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1. INTRODUCTION

Shell Sort is an algorithm for sorting a list of numbers in stages. The algorithm, proposed
by Shell [16], was given in Knuth’s 1973 book [6] and has generated a substantial
literature in the years since (many references are given in Sedgewick [14] and Mahmoud
[10]). Shell Sort is a generalization of insertion sort. It has little overhead and is easy to
implement, and is thus a practical choice for sorting moderate-sized lists. In sorting n
random keys, Shell Sort is able to improve considerably on the �(n2) average running
time of insertion sort (Sedgewick [14] gives detailed results for different parameter
choices.)

In a recent paper (Smythe and Wellner [17]) we gave a probabilistic analysis of
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two-stage Shell Sort. For the special case of (2,1)-Shell Sort, this led to a rederivation of
the limiting result of Louchard [9], and the approach was generalized to give limiting
results for (h, 1)-Shell Sort, for arbitrary h. In the present work, we use the tools
developed in the previous paper to analyze a particular case of three-stage Shell Sort, (3,
2, 1)-Shell Sort. In analyzing (h, k, 1)-Shell Sort, the case in which h and k are relatively
prime is of most interest, and (3, 2, 1) is the simplest such example. It turns out that the
last stage of (3, 2, 1)-Shell Sort, which consists of sorting a list that is both 2-sorted and
3-sorted, makes an asymptotically normal number of comparisons. Recent work of Janson
and Knuth [5] gives detailed results on the mean number of comparisons for (h, k,
1)-Shell Sort; for the (3, 2, 1) case, we are able to find the variance as well.

Section 2 gives a brief description of the algorithm; more details may be found, e.g.,
in Sedgewick and Flajolet [15] or Mahmoud [10]. In Section 3 we develop a character-
ization of the number of comparisons in the final stage of (3, 2, 1)-Shell Sort as a
functional of a generalized hypergeometric process. Using some basic results from the
theory of empirical processes and spacings, we give a heuristic argument that the limiting
number of comparisons would be expected to have a normal distribution. Section 4
introduces a kind of Poissonization argument and invokes a local limit theorem for
Markov chains to confirm that the limiting number of comparisons is indeed normally
distributed. The key step here involves the verification of the fact that a limit of a
conditional distribution is the conditional distribution of the limit: this turns out to be
surprisingly difficult, and the more technical parts of the proof are relegated to two
appendices.

In Section 5 we discuss briefly possibilities for generalizing the arguments given here
to (h, 2, 1)-Shell Sort.

2. THE ALGORITHM

Insertion sort proceeds by progressively adding keys to an already sorted file. Shell Sort
performs several stages of insertion sort. Assume the given data to be a linear array
structure of size n. For a k-stage Shell Sort, let tk, tk�1, . . . , t1 (� 1) be a decreasing
sequence of positive integers. The first stage in sorting n keys sorts (by ordinary insertion)
keys that are tk positions apart in the list, creating tk sorted subarrays of length at most
n/tk. In the second stage, tk�1 subarrays of keys that are tk�1 apart are sorted, and so
on down to the last stage, which performs an insertion sort of the entire array.

As an example, we apply (3, 2, 1)-Shell Sort to sort the array

3 12 6 10 5 9 8 1 11 4 7 2.

The first stage creates 3 sorted lists of length 4:

3 4 8 10

1 5 7 12

2 6 9 11.

The second stage takes the resulting 3-sorted list,
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3 1 2 4 5 6 8 7 9 10 12 11,

and creates two sorted lists of length 6:

2 3 5 8 9 12

1 4 6 7 10 11.

We now have a list that is both 3-sorted and 2 sorted:

2 1 3 4 5 6 8 7 9 10 12 11,

and the final stage sorts this list.
As in the prior work, the concept of an inversion in a permutation plays a key role in

the analysis. Let �n � (�1, . . . , �n) be a permutation of (1, . . . , n). The pair (�i, �j)
is an inversion if �i and �j are out of their natural order, that is, if �i � �j when i � j.

The notation Z( j) will be slightly abused to denote the jth-order statistics among
Z1, . . . , Zr. (It would be more accurate to use Z( j:r), as Z( j:r) and Z( j:s) may differ for r �
s; however, the second subscript will generally be obvious, and will be dropped for
convenience.)

