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Stochastic Analysis of Shell Sort

R. T. Smythe1 and J. Wellner2

Abstract. We analyze the Shell Sort algorithm under the usual random permutation model. Using empirical
distribution functions, we recover Louchard’s result that the running time of the 1-stage of(2,1)-Shell Sort has
a limiting distribution given by the area under the absolute Brownian bridge. The analysis extends to(h,1)-
Shell Sort where we find a limiting distribution given by the sum of areas under correlated absolute Brownian
bridges. A variation of(h,1)-Shell Sort which is slightly more efficient is presented and its asymptotic behavior
analyzed.
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1. Introduction. Shell Sort is an algorithm that generalizes the method of sorting by
insertion. It is essentially several stages of insertion sort. The algorithm was proposed
in Shell (1959). The method received considerable attention over the past quarter of a
century after Knuth’s 1973 book popularized it (Knuth, 1973). From a practical point of
view, the interest in Shell Sort stems from the fact that it is a rather practicable method of
in situ sorting with little overhead and can be implemented with ease. From a theoretical
standpoint, the interest is that insertion sort has an average of2(n2) running time to sortn
random keys, whereas the appropriate choice of the parameters of the stages of Shell Sort
can bring down the order of magnitude. For instance, by a certain choice of the structure
of the stages, a 2-stage Shell Sort can sort inO(n5/3) average running time. Ultimately,
an optimized choice of the parameter can come close to the information-theoretic lower
bound ofO(n ln n) average case.

The analysis of Shell Sort has stood as a formidable challenge. Most research on
Shell Sort has gone in the direction of making good choices for the parameters of
the stages to obtain good worst-case behavior (see, for example, the review paper of
Sedgewick (1996)). We propose here to take the research along a different axis and
to analyze the stochastic structure of the algorithm. We rederive the limit result of
Louchard (1986) for(2,1)-Shell Sort, which he proved by essentially combinatoric
arguments, and we generalize the approach to the analysis of(h,1)-Shell Sort. The
integrated alsolute value of the Brownian bridge appears in the limiting distributions;
the moments of the distribution of this random variable were found by Shepp (1982),
and Johnson and Killeen (1983) gave an explicit characterization of the distribution
function.
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Section 2 gives a brief description of the algorithm; readers in search of more detail are
advised to consult a source such as Sedgewick (1988), Sedgewick and Flajolet (1996),
or Mahmoud (2000). In Section 3 the limiting distribution of the running time of(2,1)-
Shell Sort is derived using order statistics and empirical distribution functions. This is
extended in Section 4 to(h,1)-Shell Sort. Section 5 introduces a variation of(h,1)-Shell
Sort and gives the asymptotic distribution of its running time. In Section 6 we make some
brief observations about(h, k,1)-Shell Sort.

2. The Algorithm. To sort by insertion, one progressively adds keys to an already
sorted file. This is achieved by identifying the rank of the next key by searching the
available sorted list. The search can, of course, be done in many different ways. We
restrict our attention to linear search, since it is a form that integrates easily into Shell Sort.

Shell Sort performs several stages of insertion sort and is well suited to arrays. We
assume the data reside in a host linear array structure of sizen. If the chosen Shell Sort
usesk stages, ak-long integer sequence decreasing down to 1 is chosen to achieve a
faster sort than plain insertion as follows. Suppose the sequence istk, tk−1, . . . , t1 = 1.
In sortingn keys, the first stage sorts keys that aretk positions apart in the list. Thus
tk subarrays of length at mostdn/tke each are sorted by plain insertion. In the second
stage the algorithm uses the incrementtk−1 to sorttk−1 subarrays of keys that aretk−1

positions apart (each subarray is of length at mostdn/tk−1e), and so on, down to the last
stage, where an increment of 1 is used to insert-sort the whole array. Thus, in the last
stage the algorithm executes plain insertion sort.

As an example,(2,1)-Shell Sort sorts the array

3 2 6 5 9 8 1 4 7

in two stages. In the first stage the increments of 2 are used—the subarray of odd indexes
is sorted by regular insertion sort, and the subarray of even indexes is sorted by regular
insertion sort. The two interleaved arrangements

sorted odd positions: 1 3 6 7 9
sorted even positions: 2 4 5 8

are then sorted by one run of the regular insertion sort on the whole array. The stage of
Shell Sort that uses the incrementtj will be referred to as thetj -stage of the algorithm.
We use the usual notationZ( j ) to denote thej th order statistic amongZ1, . . . , Zr .
(Technically, we should useZ( j : r ) sinceZ( j : r ) andZ( j : s) may differ fors 6= r ; however,
when the second subscript is understood, we drop it for simplicity.)

