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Stochastic Analysis of Shell Sort
R. T. Smythé and J. Wellner

Abstract. We analyze the Shell Sort algorithm under the usual random permutation model. Using empirical
distribution functions, we recover Louchard’s result that the running time of the 1-stégelpfShell Sort has

a limiting distribution given by the area under the absolute Brownian bridge. The analysis extéhds)to

Shell Sort where we find a limiting distribution given by the sum of areas under correlated absolute Brownian
bridges. A variation ofh, 1)-Shell Sort which is slightly more efficient is presented and its asymptotic behavior
analyzed.
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model, Asymptotic distribution.

1. Introduction. Shell Sort is an algorithm that generalizes the method of sorting by
insertion. It is essentially several stages of insertion sort. The algorithm was proposed
in Shell (1959). The method received considerable attention over the past quarter of a
century after Knuth's 1973 book popularized it (Knuth, 1973). From a practical point of
view, the interest in Shell Sort stems from the fact that it is a rather practicable method of
in situ sorting with little overhead and can be implemented with ease. From a theoretical
standpoint, the interest is that insertion sort has an avera@@gdj running time to som
random keys, whereas the appropriate choice of the parameters of the stages of Shell Sort
can bring down the order of magnitude. For instance, by a certain choice of the structure
of the stages, a 2-stage Shell Sort can so@{n*?) average running time. Ultimately,

an optimized choice of the parameter can come close to the information-theoretic lower
bound ofO(nInn) average case.

The analysis of Shell Sort has stood as a formidable challenge. Most research on
Shell Sort has gone in the direction of making good choices for the parameters of
the stages to obtain good worst-case behavior (see, for example, the review paper of
Sedgewick (1996)). We propose here to take the research along a different axis and
to analyze the stochastic structure of the algorithm. We rederive the limit result of
Louchard (1986) for2, 1)-Shell Sort, which he proved by essentially combinatoric
arguments, and we generalize the approach to the analysgls bf-Shell Sort. The
integrated alsolute value of the Brownian bridge appears in the limiting distributions;
the moments of the distribution of this random variable were found by Shepp (1982),
and Johnson and Killeen (1983) gave an explicit characterization of the distribution
function.
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Section 2 gives a brief description of the algorithm; readers in search of more detail are
advised to consult a source such as Sedgewick (1988), Sedgewick and Flajolet (1996),
or Mahmoud (2000). In Section 3 the limiting distribution of the running timé&ofl)-

Shell Sort is derived using order statistics and empirical distribution functions. This is
extended in Section 4 i, 1)-Shell Sort. Section 5 introduces a variatior{lof 1)-Shell

Sort and gives the asymptotic distribution of its running time. In Section 6 we make some
brief observations abouh, k, 1)-Shell Sort.

2. The Algorithm. To sort by insertion, one progressively adds keys to an already
sorted file. This is achieved by identifying the rank of the next key by searching the
available sorted list. The search can, of course, be done in many different ways. We
restrict our attention to linear search, since itis a form that integrates easily into Shell Sort.
Shell Sort performs several stages of insertion sort and is well suited to arrays. We
assume the data reside in a host linear array structure ofisifzthe chosen Shell Sort
usesk stages, &-long integer sequence decreasing down to 1 is chosen to achieve a
faster sort than plain insertion as follows. Suppose the sequehgéxis, ..., t; = 1.
In sortingn keys, the first stage sorts keys that &r@ositions apart in the list. Thus
tx subarrays of length at mogh/tx] each are sorted by plain insertion. In the second
stage the algorithm uses the incremgnt to sorttx_; subarrays of keys that atg ;
positions apart (each subarray is of length at nfiogtx_11), and so on, down to the last
stage, where an increment of 1 is used to insert-sort the whole array. Thus, in the last
stage the algorithm executes plain insertion sort.
As an example(2, 1)-Shell Sort sorts the array

326 598147

in two stages. In the first stage the increments of 2 are used—the subarray of odd indexes
is sorted by regular insertion sort, and the subarray of even indexes is sorted by regular
insertion sort. The two interleaved arrangements

sorted odd positions: 1 3 6 7 9
sorted even positions 2 4 5 8

are then sorted by one run of the regular insertion sort on the whole array. The stage of
Shell Sort that uses the incrementvill be referred to as thg-stage of the algorithm.
We use the usual notatiod;, to denote thejth order statistic amongy, ..., Z,.
(Technically, we should us&;. 1y sinceZj. ry andZ;. s may differ fors # r; however,
when the second subscript is understood, we drop it for simplicity.)