3. ANALYSIS OF (3, 2, 1)-SHELL SORT

In the analysis of (3, 2, 1)-Shell Sort, it is notationally convenient to assume we are given
a linear array of size 3n. We assume the usual random permutation model for the data, in
which the ranks of the data are equally likely to be any of the permutations of {1, 2, . . . ,
3n}, each occurring with probability 1/(3n)!. We may assume that our data are 3n real
numbers from a continuous probability distribution, and because the probability integral
transform preserves ordering of the data, we may (and will) assume that the probability
distribution is uniform on (0,1). Prior to any sorting, we will denote our raw array by

X1, Y1, Z1, X2, Y2, Z2, . . . , Xn, Yn, Zn,

where the X’s, Y’s, and Z’s may be taken to be mutually independent. The first stage of
the algorithm sorts the X’s, Y’s, and Z’s separately. Analogously to the case described in
Smythe and Wellner [17], if Cn denotes the number of comparisons made by (linear)
insertion sort to sort n random keys, the initial stage of (3, 2, 1)-Shell Sort makes three
runs of insertion sort on the subarrays X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zn,
requiring

Cn
1 � Cn

2 � Cn
3

comparisons, where Cj
1 �

�
Cj

2 �
�

Cj
3 and C1, C2, C3 are independent. We then have the

3-sorted list

X�1	, Y�1	, Z�1	, . . . , X�n	, Y�n	, Z�n	.
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The next stage of the algorithm 2-sorts this list: we make two lists,

X�1	, Z�1	, Y�2	, X�3	, Z�3	, Y�4	, . . . (3.1)

and

Y�1	, X�2	, Z�2	, Y�3	, X�4	, Z�4	, . . . , (3.2)

and we sort each of these lists. Each of these lists is 3-sorted; let C̃n denote the number
of comparisons made by insertion sort to sort a 3-sorted array of length n. The second
stage of the algorithm thus requires

C̃3n/2
1 � C̃3n/2

2

comparisons, where C̃j
1 �

�
C̃j

2 and C̃1, C̃2 are independent. The final stage of the
algorithm sorts the list, which is now both 3-sorted and 2-sorted. Denote the keys in the
list (3.1) by U1, U2, . . . and those in (3.2) by V1, V2, . . . . When we are about to insert
V( j), we place it among


U�1	, . . . , U�j	� � 
V�1	, . . . , V�j�1	�.

The so-called sentinel version of insertion sort makes

C��n	 � n � I��n	

comparisons to sort a permutation �n on n letters with I(�n) inversions. Thus the overall
number of comparisons Sn made by (3, 2, 1)-Shell Sort is given by the sum

Sn � Cn
1 � Cn

2 � Cn
3 � C̃3n/2

1 � C̃3n/2
2 � 3n � I3n, (3.3)

where all the terms are independent, and I3n denotes the number of inversions in the list
that is both 2-sorted and 3-sorted. It is known (Lent and Mahmoud [8]) that for linear
search,

Cn �
1
4n2

n3/2 ¡
�

��0,
1

36� .

The second stage requires sorting of 3-sorted lists, for which the number of comparisons
is given by the C̃ terms of (3.3). The asymptotic distribution of C̃j

1 was characterized in
Theorem 2 of Smythe and Wellner [17] (no explicit expression is known for the limiting
distribution). Our focus in this paper is on the last stage, i.e., the limiting distribution
of I3n.

Regard the X’s, Y’s, and Z’s as three independent sets of n i.i.d. observations,
uniformly distributed on (0, 1), giving rise to a set of 3n points in (0, 1). Associate with
each of these points a triple giving the parity of the numbers of X’s, Y’s, and Z’s that
precede the point; for example, the triple OEO means that the number of X-predecessors
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is odd, the number of Y-predecessors is even, and the number of Z-predecessors is odd.
The first point will thus be labeled EEE, and the next will be OEE, EOE, or EEO
according as the smallest key is an X, Y, or Z resp. Let

N1 � number of points of types OOE, EEO,

N2 � number of points of types OEE, EOO,

N3 � number of points of types OOO, EEE,

N4 � number of points of types OEO, EOE.