The notion of aninversion in a permutation is at the core of our analysis. Let
(π1, . . . , πn) be a permutation of{1, . . . ,n}. One says that the pair(πi , πj ) is an in-
version ifπi > πj , for i < j , that is whenπi andπj are out of their natural order.

3. Analysis of (2,1)-Shell Sort. Our goal in this paper is to discuss the stochastic
behavior of Shell Sort when it operates on an array ofn raw data. The usual probability
model is the random permutation model, whereby the ranks of the data are equally likely
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to be any of the permutations of{1, . . . ,n}, each occurring with probability 1/n!. This
model is natural and is used as the standard for the analysis of sorting algorithms. The
model covers a wide variety of real-world data models; for instance the entire class of
data drawn from any continuous distribution follows the random permutation probability
model. Henceforth the termrandomwill specifically refer to data from this model. In
this section we consider only(2,1)-Shell Sort.

The difficulty in the stochastic analysis of Shell Sort lies in the fact that after the first
stage the resulting data are no longer random. Instead,tk sorted subarrays are interleaved.
The second and subsequent stages may not then appeal to the results known for insertion
sort. For example, the second stage of the(2,1)-Shell’s sort does not sort a random array
of sizen. The first stage somewhat orders the array as a whole, and many inversions are
removed (some new ones may appear, though; see for example the positions of 5 and 6
before and after the 2-stage of our example).

Suppose our data aren real numbers from a continuous probability distribution.
Because ordering is preserved by the probability integral transform, we may (and do)
assume that the probability distribution is uniform on(0,1). We call the elements in odd
positionsX’s and those in the even positionY’s. Thus, ifn is odd, initially our raw array
prior to any sorting is

X1,Y1, X2,Y2, . . . ,Ybn/2c, Xdn/2e,

and ifn is even the initial raw array is

X1,Y1, X2,Y2, . . . , Xn/2,Yn/2.

The 2-stage of the algorithm puts theX’s in order among themselves and theY’s in
order among themselves. LetSn be the number of comparisons that(2,1)-Shell Sort
makes to sortn random keys, and letCn be the number of comparisons that insertion
sort makes to sortn random keys. The 2-stage of(2,1)-Shell Sort makes two runs of
insertion sort on the subarraysX1, . . . , Xdn/2e andY1, . . . ,Ybn/2c, thus requiring

Cdn/2e ⊕ C̃bn/2c

comparisons, wherẽCj
D= Cj , and for all feasiblei and j , Ci is independent of̃Cj .

The 1-stage now comes in, requiring additional comparisons to remove the remaining
inversions. When we are about to insertY( j ), we place it among

{X(1), . . . , X( j )} ∪ {Y(1), . . . ,Y( j−1)}.
Because the 2-stage has sorted theY’s, {Y(1), . . . ,Y( j−1)} do not have any inversions with
Y( j ). Only {X(1), . . . , X( j )} can introduce inversions. It is well known that the so-called
sentinel version of insertion sort makes

C(5n) = n+ I (5n)

comparisons to sort a permutation5n with I (5n) inversions. LetVj be the number of
inversionsY( j ) makes with all the elements that precede it, that is

Vj = 1{X(1)>Y( j )} + · · · + 1{X( j )>Y( j )},
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for j = 1, . . . , bn/2c. A symmetric argument applies to the insertion ofX( j ); defineWj

as the number of inversionsX( j ) makes with all the elements that precede it:

Wj = 1{Y(1)>X( j )} + · · · + 1{Y( j−1)>X( j )},

for j = 1, . . . , dn/2e. The number of inversions after the 2-stage is thus

In =
dn/2e∑
j=1

Vj +
bn/2c∑
j=1

Wj .

The 1-stage then requiresn+ In comparisons
The overall number of comparisonsSn of (2,1)-Shell Sort is therefore given by the

convolution

Sn = Cdn/2e ⊕ C̃bn/2c ⊕ n⊕ In.(1)

Lent and Mahmoud (1996) developed Gaussian laws for the entire class of tree-
growing search strategies, which includes linear search, the search method of Shell Sort.
In particular,Cn, the number of comparisons that insertion sort performs to sortn random
keys, is asymptotically normally distributed:

Cn − 1
4n2

n3/2

D−→ N (0, 1
36).

We focus on the limiting distribution ofIn. To avoid working with clumsy floors and
ceilings, we assumen is even. The casen odd requires only minor adjustments that do
not change the asymptotic result.