The notion of aninversionin a permutation is at the core of our analysis. Let
(71, ..., ) be a permutation ofl, ..., n}. One says that the pafrr;, ;) is an in-
version ifr; > mj, fori < j, thatis whenr; andx; are out of their natural order.

3. Analysis of (2, 1)-Shell Sort. Our goal in this paper is to discuss the stochastic
behavior of Shell Sort when it operates on an array tdw data. The usual probability
model is the random permutation model, whereby the ranks of the data are equally likely
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to be any of the permutations €f, . . ., n}, each occurring with probability/h!. This

model is natural and is used as the standard for the analysis of sorting algorithms. The
model covers a wide variety of real-world data models; for instance the entire class of
data drawn from any continuous distribution follows the random permutation probability
model. Henceforth the termandomwill specifically refer to data from this model. In

this section we consider onl, 1)-Shell Sort.

The difficulty in the stochastic analysis of Shell Sort lies in the fact that after the first
stage the resulting data are no longer random. Insteadited subarrays are interleaved.

The second and subsequent stages may not then appeal to the results known for insertion
sort. For example, the second stage of(fhel)-Shell’s sort does not sort a random array

of sizen. The first stage somewhat orders the array as a whole, and many inversions are
removed (some new ones may appear, though; see for example the positions of 5 and 6
before and after the 2-stage of our example).

Suppose our data are real numbers from a continuous probability distribution.
Because ordering is preserved by the probability integral transform, we may (and do)
assume that the probability distribution is uniform@nZ1). We call the elements in odd
positionsX’s and those in the even positidfs. Thus, ifnis odd, initially our raw array
prior to any sorting is

xlv Yls x27 Y2! D) Y|_I"|/2j ’ Xrn/Z]v
and ifn is even the initial raw array is
le Y]_, X27 Y21 ey Xn/21 Yn/2-

The 2-stage of the algorithm puts tes in order among themselves and tfis in
order among themselves. L& be the number of comparisons th@ 1)-Shell Sort
makes to sorh random keys, and leZ, be the number of comparisons that insertion
sort makes to som random keys. The 2-stage @, 1)-Shell Sort makes two runs of
insertion sort on the subarrays, ..., Xm/2; andYy, ..., Y2, thus requiring

Cryz1 @ Cinyz)

comparisons, wher€; 2 C;, and for all feasiblé and j, C; is independent of; .
The 1-stage now comes in, requiring additional comparisons to remove the remaining
inversions. When we are about to ins¥gf, we place it among

{X(l), ey X(j)} @) {Y(l), ey Y(j_l)}.

Because the 2-stage has sortedflse{Y(y), . .., Yj_1)} do not have any inversions with
Y(jy- Only {X@, ..., X(j)} can introduce inversions. It is well known that the so-called
sentinel version of insertion sort makes

C(Mn) =n+ 1 (ITy)

comparisons to sort a permutatidly with | (IT,) inversions. Let; be the number of
inversionsY(j, makes with all the elements that precede it, that is

Vi = Lixa>vo) 0 F Lixg v,
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forj =1,..., [n/2]. Asymmetric argument applies to the insertionqf); defineW,
as the number of inversiorj, makes with all the elements that precede it:

Wi = Livg s xg1 - F Livg=xg))
for j =1,..., [n/2]. The number of inversions after the 2-stage is thus

n/2] Ln/2]

=Y Vi+> W.
j=1 j=1

The 1-stage then requires+ |, comparisons
The overall number of compariso® of (2, 1)-Shell Sort is therefore given by the
convolution

1) $ =Cyz ®Clnjz &N & In.