Then N1 � N2 � N3 � N4 � 3n, so by symmetry of the Ni’s

0 � Cov�N1, N1 � N2 � N3 � N4	 � Var�N1	 � 3 Cov�N1, N2	,

and this implies, again using symmetry,

Cov�N1 � N4, N2 � N4	 � 3 Cov�N1, N2	 � Var�N4	 � 0.

Thus N1 � N4, N2 � N4, and N3 � N4 are uncorrelated. Further, we can show, using
basic empirical process theory and results on spacings for uniform order statistics (cf., for
example, Pyke [12]) that each of N1 � N4, N2 � N4, and N3 � N4 has an asymptotically
normal distribution with mean equal to 3n/ 2 and variance equal to 3n/8. Since the sum
of these variables is 3n � 2N4, this provides a strong hint, though not yet a proof, that
N4 will have an asymptotically normal distribution. Next we show that N4 is precisely
equal to I3n, the number of inversions.

Proposition 1. An inversion in the 2-sorted and 3-sorted list occurs when, and only
when, the key causing the inversion is of type OEO or EOE. Hence I3n, the number of
inversions in the 2-sorted and 3-sorted list, is equal to N4, the number of keys of type
{OEO, EOE}.

The following lemma is needed to characterize inversions.

Lemma. In a 2-sorted and 3-sorted list {�i}i�1
3n , the only possible inversions are when

�i � �i�1.

Proof of the Lemma. Given i, any k � i � 1 satisfies 2a � 3b � k � i for some
nonnegative integers a, b. �

Proof of Proposition 1. The 2-sorted and 3-sorted list is derived by merging the sorted
versions of lists (3.1) and (3.2).

A. Suppose X(k) causes an inversion, where k is assumed odd. If the next key after X(k)

in the merged list is Y( j) for some j, then Y( j) � X(k) and j must be odd, since X(k) appears
in the sorted version of list (3.1) and Y( j) in that of list (3.2). Thus exactly j of the Y’s are
less than X(k). However, the total number of keys less than X(k) is odd, as there is one more
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predecessor of X(k) in the ordered version of (3.2) than in (3.1), owing to the inversion.
Thus the type of X(k) must be EOE. If k is even, a similar argument gives the type as
OEO.

If the next key after X(k) is Z(l ) for some l, a similar argument applies. Now suppose
the next key is also an X. Again assume that k is odd and that the next key after X(k) is
X(k�1). [Note that this can happen because of the 2-sorting, even though the X’s were
originally put in order.] In this case the total number of predecessors of X(k) is again odd,
so the type must be EOE or EEO. The number of predecessors of X(k) in the ordered
version of (3.2) is one greater than the number from (3.1). Suppose there are P1

Y-predecessors coming from (3.1), and P2 coming from (3.2). If P1 � P2, then the largest
Z-predecessor must come from (3.2), and X(k) has type EOE. If P1 � P2, the largest
Y-predecessor comes from (3.1), and again X(k) has type EOE. If k is even, a similar
argument gives the type as OEO, and the cases where Y( j) or Z(l ) cause an inversion are
treated by the same argument.

B. Now suppose, for example, that a key has type OEO, and suppose it is X(k) for k
even. Just before merging the sorted versions of (3.1) and (3.2), consider the position of
X(k) with respect to its two “neighbors” in list (3.1). If X(k) is in the “correct” position, it
would have an odd number of predecessors [one more from (3.1) than from (3.2)]. So
either X(k) is greater than the next key in (3.1) or less than the previous key in (3.1). But
in the latter case, the previous key would cause an inversion, and must have type EEO,
OOO, or OOE; by part A of the proof, this is impossible. Hence X(k) causes an inversion.
Similar arguments give the EOE case. �

We sum up the results of this section in the following theorem, to be proved in the next
section.

Theorem 1. �I3n � 3n/4	/�n ¡
�

N�0, 9/32	.

