→0
P


max
0≤t≤1

Bt ≥ x | |B1| ≤ ϵ


= lim

ϵ→0
P


max
0≤t≤1

Bt ≥ x, |B1| ≤ ϵ


/P (|B1| ≤ ϵ)

= lim
ϵ→0

P (2x − ϵ ≤ B1 ≤ 2x + ϵ) /P (|B1| ≤ ϵ)

= e−2x2
. (2.6)

It follows from the distribution of M+ given by (2.6) that

P(
√
γM+

≥ x) =

θ/π


∞

0
exp(−2x2/s)s−1/2e−θsds

= exp(−2x
√

2θ). (2.7)

The integral is given in [16, p. 41, formula 5.28].
Turning to excursions recall that R(w) stands for the length of the excursion and denote

w+
= maxu w(u). Define for x > 0

m(x) =


{w+>x}

e−θR(w)n(dw).

Theorem 5. The law of the triple
max

0≤t≤gSθ

Bt ,− min
0≤t≤gSθ

Bt , L(Sθ )


is described by:

(i) L(Sθ ) is exponential with parameter
√

2θ .
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(ii) The random variables max0≤t≤gSθ
Bt and − min0≤t≤gSθ

Bt are conditionally independent
given L(Sθ ) = t with the same conditional distribution.

(iii)

P


max

0≤t≤gSθ

Bt ≤ x |L(Sθ ) = t


= e−tm(x).

(iv)

m(x) =

√
2θe−2x

√
2θ

1 − e−2x
√

2θ
. (2.8)

Proof. (i) is proved in Theorem 4. The point processes of positive and negative excursions
of ((s, es): 0 < s < L(Sθ )) are conditionally independent given L(Sθ ) = t by Theorem 4.
Since max0≤t≤gSθ

Bt is a function of positive and − min0≤t≤gSθ
Bt a function of negative

excursions conditional independence follows. Equality of conditional distributions follows
by symmetry. The process


(s, e+

s ): 0 < s < L(Sθ )


is a measurable map of the process
((s, es): 0 < s < L(Sθ )) hence conditionally on L(Sθ ) = t a Poisson process on (0, t)× (0,∞);
see [11]. Conditionally on L(Sθ ) = t we have that max0≤t≤gSθ

Bt ≤ x if there is no point
of

(s, e+

s ): 0 < s < L(Sθ )


in the set (0, t) × (x,∞). The measure of this set is tm(x) by
Theorem 4(ii). The assertion (iii) follows. By unconditioning

P( max
0≤t≤gSθ

Bt > x) =
√

2θ


∞

0
e−

√
2θ t (1 − e−tm(x)) dt

=
m(x)

√
2θ + m(x)

. (2.9)

Comparing (2.7) and (2.9) we obtain that

m(x)
√

2θ + m(x)
= exp


−2x

√
2θ

. (2.10)

(iv) follows by solving for m(x). �
The law of the triple is in accordance with formula (53) in [19].

3. Examples of calculations

3.1. Distributions of M and m

Let m and M be defined as in (1.2). By (1.7) the random variables max0≤t≤gSθ
Bt and

√
γM+

have the same distribution. We compute, by conditioning on L(Sθ ) and using Theorem 5,

P(
√
γM ≤ x) = P(

√
γM+

≤ x,
√
γM−

≤ x)

= P


max

0≤t≤gSθ

Bt ≤ x, − min
0≤t≤gSθ

Bt ≤ x



= E


P


max

0≤t≤gSθ

Bt ≤ x, − min
0≤t≤gSθ

Bt ≤ x |L(Sθ )


= E (exp(−2L(Sθ )m(x)))
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=


∞

0

√
2θ exp(−

√
2θv) exp(−2vm(x))dx

=

√
2θ

√
2θ + 2m(x)

= tanh(x
√

2θ) (3.1)

where we used (2.8) in the last step. Thus

P(
√
γM ≤ x) =

√
2θ

√
2θ + 2m(x)