Lent and Mahmoud (1996) developed Gaussian laws for the entire class of tree-
growing search strategies, which includes linear search, the search method of Shell Sort.
In particularC,, the number of comparisons that insertion sort performs tagartdom
keys, is asymptotically normally distributed:

Cn — %nz D 1
We focus on the limiting distribution df,. To avoid working with clumsy floors and
ceilings, we assume is even. The case odd requires only minor adjustments that do
not change the asymptotic result.
The next result is the key to our analysis:

LEMMA 1. The total number of inversions after tBestage |,,, has the representation

n/2

=3
=1

where
n/2

T = Z [Lvi<x;) — Lixi<xy]
i—1

ProOE We have

n/2 n2 -1
In = Z(VJ + W) = Z |:Z 1[X<J><Y<u>l + 1[X<J>>Y<nl +o Tt 1[X(J)>Y(n/2)]]
j=1 j=1 Li=1

n/2

=Y |R)-@j -1
j=1

s



446 R. T. Smythe and J. Wellner

whereR; is the rank ofXj, amongXy, ..., Xns2, Y1, ..., Ynp2. Forj =1,2,...,n/2,
let
n/2 n/2

Dj = 21: Lix<x) = X;l{xi<xi} +1
I= 1=

Then if R; denotes the rank oX; among all theX’s andY’s, it follows thatRp,) = R
and
n/2

In=>Y_|R —(2D; - 1.
j=1

However,
n/2 n/2
R = Zl{xi<xj} + Z Livox;y +1,
=1 =t
so
n/2
R —@2Dj =1 = ) [Ly<x) — Lix<x)]. O
=t

The form in Lemma 1 can be expressed in terms of empirical distribution functions.
Let F,(t) be the empirical distribution function ofi.i.d. random variable&;, that is

1 n
Fa®) == Liz=o-
i=1

Then

; n
() as
TE D

’

A ~ 2
Fn/2(Xj) — <Fn/2(Xj) - ﬁ)

wherelfn/z and Ifn/z are the empirical distribution functions of tivés and X’s, respec-
tively. Thus we may expreds as

n n/2 N _
In =5 D 1Fa2(X)) = Foa(X))] + 0p(m)
j=1

(whereop (n) denotes a term smaller than orden probability, resulting from the “extra”
2/nin the expression fof\')), so that

In 1 A - -
(2) /2% = /0 VN/2|Fnj2(X) = Fn2(X) [ dFqj2(X) 4+ 0p(1).

The empirical process converges in the Skorohod topologpfih 1], the space of
right-continuous functions with left limits on [@], giving

VR (Fat) — ) 2> B,
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whereB(t) is the (standard) Brownian bridge. Thus

3) V72 B2 (%) = Enja()] —> [By(X) — Ba(X)].,

whereB; (t) andB;(t) are independent Brownian bridges. We note for future reference
that the Brownian bridge is a Gaussian process,Bnd B, has the distribution of/2*
(a Brownian bridge), so

By(t) — By(t) 2 AN(0,2t(1—1)).

Also, the empirical measumklfn/z(x) converges a.s. to uniform measure on [0, 1], by
the Glivenko—Cantelli theorem. Using the expressionlfan (2), we have

1 1
4 / VN/2|Frj2(X) — Frj2(X)| dFnj2(X) — / |B(X) — Ba(x)| dx
0 0
1 1
= /0 VN/2|Frj2(X) — Frj2(X)| dFnj2(X) — /O |B1(X) — Ba(X)| dFn/2(X)

1 1
+/O [B1(x) — Bz(X)Idlfn/z(X)—/o [B1(x) — Ba(x)| dx.

For the first difference in (4), we can use the Skorokhod—Dudley—Wichura theorem (see,
for example, Dudley (1997)) to construct, on a common probability space, vefsjons

If;/z, B;, andB; of Ifn/z, Ifn/g, B, andB, for which the convergence in (3) takes place
uniformly a.s., so on this new space the first difference is bounded by

{Osgpl}mjwﬁ/z(t) — F1oM1 — 1Bi®) — B3|
This converges to zero a.s. on the probability space of the construction. The Brownian
bridge has a.s. bounded continuous paths, so the second difference also goes to zero
a.s. by convergence of the empirical measure to uniform measure on [0, 1]. Thus on
the original space, convergence in distribution is established, and we have the following
result, first given by Louchard (1986):

THEOREM1. Let W, be the number of comparisons made in thstage of(2,1)-Shell
Sort to sort n random keyso that W = n + I,. Then

Wn D 1
ez > V2 fo IB®)| dt,

where Bt) is a standard Brownian bridge

An infinite series for the c.d.f. of the limiting distribution of Theorem 1 is given by
Johnson and Killeen (1983). The supremum of the uniform empirical process satisfies
an exponential “tail” bound (Shorack and Wellner, 1986, p. 14) so it is easy to show
from (2) that the convergence in distribution in Theorem 1 entails the convergence of
moments oW, /(n/2)%? to those ofy/2 fol |B(t)| dt. These moments were derived by
Shepp (1982); the limiting first and second moments(&)-Shell Sort had already
been given by Knuth (1973).
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COROLLARY 1.