4. PROOF OF THEOREM 1

Our analysis in Section 3 shows that the distribution of N4 depends only on the relative
order of appearance of the X’s, Y’s, and Z’s as one traverses the interval (0, 1) from left
to right. Thus a simple urn model describes the process of interest. Let the state space 
0

of our process be defined by


0 � 
OOE, EEO, OEE, EOO, OOO, EEE, EOE, OEO�. (4.1)

Initially the urn contains n balls of type X, n of type Y, and n of type Z. At each stage,
a ball is drawn at random from the urn and its type recorded, and the process continues
until all balls are gone. At stage k, the process is in state, say, OEO, if the first k balls
drawn include an odd number of X’s, an even number of Y’s, and an odd number of Z’s.

Thus N4, which simply counts the number of times the process is in states EOE and
OEO, has a direct combinatorial interpretation, and one might hope for a simple proof of
its asymptotic normality. As noted in Section 3, Ni � N4, i � 1, 2, 3, has an
asymptotically normal distribution; but this does not seem of much help in establishing the
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result for N4 alone. The difficulty is that the probabilities of drawing the different types
of ball at a given stage depend not just on the previous state �, but on the actual numbers
of each type previously drawn, so that the evolution of the process is complicated. We
therefore proceed by a kind of Poissonization argument to define a Markov chain on a
state space formed from 
0, and identify the distribution of N4 with a conditional
distribution resulting from the “Poissonized” problem.

We construct three independent Poisson processes with intensity n, as follows. Sup-
pose that T1, T2, . . . are i.i.d. Exponential(1) random variables, and set Tn, j � Tj/3n for
j � 1, 2, . . . and n � 1, 2, . . . . Thus Tn, j �

�
Exponential(3n), and the stochastic

process �n defined by

�n�t	 � �
j�1

�

1�Tn,j�t�

is a Poisson process with intensity 3n. Now let �1, �2, . . . be i.i.d. with uniform
distribution on {1, 2, 3}: P(�j � k) � 1

3 for k � {1, 2, 3} and all j � 1, 2, . . . , and
define three thinned versions, �n

X, �n
Y, and �n

Z of the process �n as follows:

�n
X�t	 � �

j�1

�

1�Tn,j�t�1��j�1�, �n
Y�t	 � �

j�1

�

1�Tn,j�t�1��j�2�,

�n
Z�t	 � �

j�1

�

1�Tn,j�t�1��j�3�.

The processes �n
X, �n

Y, and �n
Z are then independent Poisson processes with intensity n

(cf. Çinlar [4], p. 89).
Each point in the Poisson process �n can be associated in an obvious way with one of

the states in 
0. For calculation purposes, however, it is simpler to group the elements of

0, and define a new state space


1 � 

OOE, EEO�, 
OEE, EOO�, 
OOO, EEE�, 
EOE, OEO��. (4.2)

Denote the four states of 
1 by e1, e2, e3, e4, respectively. It is easily seen that � defines
a Markov chain V(n) on 
1, with V(0) � e3 and with evolution governed by the
following transition matrix P1:

�
0 1/3 1/3 1/3

1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0

� .

After 3n events of the chain V have been observed, we have observed
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Mn
X � �

j�1

3n

1
�j�1� points labeled as X,

Mn
Y � �

j�1

3n

1
�j�2� points labeled as Y,

Mn
Z � �

j�1

3n

1
�j�3� points labeled as Z.

Note that (Mn
X, Mn

Y, Mn
Z) � Mult3(3n, 1/3, 1/3, 1/3)). Define

�4�k	 � �
j�1

k

1
V�j	�e4�, (4.3)

so that �4(3n) is just the “Poissonized version” of the random variable N4 whose
distribution we seek. The asymptotic mean and variance of �4 may be easily computed by
renewal process arguments.

Lemma 1. Let T denote the first return time to e4 of the Markov chain V on 
1. Then
E(T) � 4, Var(T) � 6.

Proof. It is not difficult to see that

P�T � k	 �
2k�2

3k�1 for k � 2. (4.4)

For k � 2, the chain goes to another state, then returns to e4; since there are 3 other states,
the probability of return in 2 steps is just 3(1/9), or 1/3. For k � 2, note that after leaving
e4, at step j � k the process has only 2 possibilities: it must leave its current state, and
it can’t go back to e4. We get 3[2k�2] possible routes, out of a total of 3k routes, that give
a first return to e4 in k steps. This gives (4.4). The calculation of the mean and variance
follows easily. �

Lemma 2. �4(3n) has an asymptotically normal distribution with

E��4�3n		 � 3n/4, Var��4�3n		 � 9n/32.

