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Abstract: Semiparametric maximum likelihood estimators have recently been proposed for a class of 
two-phase, outcome-dependent sampling models. All of them were "restricted" maximum likelihood 
estimators, in the sense that the maximization is carried out only over distributions concentrated on the 
observed values of the covariate vectors. In this paper, the authors give conditions for consistency of these 
restricted maximum likelihood estimators. They also consider the corresponding unrestricted maximization 
problems, in which the "absolute" maximum likelihood estimators may then have support on additional 
points in the covariate space. Their main consistency result also covers these unrestricted maximum 
likelihood estimators, when they exist for all sample sizes. 

Convergence des estimateurs du maximum de vraisemblance 
semiparametrique dans le cadre d'echantillonnage a deux phases 

Risumi :Des estimateurs du maximum de vraisemblance serniparametrique ont dcernment kt15 proposCs 
dans le cadre de modhles pour plans d'6chantillonnage doubles A probabilitI5s de selection dependant 
de covariables. 11 s'agissait dans tous les cas d'estimateurs h vraisemblance maximale restreinte, en ce 
sens que la maximisation n'6tait effectuee que sur les lois ayant pour support l'ensemble des valeurs 
observkes des vecteurs de covariables. Dans cet article, les auteurs donnent des conditions assurant la 
convergence de ces estimateurs A vraisemblance maximale restreinte. Ils considerenten outre les problhmes 
de maximisation non-restreinte, dans lesquels les estimateurs h vraisemblance maximale "absolus" peuvent 
dependre de points additionnels de l'espace des covariables. Leur principal &sultat de convergence 
s'applique A ces estimateurs A vraisemblance maximale non-restreinte, lorsque ceux-ci existent pour toute 
taille d'kchantillon. 

1. INTRODUCTION 

Outcome-dependent two-phase sampling designs have been the subject of considerable work in 
the recent statistical literature. Here is a simple example of the type of problem we have in mind. 

Example 1 (Binary response logistic regression). Suppose that I' I X = x -
Bernoulli {fs (1 I x)) and X - G on X ,  where 

for % E O C R~ and x E X C R ~ .Let q ~ , ~ ( y ,x) fe (y I x)g(x)denote the resulting joint 
density of (Ir.X),where g is a density of G with respect to some dominatingmeasure p.  Suppose 
that S and y = ( 0 ,  1) are partitioned as 

L 

X = U A ~ and y = { 0 } ~ { 1 } = B o U B 1  
1=1 
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and the resulting partition of y x .Yis the product partition 

into J = 2L sets. If "complete" or "full" data were available, then we would observe 
( K ,XI).. . . . ( E L .S,)independent and identically distributed (i.i.d.) with density q ~ , Often 
however, exact measurement of all the components of the X,'s is expensive, while knowledge 
of which category SJinto which the data fall is much less expensive. Let S,= J E (1, . . , J} 
when (I;,S,)E SJ. Then the "incomplete" or "two-phase" sampling data is (R ,, T,) where 

and the probability of observing a "complete observation" for the ith individual is 

Here the sampling probabilities pj for the cells Sj ,j = 1. . . . , J,can be chosen by the investiga- 
tor. In this particular example, the pj s would typically be chosen to be 1 for "rare cells" S j ,and 
much smaller for the more frequently occurring (andlor expensive) cells in the design. 

Example 1 is exactly the model used by Breslow & Chatterjee (1999), and studied in consid- 
erable detail by Breslow &Holubkov (1997). Our general framework, which includes Example 1, 
is given in Section 2; for further examples, see Section 4. 

Although a variety of ad-hoc, inefficient estimation methods have been used frequently in 
the past, recent work by Breslow & Holubkov (1997), Lawless, Wild & Kalbfleisch (1999), and 
Scott & Wild (1998) has focused on nonparametric maximum likelihood estimation for natural 
semiparametric regression models connected with these designs. Breslow & Holubkov (1997) 
showed how to obtain maximum likelihood estimators for a logistic semiparametric regression 
model with two-phase outcome dependent sampling which generalized the classical logistic re- 
gression case-control model studied by Prentice & Pyke (1979). Lawless, Wild & Kalbfleisch 
(1999) and Scott & Wild (1998) generalized the approach and results of Breslow & Holubkov 
(1997) and Scott & Wild (1997), and demonstrate how the computation of the maximum likeli- 
hood estimators is possible in a wide range of regression models and two-phase designs. Lawless, 
Wild & Kalbfleisch (1999) carried out a simulation study to compare the semipararnetric maxi- 
mum likelihood estimators with estimators based on the "complete data likelihood and various 
"estimated" and "weighted" pseudo-likelihoods. Their Monte-Carlo evidence suggests that the 
maximum likelihood estimator is fully efficient, while the various alternative methods can be 
quite inefficient, sometimes severely so. 