The next result is the key to our analysis:

LEMMA 1. The total number of inversions after the2-stage, In, has the representation

In =
n/2∑
j=1

T ( j )
n ,

where

T ( j )
n =

∣∣∣∣∣ n/2∑
i=1

[1{Yi<Xj } − 1{Xi<Xj }]

∣∣∣∣∣ .
PROOF. We have

In =
n/2∑
j=1

(Vj +Wj ) =
n/2∑
j=1

[
j−1∑
i=1

1{X( j )<Y(i )} + 1{X( j )>Y( j )} + · · · + 1{X( j )>Y(n/2)}

]

=
n/2∑
j=1

∣∣R( j ) − (2 j − 1)
∣∣ ,
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whereR( j ) is the rank ofX( j ) amongX1, . . . , Xn/2,Y1, . . . ,Yn/2. For j = 1,2, . . . ,n/2,
let

Dj ≡
n/2∑
i=1

1{Xi≤Xj } =
n/2∑
i=1

1{Xi<Xj } + 1.

Then if Rj denotes the rank ofXj among all theX’s andY’s, it follows thatR(Dj ) = Rj

and

In =
n/2∑
j=1

∣∣Rj − (2Dj − 1)
∣∣ .

However,

Rj =
n/2∑
j=1

1{Xi<Xj } +
n/2∑
j=1

1{Yi<Xj } + 1,

so

Rj − (2Dj − 1) =
n/2∑
j=1

[1{Yi<Xj } − 1{Xi<Xj }].

The form in Lemma 1 can be expressed in terms of empirical distribution functions.
Let Fn(t) be the empirical distribution function ofn i.i.d. random variablesZi , that is

Fn(t) = 1

n

n∑
i=1

1{Zi≤t}.

Then

T ( j )
n

a.s.= n

2

∣∣∣∣F̂n/2(Xj )−
(

F̃n/2(Xj )− 2

n

)∣∣∣∣ ,
whereF̂n/2 andF̃n/2 are the empirical distribution functions of theY’s andX’s, respec-
tively. Thus we may expressIn as

In = n

2

n/2∑
j=1

|F̂n/2(Xj )− F̃n/2(Xj )| + op(n)

(whereop(n)denotes a term smaller than ordern in probability, resulting from the “extra”
2/n in the expression forT ( j )

n ), so that

In

(n/2)3/2
=
∫ 1

0

√
n/2|F̂n/2(x)− F̃n/2(x)|dF̃n/2(x)+ op(1).(2)

The empirical process converges in the Skorohod topology onD[0, 1], the space of
right-continuous functions with left limits on [0,1], giving

√
n (Fn(t)− t)

D−→ B(t),
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whereB(t) is the (standard) Brownian bridge. Thus√
n/2|F̂n/2(x)− F̃n/2(x)| D−→|B1(x)− B2(x)|,(3)

whereB1(t) andB2(t) are independent Brownian bridges. We note for future reference
that the Brownian bridge is a Gaussian process, andB1− B2 has the distribution of

√
2*

(a Brownian bridge), so

B1(t)− B2(t)
D= N (0,2t (1− t)).

Also, the empirical measuredF̃n/2(x) converges a.s. to uniform measure on [0, 1], by
the Glivenko–Cantelli theorem. Using the expression forIn in (2), we have∫ 1

0

√
n/2|F̂n/2(x)− F̃n/2(x)|dF̃n/2(x)−

∫ 1

0
|B1(x)− B2(x)|dx(4)

=
∫ 1

0

√
n/2|F̂n/2(x)− F̃n/2(x)|dF̃n/2(x)−

∫ 1

0
|B1(x)− B2(x)|dF̃n/2(x)

+
∫ 1

0
|B1(x)− B2(x)|dF̃n/2(x)−

∫ 1

0
|B1(x)− B2(x)|dx.

For the first difference in (4), we can use the Skorokhod–Dudley–Wichura theorem (see,
for example, Dudley (1997)) to construct, on a common probability space, versionsF̂∗n/2,
F̃∗n/2, B∗1, andB∗2 of F̂n/2, F̃n/2, B1, andB2 for which the convergence in (3) takes place
uniformly a.s., so on this new space the first difference is bounded by

sup
{0≤t≤1}

√
n/2

∣∣∣|F̂∗n/2(t)− F̃∗n/2(t)| − |B∗1(t)− B∗2(t)|
∣∣∣ .

This converges to zero a.s. on the probability space of the construction. The Brownian
bridge has a.s. bounded continuous paths, so the second difference also goes to zero
a.s. by convergence of the empirical measure to uniform measure on [0, 1]. Thus on
the original space, convergence in distribution is established, and we have the following
result, first given by Louchard (1986):

THEOREM1. Let Wn be the number of comparisons made in the1-stage of(2,1)-Shell
Sort to sort n random keys, so that Wn = n+ In. Then

Wn

(n/2)3/2
D−→
√

2
∫ 1

0
|B(t)|dt,

where B(t) is a standard Brownian bridge.