= tanh(x
√

2θ). (3.2)

Let FM be the cumulative distribution function of M . Writing out (3.2), taking into account the
independence of M and γ and dividing both sides by

√
θ we get

1
√
π


∞

0
FM (x/

√
s)s−1/2e−θsds =

tanh(x
√

2θ)
√
θ

. (3.3)

Oberhettinger and Badii [16, p. 294, formula 8.51], give the inverse of the Laplace transform on
the right of (3.3) as

1
√
π

FM (x/
√

s)s−1/2
=

1
√

2x
θ2(0|s/(2x2))

=
1

√
2x

√
2x

√
πs

∞
k=−∞

(−1)k exp(−2k2x2/s).

This yields

FM (z) =

∞
k=−∞

(−1)k exp(−2k2z2),

or

1 − FM (z) = 2
∞

k=1

(−1)k+1 exp(−2k2z2),

which is the formula for the distribution of the Kolmogorov–Smirnov test statistic.
Turning to m = min{M+,M−

} observe that by Theorem 5

P
√
γ m > x


=

√
2θ


∞

0
e−

√
2θ t


1 − e−tm(x)

2
dt. (3.4)

Integration yields

P
√
γ m > x


= 1 −

2
√

2θ
√

2θ + m(x)
+

√
2θ

√
2θ + 2m(x)

. (3.5)

Denote by Fm the distribution function of m. From (3.5), independence of m and γ and dividing
both sides by

√
θ we get

1
√
π


∞

0


1 − Fm(x/

√
s)


s−1/2e−θsds =
tanh(x

√
2θ)

√
θ

+
2e−2x

√
2θ

√
θ

−
1

√
θ
.
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The first term has been inverted above, the second is given by Oberhettinger and Badii [16,
p. 258, formula 5.87], and the third is elementary. Substituting z for x/

√
s one gets

1 − Fm(z) =

∞
k=−∞

(−1)k exp(−2k2z2)+ 2e−2z2
− 1

= 2
∞

k=2

(−1)k exp(−2k2z2). (3.6)

3.2. Joint distributions, sums, differences, quotients

In this section the distributions of various functions of the pair (M+,M−) will be derived.
Let K ≡ M+

+ M−, the Kuiper (or range) statistic, L ≡ M+
− M−, the difference statistic, and

let Q ≡ M+/M−, the ratio statistic.

Theorem 6. (i) The joint distribution of (M+,M−) is given for z, w > 0 by

P(M+
≤ z,M−

≤ w) =

∞
k=−∞

exp(−2k2(z + w)2)

−

∞
k=−∞

exp

−2(k(z + w)+ z)2


. (3.7)

(ii) For x > 0,

FK (x) = P(M+
+ M−

≤ x) =

∞
k=−∞

(1 − 4k2x2)e−2k2x2
. (3.8)

(iii) For x > 0,

1 − FL(x) = P(M+
− M−

≥ x) =

∞
k=1

1
4k2 − 1

· e−2k2x2
. (3.9)

(iv) For x > 0,

FQ(x) = P(Q ≤ x) =
1

z + 1

1 −

π zcot

π z

z+1


z + 1

 . (3.10)

Remark 1. The formula for the joint distribution in (i) is in agreement with Shorack and
Wellner [23, formula (2.2.22), p. 39].

Remark 2. The result (ii) is in agreement with Kuiper [14] and with Dudley [6, Proposition
22.10, p. 22.6]. Vervaat [24] gives a construction of standard Brownian excursion from a
Brownian bridge. Let U be a Brownian bridge [0, 1] and let σ be the time when U attains its
minimum on [0, 1] (σ is a.s. unique). Then the process (e(t): 0 ≤ t ≤ 1) defined by

e(t) = Uσ+t (mod1) − Uσ (t)

is a standard Brownian excursion. It is a simple consequence of this transformation that the
Kuiper statistic has the distribution of the maximum of the standard Brownian excursion and
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(3.8) is another derivation of the distribution of this maximum. Further results for range statistics
are given by Feller [8] and Salminen and Vallois [22].