Our goal in this paper is to establish consistency of the MLEs for the Bernoulli sampling (or 
i.i.d.) version of these outcome-dependent, two-phase sampling designs. Breslow, McNeney, and 
Wellner (2000) have established information lower bounds for estimation in these models; these 
authors have also shown that the semiparametric MLEs studied by Breslow & Holubkov (1997), 
Scott & Wild (1998), and Lawless, Wild & Kalbfleisch (1999) are asymptotically normal and 
efficient: they achieve the information lower bounds. 

The models considered here are closely related to the biased sampling models considered 
by Gill, Vardi & Wellner (1988), the semiparametric generalizations thereof treated by Gilbert 
(1998), and to the "partially censored" mixture models studied by van der Vaart &Wellner (1992) 
and van der Vaart (1994). We will comment further on some of the similarities and differences 
in Sections 3 and 5. For a discussion of some of the practical aspects of these designs and an 
interesting Monte-Carlo study, we refer the interested reader to Breslow & Chatterjee (1999). 
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In Section 2, we present the model and a derivation of the distribution of the data under 
several of the two-phase models studied here. In Section 3, we state our consistency result 
for the i.i.d. special case (Bernoulli sampling or VPS1) of the model. Section 4 gives several 
examples, while Section 5 contains discussion and further problems. Proofs for Section 3 are 
given in the Appendix. For information bounds, results on asymptotic normality and efficiency 
of the estimators, we refer the interested reader to Breslow, McNeney & Wellner (2000). 

2. THE MODEL AND MAXIMUMLIKELIHOOD ESTIMATION 

Suppose that ( 1 ;  -Y) has density f (y I x , B)g  ( x) = fe (y I x)g( x )with respect to a dominating 
measure v x p on 3/ x ,I'. Here B E O, where O is a compact metric space (typically a compact 
subset of Rd for some d ) ,  and g is a completely unknown density for the covariate vector A-
with values in Rd. (In fact the distribution G of X need not have a density g in general, and a 
density will not be assumed in Sections 3 to 6.) We suppose throughout that the true values of 
the parameters ( 8 ,G )are ( 8 0 ,G O ) .Both X and I' may be multivariate. 

Let 3/ x .I'= u:=, S, for a partition {S,} into J strata; here S ,  n S, t = 0 for 3 # j'. 
Supposethat 

Q J Q .  G )  = P{(I: X )  E S,}, Q j ( x ,8 )  P{(k; x )  E s, / S = x}ls;  ( x ) ,  

for j = 1.. . . ,  J ,  whereS; = { x  E .I': forsome ( y ,x )  E S j } .Thus 

and 

Q j ( Q ,  G )  = Q ; ( X ,  0)d ~ ( x ) ,  

for j = 1 ,  . . . , J. Note that the S: s do not, in general form a partition of X, and may in fact 
intersect in quite arbitrary ways. We will however, often be interested in the case in which the 
partition I S j )  is formed as the natural product partition in terms of partitions { X m )  of X and 
{Yln,} of Y ,and then S: = Xm for some m. 

Suppose that (Yl, XI),. . . , (Y, , X,) are i.i.d. as (1: X). Define 

S i = j  ifandonlyif ( 1 2 , X i ) ~ S j ,i = I  , . . . ,n , j = I  , . . . ,  J, 

Then, with Qj I Qj( 8 ,G ) ,N - Multj( n ,-Q). Furthermore, set 

[ 1 ,  if (1,:.X i )  is fully observed, .
Ri = 2 = 1 ,  . . . ,  n. 