An infinite series for the c.d.f. of the limiting distribution of Theorem 1 is given by
Johnson and Killeen (1983). The supremum of the uniform empirical process satisfies
an exponential “tail” bound (Shorack and Wellner, 1986, p. 14) so it is easy to show
from (2) that the convergence in distribution in Theorem 1 entails the convergence of
moments ofWn/(n/2)3/2 to those of

√
2
∫ 1

0 |B(t)|dt. These moments were derived by
Shepp (1982); the limiting first and second moments for(2,1)-Shell Sort had already
been given by Knuth (1973).
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COROLLARY 1.

(a) The average number of comparisons made by the1-stage of(2,1)-Shell Sort is
asymptotically equivalent to(

√
π/8
√

2)n3/2.

(b) The variance of the number of comparisons is asymptotically equivalent to(7/240−
π/128)n3.

Combining this result with the previously noted Gaussian limit forCn, the number of
comparisons made by the 2-stage of (2,1)-Shell Sort, we conclude that the asymptotic
distribution of the total number of comparisons needed to sortn random keys is the
convolution of a Gaussian law with the distribution of Theorem 1:

COROLLARY 2.

(a) Let Sn be the number of comparisons made by(2,1)-Shell Sort to sort n random keys.
Then

Sn − 1
8n2

n3/2

D−→ N (0, 1
144)⊕

1

2

∫ 1

0
|B(t)|dt.

(b)

E(Sn) = 1
8n2+

√
π

8
√

2
n3/2+ o(n3/2).

4. Analysis of(h,1)-Shell Sort. Forh > 2, we assume for simplicity thath dividesn,
the total number of keys; again, adjusting for this does not affect the limiting distribution.
Prior to any sorting, our raw array is then given by

X1
1, X2

1, . . . , Xh
1, X1

2, . . . , Xh
2, . . . , X1

n/h, . . . , Xh
n/h

and theh-stage of the algorithm orders each of theh lists {X1
j }, . . . , {Xh

j }. The 1-stage
then performs additional comparisons to order the nowh-sorted list. When we are about
to insertXr

( j ), for 1≤ r ≤ h, we place it among

{X1
(1), . . . , X1

( j )} ∪ · · · ∪ {Xr−1
(1) , . . . , Xr−1

( j ) } ∪ {Xr
(1), . . . , Xr

( j−1)}
∪ · · · ∪ {Xh

(1), . . . , Xh
( j−1)}.

As before, there will be no inversions produced with{Xr
(i )}, so the total number of

inversionsXr
( j ) makes with the elements that precede it, for 1≤ j ≤ n/h, is

j∑
i=1

r−1∑
k=1

1{Xk
(i )>Xr

( j )} +
j−1∑
i=1

h∑
k=r+1

1{Xk
(i )>Xr

( j )}.

Let r < s be any two integers between 1 andh. The total number of inversions encoun-
tered in the sort, which we denoteI h

n , is then the sum over all
(h

2

)
pairs (r, s) of

I r,s
n ≡

n/h∑
j=1

Vr,s
j ,
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where

Vr,s
j ≡

j−1∑
i=1

1{Xs
(i )>Xr

( j )} +
j∑

i=1

1{Xr
(i )>Xs

( j )}.

We denote the empirical process corresponding to theXr
i by Fr

n/h, and let

Ur
n/h(t) ≡

√
n/h(Fr

n/h(t)− t)

for 1≤ r ≤ h. Arguing as in the previous section,

I h
n

(n/h)3/2
=
∑
r<s

∫ 1

0
|Ur

n/h(t)−Us
n/h(t)|d Fr

n/h(t)+ op(1),

where the sum is over all pairs(r, s) with 1 ≤ r < s ≤ h. The vector of processes
Un/h ≡ (U1

n/h, . . . ,U
h
n/h), by the classical Donsker theorem, satisfies

Un/h
D−→ B,

whereB ≡ (B1, . . . , Bh) is a vector of independent Brownian bridge processes. Let

Dr,s
n/h ≡ Ur

n/h(t)−Us
n/h(t) = Fr

n/h(t)− Fs
n/h(t).

