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Computing the covariance of two
Brownian area integrals
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We compute the expected product of two correlated Brownian area
integrals, a problem that arises in the analysis of a popular sorting
algorithm. Along the way we find three different formulas forthe expectation
of the product of the absolute values of two standard normal random
variables with correlation 0. These two formulas are found: (a) via
conditioning and the non-central chi-square distribution; (b) via Mehler's
formula; (c) by representing the correlated normal random variables in
terms of independent normal’s and integration using polar coordinates.
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1 The problem

Suppose that B; j=1,2,3 are independent Brownian bridge processes on [0, 1];
recall that a Brownian bridge process B is a mean zero Gaussian process on [0, 1]
with covariance

Cov(B(s),B(t)) =sAt—st, s,t€][0,1].
Define two random variables 4; and 4, by
1 1
ar= [ 1810~ Ba0lan 4= [ B0 - B0]dr
0 0

The following question arose in the course of trying to analyze the behavior of a
certain sorting algorithm; see SMYTHE and WELLNER (1999):
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102 J. A. Wellner and R. T. Smythe

Problem. What are the numbers E(A4;4,), Cov(A41,A2), and Correl(A4;, 42)?
PrOPOSITION 1. E(A;47) = .205145...; Cov(A;,A4;) ~ .008796; and Correl(4,,4>)
~ .2378.

ProoF, PART 1. Note that by Fubini’s theorem we have

1 p1
E(d142) = /O /0 E{|Bi(s) — Ba(s)|1B1(1) — By(0)]} dsdr
1 p1
=// E{Z:()|2:(0)]} ds di (1)

where Z;(s) = By (s) — Ba(s), Z»(t) = By (t) — Bs(t) have a bivariate normal distribution
with zero means, variances 2s(1 — s) and 2¢(1 — ) respectively, and correlation

o200y — | VDVEIVT=IT=) ifs <} _
ComZ1(9. 200 = { | DI ifi<s } =00

(2)
Thus, by standardizing Z;(s) and Z(z), the right side of (1) is equal to

1,1
| [ VA= et =0ez ) 12:0)) dsas (3)

where Z; (s) and Z,(z) have a joint normal distribution with 0 means, variances 1, and
correlation given by (2). Thus we need to compute Ey(|X| | Y]) as a function of 6 where
(X, Y)have a bivariate normal distribution with means 0, variances 1, and correlation 6.

2 Formulas for Ey(|X] |Y])

Here we prove the following proposition giving two different infinite series
representations of the function Ey(|X] |Y]).

ProprosiTION 2. If (X, Y) have a bivariate normal distribution with means 0, variances
1, and correlation 0, then

Eo(|X] [¥]) = f )" Z o Fkk++1/)2) @
% : zk (k= j)! ’

2n_ 4+Z@ (2k)! ]:ZO o —2]{_2].)!] (5)

= %{Harcsin(e) + V106 (6)
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Proor. We will show that (4), (5), and (6) are all valid formulas representing the
expectation Ep(|X]|Y]|) as a function of 6. The first series formula is obtained by
conditioning and using the series representation for the non-central chi-square
distribution, while the second series formula is obtained by using Mehler’s formula
for the Radon—Nikodym derivative of the bivariate normal distribution with correla-
tion 6 with respect to the normal distribution with correlation 0 (independence). The
third expression is obtained by representing (X, Y) in terms of independent N(0, 1)
random variables, and integrating via use of polar coordinates.

To prove (4), first write E(|X||Y]) = E(|X|E(|Y]|X)) where the conditional
distribution of Y given X is N(0X,1— 6*). Thus the distribution of Y/v/1 — 6
conditionally on X is N(0X/v/'1 — 0% 1). Hence it follows (see e.g. GRAYBILL 1976,
125-126) that

Yy | r A2<62X2>
Jioe Vi—e VAU e

where Z ~ z3(5) has density

o0

f22) = pe(6/2)g(z5 (2k +1)/2,1/2);

=0
here pi(6/2) is the Poisson (J/2) probability given by

k
pr(o/2) = o 020

and gi(z; (2k + 1)/2,1/2) is the Gamma density with parameters (2k + 1)/2 and 1/2
given by