0, if only Si is observed, 

The two observational schemes studied in Lawless, Wild & Kalbfleisch (1999) are: 

a) Basic StratiJied Sampling (BSS): In this scheme, there are n i.i.d. units (12,X i ) ,  i = 
1, . . . , n, from the density 

in the background available for observation. The samplingproceeds in two stages: 

Stage 1: At this stage the counts N j ,  j = 1,. . . , J are observed (and the (x,Xi) 
pairs are categorized by strata); thus we observe N -Multj( n ,Q) .-
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Stage 2: For each strata Sj, we choose nj units from the Nj units available in the jth 
strata to observe fully. 

b) Variable Probability Sampling (VPS): Units are inspected sequentially as they arise from 
the density (1). When (Y ,,Xi)E S j ,the ith unit is selected for full observation (Ri = 1) 
with specified probabilitypj ;thus 

This will lead to a random number nj of completely observed units in stratum Sj. There 
are several variants of this sampling plan, depending on how the sampling is terminated: 

VPS1: Inspect a pre-specified number n of units. 

VPS2: Inspect units until a total of k have been selected for full observation. 

PROPOSITION1. For any of the above designs, thefull semiparametric likelihood is of theform 

Proposition 1 is proved in Appendix B of Scott & Wild (1998); see also Lawless, 
Wild & Kablfleisch (1999), Section 3.1.1. For the observations we will often write 
( R I ,T I ) .. . . , (R,,T,), where 

( X i )  R i = I I  

Si I Ri = 0 .  

Note that in all the above sampling schemes (BSS, VPS1, VPS2), the distribution of & r 
( R 1 ,. . . ,R,) depends on (41,X) ( ( Y I ,X I ) ,. . . , (I.',,X,)) only through the vector 2 r 
( S 1 ,. . . , S,). When the sampling is carried out according to VPSl (Bernoulli sampling), the 
(R ,, T,), i = 1 ,  . . . , n, are independent and identically distributed since then the R,s are inde-
pendent with conditional distributionsdepending only on (Y,,X,) through S, for i = 1,. . . , n. 
The resulting density of ( R l ,T I ) ,  . . , (R,, T,) is p ( ~ ,t;8 ,  G )  = ny=,p(r,,t , ;0 ,  G ) ,where 

here the densities h, are the biased-sampling densities corresponding to the jth strata S,, j = 
1 , . . . ,  J ,anddj  - 1(S=j ) .  

To obtain Maximum LikelihoodEstimators (MLEs) of (0,G) ,we begin with an "empirical" 
version of the log of the likelihoodin (2), meaning that we simplyreplace the density term g ( X ,) 
by its point-mass equivalent G{Xi}: 

1 J 

= -c[ C {logf(Y.I Xi, Q )  + logG{Xi}}+ (N, - n j )l o g Q j ( B , ~ ) ]  
j=1 i:R,=l,S,=j 

= pn {Rlog f e  (Y I X )  +R log G { X }+ ( 1  - R)log Qs(0,G ) ). (4) 
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Here, P, is the empirical measure of the observations (R i ,T i ) ,and 

In this paper, we consider both the absolute maximizer ( Q a ,  g a )of the likelihood and the 
restricted MLE (0 ,  g ),defined through maximizing the likelihood over all pairs (8,G) such that 
G concentrateson the set { X ,  : R, = 1 ) .  The restricted MLE always exists under the continuity 
conditionsimposed in Section 3, but the absolutemaximizer (ia,ca)(the"true M L E )  may not, 
as shown in Example 2 below. Proposition 2 gives sufficient conditionsfor existence of the "true 
MLE" ( Q a  , ea) . It is also shown below (see the paragraph before Lemma A.1)that the true MLE 
Ga,if it exists, concentrates on the set {S,: R, = 1 )  U { x  : s, ( x )  = 0 } ,  where the functions 
s,  are defined in (8) and converge uniformly to a strictly positive function. Thus the two types 
of estimators are the same asymptotically,when they both exist. 

~ m p l e2. Suppose that 1- E { O , l )  with f ( y  1 x )  P(Y = 1 I X = x )  = p ( x )  decreasing in 
x E Rt.LetthepartitionconsistofthesetsS,, = { ( x , y )  : x E A,, y = j ) f o r i , j  E { 0 , 1 ) ,  
do = ( 0 , 1 ] ,d l  = ( 1 ,m). Suppose that we observe the following sample of size n = 2: 
( R 1 ,T I )= ( 1 , 1 , 1 / 2 . S 0 , ~ )and (R2,T2)= ( O , S 1 , l ) .Then thelog-likelihoodbecomes 