Proof. By standard arguments for renewal theory (cf. Ross [13], p. 62), �4(3n) is
asymptotically normal with mean and variance given by

E��4�3n		 �
3n

E�T	
and Var��4�3n		 �

Var�T	�3n	

E�T	3 .
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The result now follows from Lemma 1. �

We see from Lemma 2 that the “Poissonized” �4 has the same asymptotic variance as
the “real” N4. To make the connection between the two, we note that for a positive integer
k,

P�N4�3n	 � k	 � P��4�3n	 � k	Mn
X � n, Mn

Y � n, Mn
Z � n	. (4.5)

To prove Theorem 1, we will find the limit of the right-hand side of (4.5), suitably
normalized, and show that the conditional distribution of �4 is asymptotically independent
of the conditioning variables.

The state space 
1 for the Markov chain V is too crude for this purpose, and we now
define a twelve-state Markov chain as follows. Let ei � X, i � 1, 2, 3, 4, denote the
event that a point of �n is of type X and corresponds to one of the two configurations
comprising ei. Make a similar definition of ei � Y and ei � Z. This refines the four states
of 
1 into twelve states, denoted as follows:


1, 2, . . . , 12� � 
e1 � X, e1 � Y, e1 � Z, e2 � X, e2 � Y, e2 � Z,

e3 � X, e3 � Y, e3 � Z, e4 � X, e4 � Y, e4 � Z�.

The points of � then form a Markov chain W with transition matrix P given by

�
0 0 0 0 1/3 0 0 0 1/3 1/3 0 0
0 0 0 0 1/3 0 0 0 1/3 1/3 0 0
0 0 0 0 1/3 0 0 0 1/3 1/3 0 0
0 1/3 0 0 0 0 1/3 0 0 0 0 0
0 1/3 0 0 0 0 1/3 0 0 0 0 0
0 1/3 0 0 0 0 1/3 0 0 0 0 0
0 0 1/3 1/3 0 0 0 0 0 0 1/3 0
0 0 1/3 1/3 0 0 0 0 0 0 1/3 0
0 0 1/3 1/3 0 0 0 0 0 0 1/3 0

1/3 0 0 0 0 1/3 0 1/3 0 0 0 0
1/3 0 0 0 0 1/3 0 1/3 0 0 0 0
1/3 0 0 0 0 1/3 0 1/3 0 0 0 0

� .

The initial distribution of the chain may be defined by �0(7) � �0(8) � �0(9) � 1/3.
Define

Cn,i � �
j�1

3n

1
Wj�i�, (4.6)

the number of visits to state i by time 3n for i � 1, . . . , 12. Then

Cn,1 � Cn,4 � Cn,7 � Cn,10 � Mn
X,

Cn,2 � Cn,5 � Cn,8 � Cn,11 � Mn
Y,
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Cn,3 � Cn,6 � Cn,9 � Cn,12 � Mn
Z,

while

Cn,1 � Cn,2 � Cn,3 � �1�3n	,

Cn,4 � Cn,5 � Cn,6 � �2�3n	,

Cn,7 � Cn,8 � Cn,9 � �3�3n	,

Cn,10 � Cn,11 � Cn,12 � �4�3n	.

It is well known (cf., for example, Chung [3], p. 99) that functionals of a positive recurrent
Markov chain satisfy a central limit theorem. In particular, for any functional of the form

f�Wj	 � �
i�1

12

ai1
Wj � i�, where ai � R, i � 1, . . . , 12,

it follows that ¥i�1
n f(Wj), suitably normalized, has an asymptotically normal limit. Then,

by the Cramér-Wold theorem (see, e.g., Billingsley [2], p. 397),

C� n � �Cn,1, Cn,2, . . . , Cn,12	

has asymptotically a joint normal distribution (the covariance matrix is, of course, not of
full rank, as the Cn,i sum to 3n.)

Computation of the asymptotic covariance matrix of the vector C� n is nontrivial, and
involves heavy use of the symmetries of the Markov chain W. The matrix is given below;
the derivation is left to Appendix A.