It follows from the continuous mapping theorem that the
(h

2

)
-vector of processes

Dn/h ≡ (D1,2
n/h, . . . , Dh−1,h

n/h )

satisfies

Dn/h
D−→ D,

whereD ≡ (D1,2, . . . , Dh−1,h) andDi, j ≡ Bi − B j .
Next, we use the Skorokhod–Dudley–Wichura theorem as before to construct versions

D̃n/h and D̃ of Dn/h and D on a common probability space such thatD̃n/h converges

almost surely toD̃ with respect to the supremum norm onD[0,1]h.
We can now establish the basic convergence result for(h,1)-Shell Sort.

THEOREM2. Let Wh
n be the number of comparisons made in the1-stage of(h,1)-Shell

Sort to sort n random keys, so that Wh
n = n+ I h

n . Then

Wh
n

(n/h)3/2
D−→Wh ≡

∑
r<s

∫ 1

0
|Br (t)− Bs(t)|dt,

where the sum extends over all pairs(r,s) with 1≤ r < s ≤ h.

PROOF. We show first that for the constructed versions with the correspondingly con-
structed versions̃F1

n/h, . . . , F̃h
n/h of the empirical distributionsF1

n/h, . . . , Fh
n/h, the ran-

dom
(h

2

)
-vector

Z̃n/h ≡
(∫ 1

0
|D̃1,2

n/h(t)|dF̃1
n/h(t), . . . ,

∫ 1

0
|D̃h−1,h

n/h (t)|dF̃h
n/h(t)

)
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converges almost surely tõZ, where

Z̃ ≡
(∫ 1

0
|D̃1,2(t)|dt, . . . ,

∫ 1

0
|D̃h−1,h(t)|dt

)
.

It suffices to prove that each component converges, and, by symmetry, this holds if we
show that it holds for the first component. However, this follows exactly as in Section 3,
using the decomposition given in (4) and the a.s. continuity and boundedness of the
function|D̃|.

It follows that the sum of the components ofZ̃n/h converges a.s. to the sum of the

components of̃Z, and this implies that

I h
n

(n/h)3/2
D−→Wh,

as claimed.

To the best of our knowledge, the distribution ofWh for h > 2 is completely unknown.
Of course the summands that compriseWh have known distributions, but the (i, j )- and
(r, s)-summands will be correlated if the pairs (i, j ) and (r, s) share an integer. The first
moment, which again was found by Knuth (1973), follows easily from the representation.
We do not have a closed form for the second moment but it can be evaluated numerically.

COROLLARY 3.

(a) The average number of comparisons made by the1-stage of(h,1)-Shell Sort is
asyptotically equivalent to (

n

h

)3/2(h

2

)√
π

4
.

(b) The variance of the number of comparisons is asymptotically equivalent to(
n

h

)3{(h

2

)(
7

30
− π

16

)
+ h(h− 1)(h− 2)

(
C − π

16

)}
,

where

C ≡ E
{∫ 1

0
|B1(t)− B2(t)|dt

∫ 1

0
|B1(t)− B3(t)|dt

}
and B1(t), B2(t), B3(t) are independent(standard) Brownian bridges. The value of
C is numerically determined to equal0.2051.

PROOF. (a) follows immediately from the fact thatWh is the sum of
(h

2

)
identically

distributed terms. From the arguments leading to Corollary 1, the mean of each term is√
π/4.
For (b), the variance ofWh is the sum of

(h
2

)
terms equal to

Var

{∫ 1

0
|B1(t)− B2(t)|dt

}
,
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which from Shepp’s (1982) results is 7/30− π/16, plus the covariance terms. For pairs
(i, j ) and (r, s), the covariance will be zero unless there is a common integer in (i, j )
and (r, s). It is easy to check that there areh(h− 1)(h− 2) such terms, and the common
covariance is given byC − π/16.

We note a curious consequence of Corollary 3. Although ash increases, the mean of
the number of comparisons grows as

√
h, the variance grows slowly withh to a limiting

value of about 0.0088n3.
The evaluation ofC merits some comment. As noted previously, the Brownian bridge

is a Gaussian process, and it is well known that fors < t , Cov(B(s), B(t)) = s(1− t).
ThusC can be evaluated as a double integral once it is known how to calculateE(|X||Y|),
where (X,Y) is bivariate normal with mean (0, 0), unit variances, and correlationρ.
Several approaches are available for this calculation (see Wellner and Smythe, 2001). It
can be shown that

E(|X||Y|) = 2

π
{ρ arcsin(ρ)+

√
1− ρ2},

from which evaluation of the covariance can be reduced to a single integration. Alterna-
tively, we can representE(|X||Y|) as

E(|X||Y|) = 2√
π
(1− ρ2)3/2

∞∑
k=0

ρ2k 0(k+ 1)

0(k+ 1
2)
.