l o g p ( 1 / 2 )+ log G { 1 / 2 }+ log p ( x )  clG(x)S,, 
It is clear that the maximizer eamust put positive mass at x = 112 and also on the interval 
d l  = (1, 'so).Because p is decreasing, the best locationin A1 is "leftmost as possible", but A1 = 
( 1, oo)does not contain its left endpoint. Thus the supremum over G is not attained. On the other 
hand, the restricted MLE g of G clearly assigns mass 1 to x = 112. If the partition is changed 
to d o  = ( 0 , l )  and d l  = [1 ,m),then the absolute MLE would be E a { 1 / 2 )  = g a { l )  = 
112 for the given observations, but a similar problem would arise for other observations. The 
monotonicity of p together with the strata not containing their boundary are the main causes of 
the problem here. 

To formulate our result concerning the absolute maximizer (ia,ea)on the positive side, 
suppose that we reorder the data so that R ( l )= . . . = R(,) = 1, R(,+l) = . . . = R(,) = 0 ,  
with S ( i ) ,X ( i )denotingthe correspondingS's and X's. Then maximization of the log-likelihood 
over distributionsG can be carried out in two steps: 

STEP1. Forfixed-, = ( y l , . . . , y m )with-,i > O a n d x y i  5 l,andfixedQ,maximize 

over sub-probability measures G satisfying G { X [ i ) )2 yi, i = 1, . . . , m. (A sub-probablity 
measure is just a measure with total mass less than or equal to one.) Let the resulting maximum 
be denoted by m ( y ,8). Setting hrlj - xr=m+ll ( S ( i )  = j ) ,  this problem is equivalent to 

maximizing n-' M j  log vj over (v1 ,. . . , v ~ )E L:with 

and M; = { ( & I( 0 ,G )l ( M 1  > 0 ) ,. . . , Q J ( @ ,G )l(12.1~> 0 ) )  : G is a sub-probability measure 
on X}. 
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STEP2. Maximize the function n- 'xz log y, + m (y,6)  over all sub-probability vectors 
",((Y , . . . ,Tm).Let the resulting maximum be denoted by 

STEP 3. Maximize the function r,(O) = IP,{Rlog fs (l;I s)}+ n-I rzllog 7, (6) + 
m(y(0). 0) over 0 E 0. 

PROPOSITION2. I f  Vy (equivalently ).V) is compact, then Step 1 has a solution, and the un-
restricted maximum of (4)over distributions G on X exists Cfor each $xed 0). I f  the continuity 
hypothesis C2 of Section 3 holds, then the unrestricted maximum of (4 )over pairs ( 0 .  G )  with 
0 E O and G a distribution on .Y exists. 

Proof. That Step 1 has a solutionif V,  is compact follows from the continuity of the right side of 
(5) in (ti1. . . . ,VJ) .Since lj,depends continuouslyon y, it follows that nz(y. 0) is a continuous 
function of y (on the set where it is > -cc). Thus Step 2 has a solution, and we concludethat the 
unrestrictedmaximum over G exists for each fixed 0 .  Finally,under the continuity hypothesisC2 
the function B + rn (0) defined in Step 3, which is equal to the supremum of the likelihoodover 
G, is a supremum of upper semi-continuous functions of 0. Hence it is upper semi-continuous 
and attains its maximum on the compact set 0. 

Remark 1.Note that compactness of W is implied by compactness of 

Note that compactness of W and ).VOfails in Example 2. The compactness hypothesis of 
Proposition 2 will typically fail for general configurationsof the data with strata based on contin-
uous covariates because of the same type of difficultiesat the boundaries exhibitedthere, and the 
"true" (or unrestricted) MLE may fail to exist for problems with continuous covariates. On the 
other hand the compactness hypothesiswill typically hold when the strata are based on discrete 
covariates. 

Failure of the unrestrictedMLE to exist, such as in Example 2, is clearly a problem of strata 
not containingtheir boundary. This problem is not resolved given more observations. A compro-
mise between restricted and unrestricted maximization would be to maximize over all discrete G 
supported on the observed and suitably chosen points close to the boundaries of the strata. This 
type of restricted MLE will typically exist and if it does, our proof in the Appendix shows that it 
is consistent. 

To examinethe restrictedMLE (8, E )  where concentrates on {X, : R, = 1, i = 1,. . .,n ), 
let PI be the empirical measure of the observed Xi's, viz. 