(a) The average number of comparisons made byltstage of(2,1)Shell Sort is
asymptotically equivalent t6/7 /8v/2)n%?2.

(b) The variance of the number of comparisons is asymptotically equivalém240—
7/128ns.

Combining this result with the previously noted Gaussian limiGgrthe number of
comparisons made by the 2-stage of (2,1)-Shell Sort, we conclude that the asymptotic
distribution of the total number of comparisons needed to soendom keys is the
convolution of a Gaussian law with the distribution of Theorem 1:

COROLLARY 2.

(a) Let S, be the number of comparisons madddyl }Shell Sort to sort n random keys
Then

— lnz 1 1
ShrTE > N 1) ® 5/0 IB(t)|dt.
(b)
ES) = {l;nz + 8—@n3/2 + 0(n3/2)'

4. Analysis of(h, 1)-Shell Sort. Forh > 2, we assume for simplicity thatdividesn,
the total number of keys; again, adjusting for this does not affect the limiting distribution.
Prior to any sorting, our raw array is then given by

XL X2 XD XG XS X X

and theh-stage of the algorithm orders each of thists {le}, e {X]-h}. The 1-stage
then performs additional comparisons to order the heserted list. When we are about

to msertX{J), for 1 <r < h, we place it among
1
{X(l),.. (J)} U---u {X(l) X[]) b U Xy Xii-n}
U---u {X(l),.. (] )

As before, there will be no inversions produced witkj;,}, so the total number of
mversmnsX[n makes with the elements that precede it, for § < n/h, is

=

i =

1 k r r .
Z (X=X} Z Z X(|)>Xu>

i=1 1 i=1k=r+1

=~
Il

Letr < sbe any two integers between 1 amdThe total number of inversions encoun-
tered in the sort, which we denolg, is then the sum over afl)) pairs ¢, s) of

n/h

= Z er,s’
j=1
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where

j—1
rs __
Vi = Zl XG> X)) ) Z X >Xa
I=
We denote the empirical process correspondlng tokthby Fn/h, and let
Un/n®) = v/n/h(F 1) —t)
forl<r <h. Arguing as in the previous section,

Z/ UL n(®) — US (D ALy (0) + 0p(0),

r<s

(n/ h)3/2
where the sum is over all paigs, s) with 1 < r < s < h. The vector of processes
Uynh= (Unl/h, s U,E‘/h), by the classical Donsker theorem, satisfies

U, n — B,
whereB = (BY, ..., B") is a vector of independent Brownian bridge processes. Let
Dijh = Un/n(® = Ugn(® = Fp® — Fyjp().

It follows from the continuous mapping theorem that (Q)evector of processes

1,2 h—1,h
Dnjn = (Byjhs -5 Dyyn™)
satisfies
D
Qn/h > Qa

whereD = (D2, ..., D""1M andD"i = B! — BI.

Next, we use the Skorokhod—Dudley—Wichura theorem as before to construct versions
D, andD of D, , and D on a common probability space such tit,, converges
almost surely td with respect to the supremum norm B0, 1]".

We can now establish the basic convergence resultial)-Shell Sort.

THEOREM2. Let W be the number of comparisons made in thetage of(h,1)-Shell
Sort to sort n random keyso that W' = n + 1. Then

Wh
" /h”)m => f |B"(t) — BS(t)| dt,

r<s

where the sum extends over all pafrs) withl <r <s <h.

PROOF  We show first that for the constructed versions with the correspondingly con-
structed verS|on§n/h, e n/h of the empirical dlstrlbutlon§n/h, cees F,ﬂ‘/h, the ran-

dom (2) -vector

1
;n/hz</o IDyA MRy (). .. f| /h1“<t>|an“/h(t>)
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converges almost surely #©, where

1 1
Z= (/ |I51’2(t)|dt,...,f |I5hl*h(t)|dt>.
0 0

It suffices to prove that each component converges, and, by symmetry, this holds if we
show that it holds for the first component. However, this follows exactly as in Section 3,
using the decomposition given in (4) and the a.s. continuity and boundedness of the
function|D|.