The integrated terms of the series decrease rapidly, permitting accurate numerical cal-
culation ofC.

For the sake of completeness, we record the analog of Corollary 2 for(h,1)-Shell
Sort:

COROLLARY 4.

(a) Let Sn be the number of comparisons made by(h,1)-Shell Sort to sort n random keys.
Then

Sn − n2/4h

n3/2

D−→ N
(

0,
1

36h2

)
⊕ Wh

h3/2
,

where Wh is given in Theorem2.
(b)

E(Sn) = n2

4h
+
√
π

4

(
h

2

)(
n

h

)3/2

+ o(n3/2).

5. A Variation of (h,1)-Shell Sort. We describe briefly here a variation of(h,1)-
Shell Sort that seems to be of at least theoretical interest. For clarity, we first describe
the method forh = 3; the extension toh > 3 is fairly obvious.

We begin by performing the 3-sort in the usual way. This results in three sorted
subarrays, which we denoteX(1), . . . , X(n/3), Y(1), . . . ,Y(n/3), andZ(1), . . . , Z(n/3). Now
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order theY’s andZ’s by performing an ordinary insertion sort with these two subarrays.
We then have one sorted list ofn/3 numbers (theX’s) and one sorted list of 2n/3 numbers
(which we call theY–Z list).

Next we do an insertion sort with theX list and theY–Z list, as follows: start with
X(1), then insert consecutively the first two numbers in the orderedY–Z list; next insert
X(2) into this sorted list of three numbers, then insert the next two numbers in theY–Z
list, and so forth until the sort is complete.

Let In,1 andIn,2 denote, respectively, the number of inversions encountered in ordering
theY–Z list and the number of inversions in sorting theX’s into theY–Z list. ThenIn,1

andIn,2 are independent, because the former depends only on the relative position of the
Y’s andZ’s, whereas the latter depends only on the position of theX(i ) with respect to
the sortedY–Z list. From Lemma 1, it follows that

In,1 =
n/3∑
j=1

T ( j )
n,1 ,

where

T ( j )
n,1 =

∣∣∣∣∣ n/3∑
i=1

[1{Zi<Yj } + 1{Yi<Yj }]

∣∣∣∣∣ .
By reasoning almost identical to that of Lemma 1, we further derive that

In,2 =
n/3∑
j=1

T ( j )
n,2 ,

where

T ( j )
n,2 =

∣∣∣∣∣ n/3∑
i=1

1{Yi<Xj } + 1{Zi<Xj } − 21{Xi<Xj }

∣∣∣∣∣ .
From the triangle inequality, we get

In,1+ In,2 ≤ I 3
n ,

whereI 3
n is the number of comparisons given in Section 4 for(3,1)-Shell Sort. Proceed-

ing as in Section 3, we find that

In,2

(n/3)3/2
=
∫ 1

0

√
n/3|Fz

n/3(t)+ F y
n/3(t)− 2Fx

n/3(t)|d Fx
n/3(t)+ op(1),

whereFx
n/3, F y

n/3, Fz
n/3 are, respectively, the empirical distribution functions of theX’s,

Y’s, andZ’s. An argument very similar to that of Theorem 2 shows that

In,2

(n/3)3/2
D−→

∫ 1

0
|B3(t)+ B2(t)− 2B1(t)|dt,(5)

where B1(t), B2(t), B3(t) are three mutually independent Brownian bridges. By the
properties of the Brownian bridge, the integrand in (5) has the distribution of

√
6|B(t)|,
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whereB(t) is a standard Brownian bridge, so that

In,2

(n/3)3/2
D−→
√

6
∫ 1

0
|B(t)|dt.

It also follows from the results of Section 3 that

In,1

(n/3)3/2
D−→
√

2
∫ 1

0
|B∗(t)|dt,

where B∗(t) is a Brownian bridge independent ofB(t), so the total number of com-
parisons in this case converges to a convolution of the distribution of the limit given in
Theorem 1. IfW∗n,3 denotes the number of comparisons, then

W∗n,3
(n/3)3/2

D−→
√

2Z ⊕
√

6Z∗,

whereZ and Z∗ are independent copies of
∫ 1

0 |B(t)|dt. The asymptotic mean of the
number of comparisons for this modified(3,1)-Shell Sort is then given by

n3/2√π
4

(
1

33/2
+ 1

3

)
,

which is about 0.905 times the mean given in Corollary 2 for “real”(3,1)-Shell Sort.
The asymptotic variance for the modified method is(n