@2k

gz 2k +1)/2,1/2) = %%exp(—z/m.
Thus
(2k+1)
R il
EZ'? = ;pk(éﬁ)/o zl/zimexp(—zﬂ) dz
=2 N 5/2 M
;pk( / )r(k+1/2)

Hence we find that

Eo(|X||Y]) = 19215{|X|E

)
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0°x% \ (°X2/2(1—0*)F T(k+1
V200 {'X|ZGXP< 02))( S F(/E+1/)2)}
& T(k+1) ox? \ ([ x>\
21-6) Zk'r +1/2) {|X|6Xp<_2(1—02)> (2(1—92)> }

I'k+1)
243/2 2k
- ZG k+1/2

\/_

after computing the expectation under the sum and finding that it equals

V2/70%*(1 C(k+1).
Thus (4) holds. (We call (4) Perlman’s formula since this method was suggested to us
by Michael Perlman).
Now for (5). Mehler’s formula (see e.g. MEHLER, 1866, Buia, 1990, and KLAASSEN
and WELLNER, 1997, 74) says that the bivariate normal density ¢, of (X, Y) can be
written as

Po(x,y) = { I+ Zoo: 0" H (x)H} (v) } P(x)P(»);

k=1

here ¢(x) = (2n)"/?exp(—x2/2) is the standard normal density, and {H}} are the
Hermite polynomials normalized to be orthonormal with respect to ¢. Since
E\X| = E|Y| = \/2/71, by interchanging the sum and the integration we find that

Eo(IX||Y]) == + Z 0°b?

where

Now

see e.g. ABRAMowITz and STEGUN (1972), 774, where their He,, is our H,. Hence we
compute ¢, = 0 for k odd, and for k even

[k/2]

OO —2j . —x%/2
Ci = k! Z m/ |X|xk Je / dx

[k/2] A (k/2)=2j+1 A
:k!Z(—1y2 k2t
i (k=2

J=0
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Covariance of two Brownian area integrals 105

For example, Mathematica yields ¢c; =2, ¢4 = =2, ¢ =6, cg = —30, ¢jo = 210,...
Combining the above yields

o k k—j+1 — ?
Eo(X1Y]) = 5- 4+;92"<2k>!{2<1>’2ﬂ2z M}

J=0

1 = 3
—_— 4 02/{ 2k .
2n { * ,; (2k)!

Thus (5) holds. (We call (5) Wellner’s formula because the first author obtained it via
Mehler’s formula in the course of this study.)
To prove (6), note that if X and Z are independent N(0, 1), then defining

Y=0X+V1-02Z,

it follows that (X, Y) has a bivariate normal distribution with zero means, unit
variances, and correlation 6. Thus it follows by using polar coordinates for the joint
distribution of (X, Z), that

1 0 2n
E|XY| =5 /0 /0 1012 cos® p + V' 1 — 0% cos ¢sin Blre /> drdep
1 o0 2n
/ r3e_’2/2dr/ cos® ¢|0 + V1 — 0*tan ¢| do
0

:% A
2
= E{Oarcsin(@) +V1-6*}

where the last equality follows by noting that the function ¢ — 0 + v/ 1 — 0* tan ¢ is
positive for ¢ € (0,7/2) U (¢,(0),3n/2) U (¢p,(0),2n), negative for ¢ € (n/2,¢,(0))
U(31/2,$,(0)), where ¢,(0) = arctan(—0/V'1 — 6°) € (n/2,7), () = ¢,(0) + 7,
and then doing a careful integration for the separate pieces. (We call (6) the Janson—

Smythe formula because it was derived by the second author after a suggestion by
S. Janson.) O

Fig. 1. Plot of Ey|X]| |Y].
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In the above plot, the graph descending rapidly near 1 is the plot via Perlman’s
formula; the graph which increases monotonically to 1 is from Wellner’s formula
and the Janson—Smythe formula. The divergence near 1 is due to truncation of the
series for g at 50 terms. The plot was produced by Mathematica code available from
the first author.

Added in proof: Steve Stigler has pointed out that (6) (and other absolute moments
of bivariate and trivariate normal distributions) were derived by NABEYA (1951) and
KAMAT (1953); also see JounsoN and Kotz (2000), page 91 and (13) on page 92. In
particular, our (6) is given by KAamAT (1953), page 26, in his formula for (1,1,0).