It follows that the sum of the componentsﬁ;/h converges a.s. to the sum of the
components o, and this implies that

Ir? D h
/2

as claimed. O

El

To the best of our knowledge, the distributionf for h > 2 is completely unknown.
Of course the summands that compig& have known distributions, but the ()- and
(r, s)-summands will be correlated if the pairs |) and ¢, s) share an integer. The first
moment, which again was found by Knuth (1973), follows easily from the representation.
We do not have a closed form for the second moment but it can be evaluated numerically.

COROLLARY 3.

(a) The average number of comparisons made byltHstage of(h,1)-Shell Sort is

asyptotically equivalent to
MY ) v
h 2) 4

(b) The variance of the number of comparisons is asymptotically equivalent to

I G- -ate-5)]

1 1
C=E {/0 [B1(t) — B2(D)| dt/O |B1(t) — Bs(t)ldt}

and B (t), Bx(t), Bs(t) are independer(standard Brownian bridgesThe value of
C is numerically determined to equal2051.

where

ProOF (a) follows immediately from the fact thaW/" is the sum of(g) identically

distributed terms. From the arguments leading to Corollary 1, the mean of each term is

JT/A.

For (b), the variance oV is the sum of(}) terms equal to

1
Var{ / IBL(t) — By(t)| dt},
0
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which from Shepp’s (1982) results ig30 — 7 /16, plus the covariance terms. For pairs
(@i, j) and ¢, s), the covariance will be zero unless there is a common integér jn (
and ¢, s). Itis easy to check that there dréh — 1) (h — 2) such terms, and the common
covariance is given b — 7 /16. O

We note a curious consequence of Corollary 3. Although iasreases, the mean of
the number of comparisons growsh, the variance grows slowly with to a limiting
value of about MO8&S.
The evaluation o€ merits some comment. As noted previously, the Brownian bridge
is a Gaussian process, and it is well known thatsfer t, CowB(s), B(t)) = s(1 —t).
ThusC can be evaluated as a double integral once it is known how to cald&dgte|Y|),
where X, Y) is bivariate normal with mean (0, 0), unit variances, and correlation
Several approaches are available for this calculation (see Wellner and Smythe, 2001). It
can be shown that

2 .
E(X|IY]) = ;{p arcsin(p) + /1 — p?},

from which evaluation of the covariance can be reduced to a single integration. Alterna-
tively, we can represeri (| X||Y]) as

2 = r'k+1
EQXIY) = <=1~ p2>3/2§p2kﬁ.
= 2

The integrated terms of the series decrease rapidly, permitting accurate numerical cal-
culation ofC.

For the sake of completeness, we record the analog of Corollary @& fay-Shell
Sort:

COROLLARY 4.
(a) Let S, be the number of comparisons maddlmyt)-Shell Sort to sort n random keys
Then
S —n?/4h p 1 wh
7z N (% 3ez) O

where W' is given in Theorerg.

(b)
_n2 Jm(hy/n\¥? 32
E(Sn)—m+7(2><ﬁ) +o(n¥*).

5. A Variation of (h, 1)-Shell Sort. We describe briefly here a variation @i, 1)-
Shell Sort that seems to be of at least theoretical interest. For clarity, we first describe
the method foh = 3; the extension th > 3 is fairly obvious.

We begin by performing the 3-sort in the usual way. This results in three sorted
subarrays, which we deno}gy, ..., X3, Y, - - -» Yoy, andZay, ..., Zns). Now
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order theY'’s andZ’s by performing an ordinary insertion sort with these two subarrays.
We then have one sorted listof3 numbers (theX’s) and one sorted list ofrf®/3 numbers
(which we call theY—Z list).

Next we do an insertion sort with th¢ list and theY—Z list, as follows: start with
X, then insert consecutively the first two numbers in the ord¥red list; next insert
X2 into this sorted list of three numbers, then insert the next two numbers ¥-He
list, and so forth until the sort is complete.