3

)3/2
(

7

30
− π

16

)
[1+ 3],

about 0.79 times the variance for(3,1)-Shell Sort.
The extension of this variation toh > 3 is straightforward. With notation as in Sec-

tion 4, theh-sort is performed as previously, resulting inh ordered lists{X1
j }, . . . , {Xh

j }.
At the next step, the variation we consider first performs an insertion sort to order the
Xh−1 and Xh lists. Then theXh−2 list is sorted together with the combinedXh−1 and
Xh lists, just as theX list was sorted with theY–Z list in the case ofh = 3. Next the
Xh−3 list is sorted with the combinedXh−2–Xh−1–Xh list, by inserting firstXh−3

(1) , then

the smallest three numbers from the combined list, thenXh−3
(2) , and so forth. When this

sort is complete, theXh−4 list is sorted with this combined list, and so on until the list
is completely sorted. In this process the number of comparisons required at each stage
is independent of the other stages, so the asymptotic distribution of the total number of
comparisons is a convolution of the distributions of the numbers at each stage. At the
stage where theXk list is inserted, the number of comparisonsIn,h−k satisfies, in the
notation of Section 4,

In,h−k

(n/h)3/2
=
∫ 1

0

√
n/h|Fh

n/h(t)+ · · · + Fk+1
n/h (t)− (h− 1)Fk

n/h|d Fk
n/h(t)+ op(1),

and

In,h−k

(n/h)3/2
D−→

∫ 1

0
|Bh(t)+ · · · + Bk+1(t)− (h− 1)Bk(t)|dt(6)
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by an argument similar to that of Section 4, whereBk(t), . . . , Bh(t) are independent
Brownian bridges. The integrand of (6) has the distribution of

√
(h− k)+ (h− 1)2|B(t)|

whereB(t) is a standard Brownian motion, and we are led to the following result:

THEOREM3. Let W∗n,h denote the number of comparisons made in the1-stage of the
variation of(h,1)-Shell Sort to sort n random keys. Then

W∗n,h
(n/h)3/2

D−→
√

2Z(1) ⊕
√

6Z(2) ⊕ · · · ⊕
√

h(h− 1)Z(h−1),

where Z(1), . . . , Z(h−1) are independent copies of
∫ 1

0 |B(t)|dt.

From Theorem 3 it is easy to determine the asymptotic moments for the variation of
Shell Sort.

COROLLARY 5.

(a) The average number of comparisons made by the1-stage of the variation of Shell
Sort is asymptotically equivalent to(

n

h

)3/2 √
π

4
√

2

h∑
j=1

√
j ( j − 1).

(b) The variance of the number of comparisons for the variation is asymptotically equiv-
alent to

n3

6

(
7

30
− π

16

)(
1− 1

h2

)
.

Comparing the results of Corollary 3 with those of Corollary 2 for “real”(h,1)-Shell
Sort, the asymptotic mean of the variation grows at rate

n3/2

√
π

4

√
h

2
√

2
+ O(h−1/2),

less than that of the “real” version by a factor of 1/
√

2. The variance exhibits the same
curious feature of growing slowly withh, but to a limiting value of 0.00616n3, compared
with 0.0088n3 for the “real” version.

6. A Remark on (h, k,1)-Shell Sort. In the case wherek dividesh, the method of
Section 4 can be used to find the limiting distribution of(h, k,1)-Shell Sort. Theh-stage
performs anh-sort, as before, resulting inh ordered lists of lengthn/h. The k-stage
then producesk sorted lists, each formed by an insertion sort onh/k of theh ordered
lists. The asymptotic number of comparisons involved in this step is given in Theorem 2
(or even Theorem 1 ifh/k = 2). The asymptotic number of comparisons in the 1-stage
is again found from Theorem 2, and the asymptotic distribution of the total number of
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comparisons in thek-stage and 1-stage is the convolution of the distributions of the two
stages.

For example, in the dyadic form of Shell Sort, with (in the notation of Section 2)
tk = 2k, the limiting distribution of the number of comparisons can be characterized.
In (4,2,1)-Shell Sort the average number of comparisons in the merging stages (not
counting the initial sorts) is(

√
π/16)n3/2(1+√2), while in(4,1)-Shell Sort the average

is (
√
π/16)n3/2(3), giving an “efficiency factor” of(1+ √2)/3. In general, using the

sequence(2k,2k−1, . . . ,1) compared with the(2k,1)-Shell Sort gives an “efficiency
factor” of

2(k/2)−1(1+√2)

2k − 1
.

Because of poor worst-case behavior, the case wherek dividesh is generally not of
practical interest, however.