Note that I& estimates the measure Go( . / R = I):  for bounded measurable functions h,  

where so( z )  = x;=pjQ; (2,Oo). By straightforward maximization of Ln(8 ,G) for fixed 0 
subject to the constraint that the assigned masses add to one, it is easily seen that the restricted 
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MLE of G is of the following form: for any measurable set A, 

since I& (s,') = I/R. Here Gn n-I C:=, RiGx, +,.s Go(so . ). 

Here is a brief summary of Section 2 and what will be addressed in Section 3: 

a) The unrestricted or absolute MLE (Ja,ga)of (8,G) exists under a (data dependent) com- 
pactness hypothesis which, however, is easily violated for strata defined by continuous 
covariates, but which will often hold for the case of discrete covariates. 

A 

b) The restricted MLE (8,e)with G concentrated on the set {xi: Ri= 1, i = 1 , .. . , n)  
exists under the continuity hypotheses imposed in Section 3, and-as shown by Breslow 
& Holubkov (1997), Scott & Wild (1998), Lawless, Wild & Kalbfleisch (1999)--can be 
computed via profile likelihood methods. 

c) In Section 3, we will show that both the restricted MLE and the absolute MLE (when the 
latter exists for all n) are consistent under some reasonable continuity and compactness 
hypotheses. 

3. MAIN RESULTS: IDENTlFlABlLlTY AND CONSISTENCY 

In this section, we state our main results: first, that identifiability of (8, G) is preserved in the 
two-phase design if (8, G)  is identifiable in the original regression model and the design sam- 
pling satisfies two natural conditions, namely that the strata formed have positive probability of 
occurring and that items are sampled in each strata with positive probability. Our second main 
result here is that the semiparametric maximum likelihood estimators studied by Lawless, Wild 
& Kalbfleisch (1999) and Scott & Wild (1998) are consistent. 

We say that (8, G) are identifiable in the model P (with P = {PgG : 8 E 0, G E G)) if 
Po G = PB,,G/implies 8 = 8' and G = G'. Here are the conditions for identifiability: 

Al .  pj > O f o r j =  1, . . . , J .  

A2. The pair of parameters ($0, Go) is identifiable in the model 

where q(y,x; 8, G) = f ( y  I x;  $)g(x)as in (1). 

Without loss of generality, we may assume that 

A3. Qj(Oo, GO) E (0, 1) for j = 1 , .. . ,J .  

THEOREM1 (Identifiability). Suppose that Al  and A2 hold. Then (8,G) is identijiable in the 
model 

'P = {PB,G x p) . ; 6 , G), 8 E @, G E G ) ,: ~ P B , G / ~ ( v= p( 

where p( . ;8,G) is given by (3). 
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Our goal is to establish consistency of the semiparametric MLEs under natural conditions. 
Although the models we are considering are quite closely related to those treated by van der 
Vaart & Wellner (1992) (they are exactly the same if 6' is known), the sufficient conditions for 
consistency given there fail completely for our situation. In particular, requirement (3.3) on 
p. 138 of van der Vaart & Wellner (1992) fails in our current setting. However, a different 
approach will yield consistency in the present case. 

Here are our assumptions: 

C1. 	'2' is a semi-metric space that has a completion that is compact and contains .Y as a Bore1 
set. 

C2. The maps (0 ,  x )  I-+ QQj( x ,6 ' )  are uniformly continuous, and 6' I-+ fe( y I x )  are upper 
semicontinuous for all ( y ,  x )  E y x X .  

C3. 	O is a compact metric space. 

C5. 	A1-A3 hold; it follows that (6'o. G o )  is identifiable in the two-phase sampling model. 

8, 	THEOREM2 (Consistency of /-. ( O n ,  g , )) .  Suppose that CI-C5 hold. Then -+,,,, 6'o. Further-
more, suphEx 1 (Gn- G o )h I +,., 0for every GC-class 31 that is bounded in L I (Go) .  

In this theorem, gn may be both the unrestricted MLE (if this exists for all n) or a restricted 
MLE. The proof of this result proceeds via a series of lemmas; these are given in the Appendix. 
The main idea is to use the likelihood equations to find an alternative expression for the point 
masses in the likelihood. Next, we carry through a Wald-type proof after substitutingthis alterna- 
tive expression in the log-likelihood. A main technical problem is to induce enough integrability 
so that a uniform law of large numbers can be applied. For this, we will work not with the 
log-likelihood itself, but a transformed likelihood. 