Lemma 3. The asymptotic covariance matrix of (C� n � (3n)/12)/�n is given by

� �
1

96 �
19 �5 �5 �5 1 �5 �5 �5 1 7 1 1

�5 19 �5 1 7 1 �5 �5 1 1 �5 �5
�5 �5 19 �5 1 �5 1 1 7 1 �5 �5
�5 1 �5 19 �5 �5 7 1 1 �5 �5 1

1 7 1 �5 19 �5 1 �5 �5 �5 �5 1
�5 1 �5 �5 �5 19 1 �5 �5 1 1 7
�5 �5 1 7 1 1 19 �5 �5 �5 1 �5
�5 �5 1 1 �5 �5 �5 19 �5 1 7 1

1 1 7 1 �5 �5 �5 �5 19 �5 1 �5
7 1 1 �5 �5 1 �5 1 �5 19 �5 �5
1 �5 �5 �5 �5 1 1 7 1 �5 19 �5
1 �5 �5 1 1 7 �5 1 �5 �5 �5 19

�.

In other words,
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C� n � �3n	/12

�n
¡
�

N�0, �	.

If we now take

A � �
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

� ,

then AC� n � (Mn
X, Mn

Y, Mn
Z, �1(3n), �2(3n), �3(3n), �4(3n)), and A�A� is a matrix

of the form

� B F
F� D � , (4.7)

where

B � 3
1

3
I3�3 � �1/3	21� 1� �� � I3�3 � �1/3	1� 1� �, (4.8)

F � 0, D �
12

32
I4�4 �

3

32
1� 1� �. (4.9)

From this, and the knowledge that C� n has a limiting normal distribution, we find that �4

is asymptotically independent of (Mn
X, Mn

Y, Mn
Z). The final step is to show that the limiting

conditional distribution of

��4�3n	 � 3n/4

�n
�Mn

X � n, Mn
Y � n, Mn

Z � n� (4.10)

converges to the conditional distribution of the limit, which from Lemma 2 is N(0, 9/32).
From Eq. (4.5), this gives the desired result. In cases not involving independent sum-
mands, as in our problem, it is not always true that the limit of the conditional distribution
is the conditional distribution of the limit [cf. Steck [18]). This result holds in our case,
however: the following theorem restates Theorem 1 in terms of the conditional limit of the
“Poissonized” process.

Theorem 1�. Conditionally on Bn � [Mn
X � n, Mn

Y � n, Mn
Z � n],

��4�3n	 � 3n/4	/�n ¡
�

N�0, 9/32	.
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Proof. Note first that by Stirling’s formula,

P�Bn	 �
�3n	!

�n!	3 �1

3�
3n

�
�3

2�n
.

Thus if we can find the limit of

P
���4�3n	 � 3n/4	/�n, �M3n
X � n	/�n, �M3n

Y � n	/�n	

� ��k � 3n/4	/�n, �j1 � n	/�n, �j2 � n	/�n	},

we can find the desired conditional limit. This last step is accomplished via a local limit
theorem for Markov chains, due to Kolmogorov [7]; the details are left to Appendix B.

5. POSSIBLE EXTENSION TO (h, 2, 1)-SHELL SORT

The outlines of a possible extension can be seen in the arguments for (3, 2, 1)-Shell Sort,
but the combinatorial difficulties seem to become formidable as h grows. For any h, we
can formulate a simple urn model, as at the beginning of Section 4, and presumably
characterize the number of inversions as a subset of the “parity set” corresponding to our

0. For h � 5, for example, the “parity set” has 32 members, and the number of
inversions corresponds to a 12-member subset which can be identified with a bit of work.
The problem can then be “Poissonized” as in Section 4, and there appears to be no reason
why the conditional limit argument via a local limit theorem should not work to give
asymptotic normality of the number of inversions. The difficulties appear to lie in
identifying the appropriate “parity set” and especially in finding the variance of the
number of inversions. The techniques used in our problem to find the variance will be
much more difficult to apply for larger h, and we have not attempted this even for
h � 5.