Letl, 1 andl, » denote, respectively, the number of inversions encountered in ordering
theY-Z list and the number of inversions in sorting ti& into theY—Z list. Thenl, 1
andl, ; are independent, because the former depends only on the relative position of the
Y’s andZ'’s, whereas the latter depends only on the position oMthgewith respect to
the sortedy—Z list. From Lemma 1, it follows that

n/3

ha= 3T,

=1

where

n/3

Z[l{zi <} + Ly <yl
i=1

By reasoning almost identical to that of Lemma 1, we further derive that

) _
Tn,l -

n/3

()
|n,2 = Z Tn,JZ’
=

where

n/3

Z Liviox) + Lz <x) — 2Lix<x;)
i=1

From the triangle inequality, we get

(1 _
Tn,2 -

3
In,l"‘ In,2 S In?

whereln3 is the number of comparisons given in Section 4®&rl)-Shell Sort. Proceed-
ing as in Section 3, we find that

In,2

1
/332 = /0 VN/3IFL3(t) 4 FYa(t) — 2FX 5] d FY5(t) + 0p(D),

whereF Y., F ., FZ 5 are, respectively, the empirical distribution functions of Xis,
Y’s, andZ’s. An argument very similar to that of Theorem 2 shows that

In2

®) (/3772

1
2, / |Ba(t) + Ba(t) — 2By(t)| dit,
0

where B, (t), Bx(t), B3(t) are three mutually independent Brownian bridges. By the
properties of the Brownian bridge, the integrand in (5) has the distributief60B(t)|,
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whereB(t) is a standard Brownian bridge, so that

_In2 D \/(—3/1|B(t)|dt
(n/3)%2 0 .

It also follows from the results of Section 3 that
In1 D 1
—_— 2 B*(t)|dt,
L ffo IB*(t)]

where B*(t) is a Brownian bridge independent 8ft), so the total number of com-
parisons in this case converges to a convolution of the distribution of the limit given in
Theorem 1. IfW; ; denotes the number of comparisons, then

%
Wn,3

e 2, V27 & V6z",

whereZ and Z* are independent copies 9?31 |B(t)| dt. The asymptotic mean of the
number of comparisons for this modifi€gl 1)-Shell Sort is then given by
n¥2/mx ( 1 1)

a \3273

which is about M05 times the mean given in Corollary 2 for “re&B, 1)-Shell Sort.
The asymptotic variance for the modified method is

n\32 /7 b4
(3) (30 16> [1+3].

about 079 times the variance faB, 1)-Shell Sort.

The extension of this variation to > 3 is straightforward. With notation as in Sec-
tion 4, theh-sort is performed as previously, resultingiiordered listg le}, e, {XJ-“}.
At the next step, the variation we consider first performs an insertion sort to order the
XM= and X" lists. Then thex"—2 list is sorted together with the combingd'—* and
XN lists, just as theX list was sorted with th&r—Z list in the case oh = 3. Next the
X3 list is sorted with the combined"~2-X"~1-X" list, by inserting firstX{; *, then
the smallest three numbers from the combined list, mgﬁ and so forth. When this
sort is complete, th&X" list is sorted with this combined list, and so on until the list
is completely sorted. In this process the number of comparisons required at each stage
is independent of the other stages, so the asymptotic distribution of the total number of
comparisons is a convolution of the distributions of the numbers at each stage. At the
stage where th&K list is inserted, the number of comparisolRg,_« satisfies, in the
notation of Section 4,

Inh 1
(n;’;);/2 - / N/RIFD M + -+ Ry — (h = DFy il d Ry () + 0p(2),
0

and

(6)

In,h—k

1
i /0 IBn() + -+ + Beya(t) — (h — DB(D)] dt
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by an argument similar to that of Section 4, whé@gt), ..., By (t) are independent
Brownian bridges. The integrand of (6) has the distributiog{@f — k) + (h — 1)2| B(t)|
whereB(t) is a standard Brownian motion, and we are led to the following result:

THEOREM3. Let Wy, denote the number of comparisons made inltgtage of the
variation of (h, 1)-Shell Sort to sort n random keyBhen

W*
e~ V22V e Ve e e hh -1z,
where ZY, ..., z"=D are independent copies g?dl [B(t)| dt.

From Theorem 3 it is easy to determine the asymptotic moments for the variation of
Shell Sort.

COROLLARY 5.

(a) The average number of comparisons made byltstage of the variation of Shell
Sort is asymptotically equivalent to

2 fm
(E) rg;wu—l).

(b) The variance of the number of comparisons for the variation is asymptotically equiv-

alentto
n® /7 b4 1 1
6 \30 16 h2 )"
Comparing the results of Corollary 3 with those of Corollary 2 for “real’1)-Shell
Sort, the asymptotic mean of the variation grows at rate

2T h 4 O(h-Y?),

4 2./2

less than that of the “real” version by a factor gi42. The variance exhibits the same
curious feature of growing slowly with, but to a limiting value of 061672, compared
with 0.008&° for the “real” version.