3 Completion; combining the parts

Proor ofF ProrosiTioN 1, PArRT 2. Now we can use the series (4) and (5) of
Proposition 2 to compute the expectation inside the integral in (3). By the series in (4)

F(k+ 1)

EQ2() 12201} = —= (1 - 6*(s.1) ”Z“”‘ Tar1/2)

VT

where 0(s, t) is given by (2). Plugging this in and changing the order of summation
and integration we find that E(A4,4,) is equal to

1 pl
/0/0 \/2s(l—s)\/2t(1—t)%(l WZ@”‘ k’flj)z)d de
_;_i k’fliz /1 VA=)l =01 — (s, 1) 20% (s, ) dsdr
nim
4 & T+ 1)
VA T(k+1/2)7"

Computing the integrals numerically in Mathematica yields Table 1.

Table 1. Values of the integrals by

k by

0 0.134498

1 0.0108539

2 0.00146832

3 0.000245253

4 4.56330 x 1073
5 9.05168 x 107°
6 1.87238 x 107°
7 3.98809 x 1077
8 8.68010 x 1078
9 1.92028 x 1078
10 430522 x 107

© VVS, 2002



Covariance of two Brownian area integrals 107

Using the numerical values of b; to compute the series, we find that
E(A14;) =~ .205145.

Alternatively, by the series in (5),

E{|Z1(5)]|Z:(0)] {4+Zez'f 5,1) }

and plugging this in and changing the order of summation and integration, we find
that E(A4;4;) is equal to
} dsdt

// V(= $)y/2(1 = ) — {4+Z(92"
kZ 3 // «¢>}

2171{8// Vs(1 —s)/t(1 —t)dsdt

Evaluating the series numerically we find again (with only four terms) that

Using the third formula (6), we find that

1l
E(AlAz)Z/O/O \/ZS(l—s)\/Zt(l_t)%

x {0(s, 1) arcsin(0(s, 1)) + /1 — 0%(s, 1)} ds dt

I R

X 1 fl_tarcsin 1\/“_[ Jr\/llSl_t dsdt
Vi1 =5 Vi1 =5 41—
s(l—1) s1- dsdz
) arcsin 2 T s

8 [t [ 1 s 1—¢
- V(1 —s)t(1 — 1—= S
+n/0/0 s(1=s)t(1 —1) AT 7 dsds
S
=-13 .

Now by letting x = s/(1 —s) and y = ¢/(1 — 1),
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Table 2. Values of the integrals ¢y and dy

k Cox o

1 2 0.0136449

2 -2 0.00194758

3 6 0.00033606

4 -30 6.38754 x 107>
5 210 1.28602 x 107>
6 —1890 2.68914 x 107°
7 270270 577651 x 1077
8 —-270270 1.26556 x 1077

n:/]/lm\/ e
// 1 +x) 1+y) \ _Z;dXdy

:/0 (y)/ol(l ul’? \/ﬁdudy

ler3

/ \/1”—7,‘/ y < dydu

1+uy 1+y)

On the other hand,

1_// (1-1 arcsm(%\/—i )dsdt
—/ (l—t)/t arcsin Lpslzt dsds
a 0 0 t 2 fl—S s
| /y X . (1 )
= arcsin | = +/x dxd
/o 1+ Jo (1+x)° VA Y
00 2 1
B y / u i (1\/_>
= arcsin| =+/u ) dud
/o (1+y)°Jo (1+m) 2 g

1 1 >/oo y2
= [ warcsin( =/u —— dydu.
/0 <2 o (1+)°(1+m)’

Combining these pieces yields

!
E(4143) = %/0 {%uarcsin(\/z_t/Z) + Vu(l — u/4)}k(u) du

where

/°°y2 gy — 102/ +du+ 1} + 30 = 3
o (1w’ (1 —u)
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Covariance of two Brownian area integrals 109

satisfies lim,_; k(u) = 1/30. Evaluating these integrals numerically (by taking
k(u) = 1/30 for .995<u<1), yields E(A4;4,) = 0.205143.

It follows from results of SHEPP (1992) (see also PERMAN and WELLNER, 1996,
1107) that E(4,) = E(A4;) = /n/4 =~ 4431 ... and Var(4,) = Var(4;) =7/30 — /16

~.03698.... This results in Cov(4;,A4y)~.008795, and Correl(4;,A4,)
~ .2378. O
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