Because the functions z e Qj ( z ,0) vanish outside the projections Sj of the partitioning 
sets, the continuity of these maps assumed in (C2)may appear problematic: we would not want 
to assume that the probabilities Qj ( x ,6') tend to zero at the boundaries of the partitioning sets. 
This problem disappears by a proper choice of the metric on the set X. In fact, because we 
are free to choose this metric, the continuity condition may be considered as just a convenient 
language to express a regularity condition. In many cases, a "natural" metric on X should not be 
the metric of choice for the application of our theorem. We illustrate this with two examples. 

Example 3. Functions on X = R that are right continuous with left limits and that jump at at 
most finitely many fixed points a1 < . . . < a ,  will be uniformly continuous relatively to a 
metric of the form p ( z l  , x 2 )  = IF ( 2 1 )  - F (2?)1, where F is a cumulative distribution function 
with a positive jump at every of the points al , . . . , a ,  that is strictly increasing and continuous 
on each of the intervals (-oo,a l ) ,  [a l ,  aa) , . . . . 

In fact, under p the real line is topologically identical to the union of the disconnected sets 
( - c o ,  a l )  , [ a l ,  a? ) ,  . . ., which are at positive distances: 

p{[ai-1,  a ; ) ,  [ai ,  a i + i ) )  = IF(%-)  - F(ai)I  > 0. 

Uniform continuity relative to p means uniform continuity on each of the intervals 
[ -co ,  a l ) ,  [ a l ,  a ? ) ,  . . . relative to the Euclidean topology. A function that is chdlhg with jumps 
only at a l ,  a? ,  . . . , a ,  is p-uniformly continuous. This follows because the function zi defined 
by 

z i ( t )  = z ( f ) ,  ai 5 f < ai+i,  z i (a i+l )  = z (a i+l - )  
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is continuous on the compact [a i ,ai+l]relative to the Euclidean topology and hence uniformly 
continuous by continuity of F. The completion of R under p is topologically identical to the 
union of the disconnectedcompact intervals [a i ,ai+1],and hence compact. It follows that condi-
tion (Cl) and the first part of (C2) are satisfiedrelativetop as soon as the maps ( 8 ,x )  I+ QJ( x ,8 )  
are uniformly continuousrelative to the natural metrics on each of the sets O x [ai,ai+l). Jumps 
at the cell boundaries are permitted. 

We present our second example of a choice of a metric to satisfy C 1 4 2  as a lemma It 
applies to the situation that the elements Sj of the partition are product sets in 3 x X .  Recall that 
a Polish topological space is a separable topological space that can be metrized by a complete 
metric. Examples include open subsets, closed subsets or half-open intervalsin Euclidean space. 

LEMMA1. Suppose that the elements Sj ofthe partition are product sets Y,I x A', for sets S, 
that are Polish topological spaces. Furthermore, assume that the maps (8,x )  -if ( y  / x ;  6') = 
f8 ( y  I x )  are uniformly continuousfor all y E Y and that the densities f ( . I x ;  0)  for ( x ,8 )  E 
S x O are equi-integrable in Ll  ( v ) .Then CI-C2 are satisjied. 

Proof: The set .Y is the finite union .Y = U, X ,  of the partitioning sets X,. For each Xm there 
exists a metric d ,  under which X ,  is totally bounded. (See, e.g., Dudley 1989,Theorem 2.8.2.) 
We can assume without loss of generality that dm < 1 for every m. Then defining d ( x ,y)  = 1 
if x ,  y donotbelongtothesame,Ym,andd(x,y )  = d,(x, y)  i f x , y  E X,, weobtainametric 
on .Y,under which .Y is totally bounded. Every (X,, dm)  possesses a compact completion 
(7,, d,)in which ,Y, is containedas a Ga set and hence is a Bore1 set. (See, e.g., Dudley 1989, 
Theorem 2.5.4.) The completion of ( X  , d )  is the union 2 = U, Z", equippedwith the metric d 
that is defined from the metrics d,as d is defined from the metrics dm. Thus we have verified C1. 