6. A Remark on (h, k, 1)-Shell Sort. In the case wherk dividesh, the method of
Section 4 can be used to find the limiting distributior{lofk, 1)-Shell Sort. Thé-stage
performs arh-sort, as before, resulting in ordered lists of lengtim/h. The k-stage

then producek sorted lists, each formed by an insertion sorthgk of the h ordered

lists. The asymptotic number of comparisons involved in this step is given in Theorem 2
(or even Theorem 1 ifi/k = 2). The asymptotic number of comparisons in the 1-stage
is again found from Theorem 2, and the asymptotic distribution of the total number of
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comparisons in thk-stage and 1-stage is the convolution of the distributions of the two
stages.

For example, in the dyadic form of Shell Sort, with (in the notation of Section 2)
t, = 2, the limiting distribution of the number of comparisons can be characterized.
In (4, 2, 1)-Shell Sort the average number of comparisons in the merging stages (not
counting the initial sorts) is/77 /16)n%2(1++/2), while in (4, 1)-Shell Sort the average
is (/7 /16)n¥2(3), giving an “efficiency factor” of(1 + +/2)/3. In general, using the
sequencg2®, 2<% .. 1) compared with thg2¥, 1)-Shell Sort gives an “efficiency
factor” of

2k/2-1(1 4 /2)
k-1 '
Because of poor worst-case behavior, the case whdiedesh is generally not of
practical interest, however.

7. Some Monte-Carlo Results. Here we present the results of some Monte-Carlo
experiments to confirm the limit theorems presented in the previous sections. Figures 1—
3 present the empirical distributions of 5000 replications of the standardized number of
comparisonss, for n = 500, 5000, andxo. Instead of standardizing as in Corollaries 2
and 4, we have chosen to present the empirical distributions of

2
31—n/(4h)_)dN<

(n/h)32 ’ 36

0 1) + Wh,

The Monte-Carlo experiments were carried outrioe= 500, 5000 using a C-program

by David Butler at Oregon State University, and the Monte-Carlo experiments for the
limiting Brownian bridge process limits were done using Mathematica by Wellner at Uni-
versity of Washington. The latter involved approximating Brownian bridge processes by
(tied-down) partial sum processes of pseudo-random Gaussian variables using a grid of

.25 0.5 0073 b 1.25 1.5

i
=1
[} |
oy
<

Fig. 1. Empirical distributions for (2,1)-Shellsom,= oo, 500Q 500.
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3.5 i 1.5 2 2.5 3

Fig. 2. Empirical distributions for (3,1)-Shellsom,= oo, 500Q 500.

10* points on the interval [0L]. (Empirical distributions of this Monte-Carlo method
were checked for agreement with the theoretically known distributio!‘i)1q>B(t)| dt
given in Johnson and Killen (1983).) The computer codes for both of these programs are
available from the authors.

In Figures 1-3 the plot furthest to the right is for= 500, the plot fom = 5000 is
in the middle, and the plot of the asymptotic distribution (far= o0”) is the furthest
to the left. This is in agreement with the empirical and theoretical means shown in
Table 1. Table 2 gives a comparison of empirical and theoretical variances, indicating
that variances decrease slightly witfor all three situations. The shapes of the empirical
distributions forn = 500, 5000, and seem to be very similar in all three situations,
and the limit distribution is being converged to from below (i.e., from the right). This is
probably due to terms of ordexn®?2) which are ignored in the analysis.

8 10 22 14

Fig. 3. Empirical distributions for (7,1)-Shellson,= co, 500Q 500.
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Table 1.Theoretical and empirical (Monte-Carlo)
means; 5000 replications.

457

Table 2. Theoretical and empirical (Monte-Carlo)
variances; 5000 replications.

n 2y @61 7D n 2y 61 7D
Theoryoo 0.443 1329  9.305 Theoryoo 0.0925 0.2468  2.8087
Empiricaloo 0.444 1328  9.297 Empiricaloo 0.0971 0.2466  2.7875

Empirical 5000 0.509 1.450 9.765
Empirical 500 0.662 1.729 10.717

Empirical 5000  0.0929  0.2480  2.8643
Empirical 500 0.0925 0.2522 29119
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