APPENDIX A: PROOF OF LEMMA 3

Here we give the derivation of the covariance matrix � of Lemma 3.
Let Ti be the first return time to a generic state i � {1, 2, . . . , 12} of the Markov

chain W. First note that since the transition matrix P of W (given in Section 4) is doubly
stochastic, the stationary distribution is uniform on {1, 2, . . . , 12}, and renewal theory
results give that E(Ti) � 12. To find the variance of Ti, recall that the “aggregated”
version of the state space, which we denoted 
0, consists of {e1, e2, e3, e4}, where e1 �
{1, 2, 3}, etc. The return time to each of the states ei has mean 4 and variance 6, as given
in Lemma 1. For W( j) to return to a state i � er, the chain must return to er. On each
such return, it has probability 1/3 of being in state i. Thus the sojourn from state i can be
represented as
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Ti � �
j�1

K

Ti,j,

where each Ti, j represents a return time from er to er, K represents the number of returns
to er until i is reached, and K is independent of the Ti, j. Then K is a geometric random
variable with parameter 1/3, with mean 3 and variance 6. Thus

Var�Ti	 � E�Var�Ti		K� � Var�E�Ti	K	�

� E�K Var�Ti,j	 � Var�KE�Ti,j	�

� 6E�K	 � 16 Var�K	 � 18 � 96 � 114.

Using a renewal theory result as in Lemma 2, this gives the asymptotic variance for the
number of visits to state i in the first 3n steps of the Markov chain W as

114�3n	/�12	3 � 19n/96. (A.1)

This gives us the diagonal elements of �. The off-diagonal elements result from knowing
the variance of �i(3n) and using symmetry. For example, knowing that Var(�4(3n)) �
9n/32, then asymptotic equality of the covariances of the pairs (Cn,10, Cn,11), (Cn,10,
Cn,12), and (Cn,11, Cn,12), together with (A.1), gives �5n/96 for their common value,
and the same analysis can be done for e1, e2, e3. Further symmetries are identified by
counting the minimal number of steps needed to go from one state to another, and
symmetrizing the resulting matrix. This leads to

� �
1

96 �
19 �5 �5 x y x x x y z y y

�5 19 �5 y z y x x y y x x
�5 �5 19 x y x y y z y x x
x y x 19 �5 �5 z y y x x y
y z y �5 19 �5 y x x x x y
x y x �5 �5 19 y x x y y z
x x y z y y 19 �5 �5 x y x
x x y y x x �5 19 �5 y z y
y y z y x x �5 �5 19 x y x
z y y x x y x y x 19 �5 �5
y x x x x y y z y �5 19 �5
y x x y y z x y x �5 �5 19

�.

Using the relation

Cn,10 � Cn,11 � Cn,12 � Cn,1 � Cn,6 � Cn,8,

we have Var(Cn,1 � Cn,6 � Cn,8) � 9n/32, which gives x � �5. The relation Mn
X �

Cn,1 � Cn,4 � Cn,7 � Cn,10 and the knowledge that Var(Mn
X) � 2n/3 then allow the

conclusion that z � 7. Finally, the fact that the rows sums of � are zero gives y � 1, and
we have the matrix of Lemma 3.
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APPENDIX B: PROOF OF THEOREM 1�

To prove Theorem 1�, we extend the result of Kolmogorov [7] to establish a local limit
theorem for

��4�3n	 � 3n/4	/�n.

In turn, Kolmogorov’s result rests on a local limit theorem for i.i.d. random variables
given by Meizler, Parasyuk, and Rvačeva [11]; similar results can be found in, for
example, Bhattacharya and Rao [1], p. 237. We follow Kolmogorov’s treatment closely
and will make frequent reference to his paper; for convenience we will simply refer to it
as K(1962). The main idea of the proof uses the fact (first noted by Doeblin) that
excursions from a fixed state of a positive recurrent Markov chain are i.i.d. random
variables.