Remark 3. Note that the distribution of M+
−M− is symmetric about 0. For a different approach

for Brownian motion instead of Brownian bridge see [13].

Remark 4. The result in (iv) is in accordance with the distribution for the ratio Q = M+/(M+
+

M−) given in [5]. The derivation of the distribution of Q based on rescaling arguments is given
in [19] and can be derived from the above result for FQ .

Proof. By unconditioning in Theorem 5

P(
√
γM+

≤ x,
√
γM−

≤ y) =

√
2θ

√
2θ + m(x)+ m(y)

=
(1 − e−2x

√
2θ )(1 − e−2y

√
2θ )

1 − e−2x
√

2θe−2y
√

2θ

=
(ex

√
2θ

− e−x
√

2θ )(ey
√

2θ
− e−y

√
2θ )

e(x+y)
√

2θ − e−(x+y)
√

2θ

= 2
sinh(x

√
2θ) sinh(y

√
2θ)

sinh((x + y)
√

2θ)

=
cosh((x + y)

√
2θ)− cosh((x − y)

√
2θ)

sinh((x + y)
√

2θ)

= coth((x + y)
√

2θ)−
cosh((x − y)

√
2θ)

sinh((x + y)
√

2θ)
. (3.11)

Let F(z, w) be the joint distribution function of the pair (M+,M−). By independence of γ and
(M+,M−)

P(
√
γM+

≤ x,
√
γM−

≤ y) =

θ/π


∞

0
F(x/

√
s, y/

√
s)s−1/2e−θsds. (3.12)

The right side is given in (3.11). Oberhettinger and Badii [16, p. 294, formula 8.52], give the
inverse of the first term on the right in (3.11)

1
√

2(x + y)
θ3


0
 s
2(x + y)2


=

1
√
πs

∞
k=−∞

e−2k2(x+y)2/s .

The inverse of the second term of the transform can be obtained from Oberhettinger and
Badii [16, p. 294, formula 8.60]: we find that the inverse is

1
√

2(x + y)
θ4


(x − y)/2

x + y

 s
2(x + y)2


=

1
√
πs

∞
k=−∞

exp


−2(x + y)2


(x − y)/2
(x + y)

+ k +
1
2

2

/s



=
1

√
πs

∞
k=−∞

exp(−2[k(x + y)+ x]
2/s).
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Combining these yields

P(M+
≤ z,M−

≤ w) =

∞
k=−∞

exp(−2k2(z + w)2)−

∞
k=−∞

exp

−2(k(z + w)+ z)2


.

We now consider the Kuiper statistic K = M+
+ M−. It seems cumbersome to proceed from

the joint distribution of M+ and M− so we use directly the distribution of (
√
γM+,

√
γM−).

Denote U =
√
γM+ and V =

√
γM−. The joint cumulative distribution function of U and V

is given in (3.11) as

G(u, v) = 2
sinh(u

√
2θ) sinh(v

√
2θ)

sinh((u + v)
√

2θ)
.

The cumulative distribution function of U + V is given by

P(U + V ≤ z) =

 z

0
Gu(u, z − u)du

where Gu is the partial derivative of G with respect to u. A calculation yields

Gu(u, z − u) =
2
√

2θ sinh2((z − u)
√

2θ)

sinh2(z
√

2θ)
and integration gives

P(U + V ≤ z) = coth(z
√

2θ)−
z
√

2θ

sinh2(z
√

2θ)
.

Using the fact that γ and M+
+ M− are independent we obtain the Laplace transform of the

cumulative distribution function FK of the Kuiper statistic as
√
θ

√
π


∞

0
FK (z/

√
s)s−1/2e−θsds = coth(z

√
2θ)−

z
√

2θ

sinh2(z
√

2θ)
.