The maps 0 -i fg  ( y I x )  are continuous by assumption. Thus for C2 it suffices to show that 
the maps ( 8 ,x )  -+ Qj( P ,0 )  are uniformly continuous. Here, for S.,= Y,I x we have 

Fix E E ( 0 . 1 ) .  If d ( x l ,x? )  < E ,  then x 1  and x? belong to the same partitioning set. So 
either &:(xi ,  8 )  = 0 for i = 1 , 2 ,  or Q f ( x i .6 ' )  = J f o ( y  / x i )  d v ( y )  for i = 1,2 .  ThusYml 
it suffices to show that the maps ( 8 ,x )  t Jyml fg ( y  I x )  d v ( y )  are uniformly continuous. If 
d((6' .x ) ,  ( O f ,  X I ) )  -+ 0 ,  then by assumption f e (y  / x )  - fgl ( y  1 x') -+ 0 for every y, and hence 
S l f e ( y  I x )  - fgl ( y  / xl)I d v ( y )  -+ 0 by equi-integrability. 

4. EXAMPLES 

Here are a few concrete examples to which our results apply. 

Example 4 (Binary response logistic regression). This is as in Example 1 of the introduction. 
Note that when there are just two cells Sj,j = 1 , 2 ,  corresponding to Y = 0 and Y = 1 
respectively, then this example is (random sample size version of) the classical "case-control" 
design often used in epidemiologicalstudies; see, e.g., Prentice & Pyke (1979). 

Example 5 ("Polychotomous" logistic regression). Suppose that 

where 
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and where we take p~ = 0 and UK = 0 for identifiability. Here 8 = ( v ,p )  E R~ x R ~ " ,  
and x E X c Rd. This is exactly the parametrization used by Prentice & Pyke (1979) in their 
discussion of the case-control version of this model. One natural choice of strata is given by 

L K J 

. l ' x y = U  U A l x B k ~U S ,  
l=l k = l  j = 1  

Linto J = LI< sets where X = UL=,illas in Example 1, and y = ( 1 ) ~ .. .u{Ii) Bl U. . .UBK 
is shorthand for the I<-coordinate vectors ( 1 , 0 ,. . . , O ) ,  . . ., ( 0 ,. . . , 0 , 1 ) .  

Example 6 (Bivariate logistic or Palmgren model). Suppose that 

Y ( X= x = ( I ; ,&)  IS = x - BivariateLogistic(.irkl(x),k,1E ( 0 ,  1 ) )  

where T I .= .irll + ~ 1 0 ,r.1= ~ 1 1+ .ir01,1C,= (.irll.iroO)/(.irlO.irol)are modelled as follows: 

logit{nl ( 2 ) )= Q I X ( I ) ,  logit{.ir l ( x ) )= 82x(2) ,  l o g { $ ( x ) )= 03x (3 ) ,  

where the coordinates of x ( , )  are a subset of the coordinates of x E RP for j = 1 , 2 , 3 .  Let 
d, = dimension ( x ( , ) ) ,  d  = dl  + d2 + d3, B = (81, 82, 83).  This is a model introduced by 
Palmgren (1989). A natural choice of the strata would be 

L 4 J 

. l ' x y = U  U A ~ X B ~ E U S ,  
l=l k = l  ,=I 

into J = 4L sets and y = { ( I ,  1 ) )  U { ( I ,  0 ) )  U ( ( 0 ,  1 ) )  U { ( 0 , 0 ) )- Bl U . . . U B4. 

Example 7 (Continuous response variable Y). Suppose that Y I X = x - N ( v l x ,u2)so that 
0 = ( v ,a2 )E Rdtl and 

fe( y I exp { - ( y  .x )  = ( 2 ~ ) - ' I 2  - v ' ~ ) ~ / 2 u ~ )  

One simple possibility for defining strata is 

where c: Rd + R is a fixed (and known) function of x .  Note that this gives an example in 
which the response variable Y is continuous rather than discrete, and in which the strata are 
not necessarily product sets. This is the type of model used by Scott & Wild (1998) in their 
Example 3 involving analysis of low birthweights: in their example Y is the birthweight, the first 
component X 1  of X is "age", and c ( X )= d ( X 1 )for a known function d. 