Note that in our 12-state Markov chain W, the exit probabilities for states {10, 11, 12},
i.e., the states comprising e4, are all the same. This implies that the excursions of the chain
from e4 are i.i.d. For j � 1, 2, . . . , consider the vector

Gj � ��4, MX�j	, MY�j	, MZ�j		,

where each component measures the count in the jth excursion from e4 by the 12-state
Markov chain W. (Thus, the first component in Gj is by definition equal to 1, MX( j) is
the number of X’s in the jth excursion, etc.) Then

Hk � �
i�1

k

Gj

is a sum of i.i.d. random vectors, and gives the cumulative count for the first k excursions,
with the first component of Hk being identically equal to k. The minimal lattice for the Gj

is isomorphic to Z3, the 3-dimensional integer lattice.
Let q� � (1/4, 1/3, 1/3, 1/3); the qi represent the proportion of time the chain spends

in (�4, MX( j), MY( j), MZ( j)), respectively. Let

y� �
m� � 4�m1	q�

�m1

,

where m� � (m1, m2, m3, m4) is a possible value for Hm1
, i.e., it has nonnegative integer

components and

m1 � �m2 � m3 � m4	/2. (B.1)

The vector y� is analogous to (5.6) in K(1962); its first component is identically zero. The
local limit theorem of Meizler, Parasyuk, and Rvačeva [11] is now applied to the i.i.d.
summands Gj. As in K(1962), Eq. (5.5), we use m1 as the summation index, as it
augments by one for each completed excursion. We have, analogously to (5.5),
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m1
3/2P�Hm1 � m� 	 � pV�y�	 � o�1	 as m1 3 �,

where again m� is a possible value for Hm1
and pV is the Gaussian density corresponding

to mean zero and covariance matrix V given by the covariances of the components of Gj

(i.e., these are the covariances for a single excursion from e4; since the first component
of Gj is degenerate, we can write this as a 3 � 3 matrix.) The matrix V may be calculated
with modest effort:

V � �14/9 2/9 2/9
2/9 14/9 2/9
2/9 2/9 14/9

� . (B.2)

Then using the fact that m1 is asymptotically equivalent to m� /4, where m� � m2 � m3 �
m4, we get the analogue of (5.8) in K(1962):

�m� 	3/2P�Hm1 � m� 	 � 43/2pV�y�	 � o�1	. (B.3)

Now let m� be a vector (m1, m2, m3, m4) satisfying m� � m2 � m3 � m4 � 3n, with
first component unspecified, subject to (B.1). Following Kolmogorov’s notation, let

W1�m� 	 � P�after 3n stages of the Markov chain, ��4�3n	, M3n
X , M3n

Y , M3n
Z 	 � m� 	,

and let

W1
1�m� 	 � P�after 3n stages of the Markov chain,

��4�3n	, M3n
X , M3n

Y , M3n
Z 	 � m� , and the chain is in �4	.

Thus W1
1(m� ) corresponds to P(Hm1

� m� ) in our previous notation.
Now we apply (5.1) of K(1962) to extend (7.3) to the case when the chain is not

necessarily in e4 after 3n steps, and get

m� 3/2W1�m� 	 � 45/2pV�y�	 � o�1	,

with y� defined as before. This is essentially (5.9) of K(1962).
The remaining task is to express the local limit in terms of the vector

x� � ��m1 � 3n/4�/�3n, �m2 � n�/�3n, �m3 � n�/�3n, �m4 � n�/�3n	

and the covariance matrix n� of (�4(3n), M3n
X , M3n

Y , M3n
Z ). From previous work, the

principal minor of � is

�3/32 0 0
0 2/9 �1/9
0 �1/9 2/9

�.

One verifies that
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m� 3/2W1�m� 	 � p��x1, x2, x3	 � o�1	,

where p� is the Gaussian density with mean zero and covariance matrix n�. (This is a
consequence of a general result of K(1962), but can easily be verified directly in this case.)
This is essentially (5.15) of K(1962). This result provides a local limit theorem for

P��4�3n	 � k, M3n
X � n, M3n

Y � n, M3n
Z � n	,

and from this the distribution of (�4(3n) � 3n/4)/�n, conditional on {M3n
X � n, M3n

Y

� n}, is seen to converge to the same (normal) limit as the unconditional distribution.

Note. For anyone attempting to follow the above analysis, it may be helpful for us to
point out that formulas (5.11), (5.12), (5.13), and (5.14) of K(1962) are all stated
incorrectly. In (5.11), the factor 1/�q	 should be �q	; in (5.12) the �q	 should be
1/�q	. In (5.13), p	 should be q	; finally, (5.14) should read

�q		��s�1	/2p	
 1

�q	
�x � x	q/q		� � �sp�x	.
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