After dividing by
√
θ it remains to invert the two terms on the right and substitute for z/

√
s. The

first term has been inverted above when deriving the joint distribution of M+ and M−. We get

1
√

2z
θ3


0
 s
2z2


=

1
√
πs

∞
k=−∞

e−2k2z2/s .

To invert the second term rewrite it as
√

2z

sinh2(z
√

2θ)
=

4
√

2ze−2z
√

2θ

(1 − e−2z
√

2θ )2
= 4

√
2z

∞
k=1

ke−2kz
√

2θ

for z > 0 and θ > 0. The inverse Laplace transforms of the terms in the sum are known, see [16,
p. 258, formula 5.85]. Taking the derivative with respect to x on both sides of (2.7) we get

∞

0

a
√

2πs3
exp(−a2/2s)e−θsds = e−a

√
2θ . (3.13)

Since all the terms are nonnegative functions the order of summation and integration can be
changed. Hence for z > 0 the inverse Laplace transform of the second term is

4
√

2z
∞

k=1

2k2z
√

2πs3
exp(−2k2z2/s) =

1
√
πs

∞
k=−∞

4k2z2

s
exp(−2k2z2/s).
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Substitute x = z/
√

s to get

FK (x) =

∞
k=−∞

e−2k2x2
−

∞
k=−∞

4k2x2e−2k2x2
=

∞
k=−∞

(1 − 4k2x2)e−2k2x2
. (3.14)

For the difference U − V a computation yields for z > 0

P(U − V ≥ z) =


∞

z
Gu(u, u − z) du (3.15)

provided P(U > 0) = 1 and P(V > 0) = 1 which is the case for the variables in question.
Using the joint cumulative distribution function yields

Gu(u, u − z) = 2
√

2θ
sinh2(

√
2θ(u − z))

sinh2(
√

2θ(2u − z))
.

From (3.15) it follows

P(U − V ≥ z) = 2
√

2θ


∞

z

sinh2(
√

2θ(u − z))

sinh2(
√

2θ(2u − z))
du

= 2
√

2θ


∞

0

sinh2(
√

2θu)

sinh2(
√

2θ(2u + z))
du.

=
1
2

− arctanh(e−
√

2θ z) sinh(
√

2θ z).

The integral in the last line is elementary and is computed by Mathematica. Since γ and
(M+,M−) are independent we have for z > 0

P(U − V ≥ z) =

√
θ

√
π


∞

0
P


M+
− M−

≥
z

√
s


e−θs
√

s
ds

=
1
2

− arctanh


e−
√

2θ z


sinh
√

2θ z

. (3.16)

This gives the Laplace transform of P(M+
− M−

≥ z/
√

s)/
√

s as a function of s for fixed z.
To invert this Laplace transform we use the known series expansion for the hyperbolic arc-

tangent to get for z > 0

1
2

− arctanh


e−
√

2θ z


sinh
√

2θ z


=

∞
k=1

e−2kz
√

2θ

4k2 − 1
. (3.17)

Finally
∞

0
P


M+
− M−

≥
z

√
s


e−θs
√

s
ds =

∞
k=1

(π/θ)1/2e−2kz
√

2θ

4k2 − 1
.

All the terms in the sum are Laplace transforms and Oberhettinger and Badii [16, p. 258, formula
5.87], give the inverses. Since all the terms are positive the series can be inverted termwise and
we get

1
√

s
P


M+
− M−

≥
z

√
s


=

1
√

s

∞
k=1

1
4k2 − 1

· e−2k2z2/s (3.18)
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or

P(M+
− M−

≥ z) =

∞
k=1

1
4k2 − 1

· e−2k2z2
.

We now turn to the quotient Q = M+/M−. We can multiply the numerator and denominator
by

√
γ and choose θ = 1/2. Conditionally on L(Sθ ) = t an elementary calculation gives the

conditional distribution function of Q as

FQ|L(Sθ )=t (z) = −


∞

0
tm′(x)e−tm(x)e−tm(xz) dx .