7. Some Monte-Carlo Results. Here we present the results of some Monte-Carlo
experiments to confirm the limit theorems presented in the previous sections. Figures 1–
3 present the empirical distributions of 5000 replications of the standardized number of
comparisonsSn for n = 500,5000, and∞. Instead of standardizing as in Corollaries 2
and 4, we have chosen to present the empirical distributions of

Sn − n2/(4h)

(n/h)3/2
→d N

(
0,

h

36

)
+Wh.

The Monte-Carlo experiments were carried out forn = 500,5000 using a C-program
by David Butler at Oregon State University, and the Monte-Carlo experiments for the
limiting Brownian bridge process limits were done using Mathematica by Wellner at Uni-
versity of Washington. The latter involved approximating Brownian bridge processes by
(tied-down) partial sum processes of pseudo-random Gaussian variables using a grid of

Fig. 1.Empirical distributions for (2,1)-Shellsort,n = ∞,5000,500.



456 R. T. Smythe and J. Wellner

Fig. 2.Empirical distributions for (3,1)-Shellsort,n = ∞,5000,500.

104 points on the interval [0,1]. (Empirical distributions of this Monte-Carlo method
were checked for agreement with the theoretically known distribution of

∫ 1
0 |B(t)|dt

given in Johnson and Killen (1983).) The computer codes for both of these programs are
available from the authors.

In Figures 1–3 the plot furthest to the right is forn = 500, the plot forn = 5000 is
in the middle, and the plot of the asymptotic distribution (for “n = ∞”) is the furthest
to the left. This is in agreement with the empirical and theoretical means shown in
Table 1. Table 2 gives a comparison of empirical and theoretical variances, indicating
that variances decrease slightly withn for all three situations. The shapes of the empirical
distributions forn = 500,5000, and∞ seem to be very similar in all three situations,
and the limit distribution is being converged to from below (i.e., from the right). This is
probably due to terms of ordero(n3/2) which are ignored in the analysis.

Fig. 3.Empirical distributions for (7,1)-Shellsort,n = ∞,5000,500.
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Table 1.Theoretical and empirical (Monte-Carlo)
means; 5000 replications.

n (2,1) (3,1) (7,1)

Theory∞ 0.443 1.329 9.305
Empirical∞ 0.444 1.328 9.297
Empirical 5000 0.509 1.450 9.765
Empirical 500 0.662 1.729 10.717

Table 2.Theoretical and empirical (Monte-Carlo)
variances; 5000 replications.

n (2,1) (3,1) (7,1)

Theory∞ 0.0925 0.2468 2.8087
Empirical∞ 0.0971 0.2466 2.7875
Empirical 5000 0.0929 0.2480 2.8643
Empirical 500 0.0925 0.2522 2.9119

Acknowledgments. The authors thank Hosam Mahmoud for demystifying Shell Sort
and providing editorial advice on Sections 1 and 2; and Michael Perlman and Svante
Janson for help with the formulas forE|X||Y| in Section 4.

References

Dudley, R. M. (1997). Empirical processes andp-variation. Festschrift for Lucien Le Cam, D. Pollard,
E. Torgersen, and G. Yang, eds. Springer-Verlag, New York, pp. 219–233.

Johnson, B. McK., and Killeen, T. (1983). An explicit formula for the C.D.F. of theL1 norm of the Brownian
bridge.Annals of Probability11, 807–808.

Knuth, D. (1973).The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley,
Reading, Massachusetts.

Lent, J., and Mahmoud, H. (1996). On tree-growing search strategies.The Annals of Applied Probability6,
1284–1302.

Louchard, G. (1986). Brownian motion and algorithm complexity.BIT 26, 17–34.
Mahmoud, H. M. (2000).Sorting: A Distribution Theory. Wiley, New York.
Sedgewick, R. (1988).Algorithms, 2nd edn. Addison-Wesley, Reading, Massachusetts.
Sedgewick, R. (1996). Analysis of Shellsort and related algorithms.Algorithms - ESA ’96: Fourth Annual

European Symposium on Algorithms, Barcelona, Spain, Sept. 25–27, 1996, J. Diaz and M. Serna, eds.
Springer-Verlag, Berlin, New York, pp. 1–11.

Sedgewick, R., and Flajolet, P. (1996).An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading,
Massachusetts.

Shepp, L. (1982). On the integral of the absolute value of the pinned Wiener process.Annals of Probability
10, 234–239.

Shorack, G. R., and Wellner, J. A. (1986).Empirical Processes with Applications to Statistics. Wiley, New
York.

Wellner, J. A., and Smythe, R. T. (2001). Computing the covariance of two Brownian area integrals.Statistica
Neerlandica, Vol. 55, to appear.