Unconditioning and changing the order of integration gives

FQ(z) = −


∞

0

m′(x) dx

(1 + m(x)+ m(xz))2
. (3.19)

Substituting (2.8) and observing that

m′(x) = −
1

2 sinh2x
gives

FQ(z) =
1
2


∞

0

(1 − e−2x )2(1 − e−2xz)2 dx

sinh2x

1 − e−2x(z+1)

2
= 2


∞

0

sinh2zx dx

sinh2 ((z + 1)x)

=
1

z + 1

1 −

π zcot

π z

z+1


z + 1


where the last integral is given in [10, formula 3.511.9]. �

3.3. Covariance and correlation

The correlation between M+ and M− may be a quantity of interest. Let U = max0≤t≤gSθ
Bt

and V = − min0≤t≤gSθ
Bt . The covariance of U and V will be computed first. By symmetry

E(U |L(Sθ )) = E(V |L(Sθ )).

We have

cov(U, V ) = E (cov(U, V |L(Sθ )))+ cov (E(U |L(Sθ )), E(V |L(Sθ ))) . (3.20)

Denote E(U |L(Sθ )) = ψ(L(Sθ )). By Theorem 5(iii), given L(Sθ ) the conditional covariance of
U and V is 0. It follows

cov(U, V ) = var (ψ(L(Sθ ))) .

The conditional expectation is computed from Theorem 5(iii), as

ψ(t) =


∞

0
(1 − e−tm(x)) dx . (3.21)
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We can choose 2θ = 1 so that the local time L(Sθ ) is exponential with parameter 1 and compute

E(U ) =


∞

0
e−tψ(t) dt

=


∞

0
e−t dt


∞

0
(1 − e−tm(x)) dx

=


∞

0

m(x)
1 + m(x)

dx

=


∞

0
e−2x dx

= 1/2 (3.22)

and

E(ψ2(L(S1/2))) =


∞

0
e−t dt


∞

0
(1 − e−tm(x)) dx


∞

0
(1 − e−tm(y)) dy

=


∞

0
dx


∞

0
dy


1 −
1

1 + m(x)
−

1
1 + m(y)

+
1

1 + m(x)+ m(y)


=


∞

0
dx


∞

0
dy

e−2(x+y)(2 − e−2x
− e−2y)

1 − e−2(x+y)

=


∞

0
dt

e−2t

1 − e−2t

 t

0
(2 − e−2(t−v)

− e−2v) dv

=


∞

0

e−2t

1 − e−2t (2t − (1 − e−2t )) dt

= 2


∞

0

∞
k=1

te−2kt dt −
1
2

= 2
∞

k=1

1
4k2 −

1
2

=
π2

12
−

1
2
. (3.23)

The second line follows from Fubini’s theorem and the third by changing variables to x + y = t ,
y = v. It follows

cov(U, V ) = var(ψ(L(Sθ ))) =
π2

12
−

3
4
.

From (2.6) one derives E(M+) = E(M−) =
√

2π/4 and var(M+) = var(M−) = 1/2 − π/8.
By (1.7) and the independence of γ and (M+,M−) we have

cov(U, V ) = E(γ ) E(M+M−)− E2(
√
γ ) E(M+)E(M−).

It follows

E(M+M−) =
π2

12
−

1
2
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and

cov(M+,M−) =
π2

12
−

1
2

−
π

8
(3.24)

yielding

corr(M+,M−) =

π2

12 −
1
2 −

π
8

1
2 −

π
8

= −0.654534. (3.25)
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Applications, Birkhäuser Verlag, 1996.

[4] P. Carmona, F. Petit, J. Pitman, M. Yor, On the laws of homogeneous functionals of the Brownian bridge, Studia
Sci. Math. Hungar. 35 (1999) 445–455.
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