Example 8 (Censored data). Suppose that ITrepresents a survival time, so the densities fe ( y I x )  
are all concentrated on Rt = [0 ,m). Suppose that C is a censoring variable, and Y and C 
are conditionally independent given X .  Suppose that we consider Z = (C,X )  as a new "aug- 
mented" covariate vector, and two strata are defined by 

Sl = { ( Y ,  c ,  x )  = ( Y , 2 )  : y I c ) ,  S2 = { ( y ,c ,  x )  = ( y ,2 )  : y > c )  

Frequently in this type of model the "cases", or observations falling in stratum 1 are relatively 
rare so we would take pl = 1 and pa < 1; i.e., obtain complete data for the "true failures", 
and sample a fraction p2 of the censored individuals. This is Example 3 of Lawless, Wild & 
Kalbfleisch (1999). Our results do apply in this model (assuming that fe ( y 1 x )  satisfies our 
regularity hypotheses). It is closely related to "case-cohort" sampling in biostatistics (see Pren- 
tice 1986; Self & Prentice 1988), but in the typical case-cohort model the parametric model 
fe ( y I x )  would be replaced by a semiparametric model, usually the Cox proportional hazards 
model fe ,A (y I x)  depending on an additional infinite-dimensional parameter A, the baseline haz- 
ard rate, and hence the results obtained here do not apply to estimation in the usual model for 
case-cohort data 
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5. DISCUSSIONAND FURTHER PROBLEMS 

In this paper, we have discussed consistency only under the Bernoulli sampling scheme (VPS1). 
Consistency, asymptotic normality, and efficiency of the estimators under the important (and 
often used) stratified sampling plan (BSS) remains to be studied. 

An interesting related model is the biased sampling model studied by Gilbert (2000). His 
model is very similar to ours, but a key difference is that the sampling is only from J different 
biased samples from G where the biasing kernels (our functions f ( y  I x ;  O ) l { ( y ,x )  E S j ) )  are 
allowed to depend on 8. This yields a density given by just the first term of the first line of 
(3), and hence the information about the weights (strata probabilities) given by the 6's (or S's) 
is missing in Gilbert's problem. This makes his problem different and somewhat more difficult. 
Nevertheless, some of the methods used here might be useful for alternativeproofs of consistency 
of maximum likelihoodestimators in Gilbert's model. 

As mentioned briefly in Example 8, the models covered here necessarilyinvolve a parametric 
regression model: the conditional density j's ( y  I x )  is assumed to be parameterized by a finite-
dimensional parameter 0. It would be of considerable interest to extend the present results to 
cases in which the conditional density for the regression model is also allowed to depend on an 
infinite-dimensionalparameter A. 

APPENDIX: PROOFS FOR SECTION 3 

Proof of Theorem 1. One easy proof of this is via consistencyof the Horovitz-Thompson estima-
tors. Ignoring the 6's (or S's) and writing Z = (Y,X ) ,  then for bounded measurable functions h 
it follows from A1 that 

Thus if Ps, ,G,  = Ps2,c2,we conclude that 

for all bounded measurable functions h. By A2 this implies that (81,G I )= (82,G2).  

The proof of Theorem 2 proceeds via a series of lemmas. The likelihood equations for G 
were given previously in (6). We can rewrite them in the form 

for the function 

Here f ( R ,S,x )  means expectation of f over ( R ,S) with x fixed. An alternative way to 
obtain (7) is to insert 4and the probability measures G t  defined by dGt = (1 + t ( h  - G h ) )d z  
into the likelihood. Then it is maximized with respect20 t at t = 0. Setting the derivative at 
t = 0 equal to zero and rearranging the equation yields G(hs , )  = P,Rh. We deduce (7)in view 
of the followinglemma. 

LEMMAA. 1. 8 ,  ( X i )  2 l l n  > 0for every X i  with Ri  = 1. 

Pmoj The equation e(h i , )  = P,Rh evaluated at h = lix,) yields ~ { x ~ ) s , , ( x ~ )= l / n  if 

Ri = 1. Of course G{xi)5 1. 
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It appears to be unclear if s, (x) is nonnegative for every x, but in view of Lemma A.l, we 
can replace snby s: in (7) without changing the likelihood equations. We shall do this later on 
without further comment. 

A 

LEMMAA.2. minl J p, <1 Qj(8,G) is bounded awayfrom zero a.s. as n +a. 

Proof Let J+ f { j E (1, . . . , J} : pj < 1);note that the cells Sj correspondingto pj  = 1 do 
not enter in the "first phase" contributions to the log-likelihood represented by the third term in 
(4). Consider 

5 supIP,{Rlog f ( E 7  1-Ti:$)}- (9,R) log(nPnR)+ min IF, ( (1  - ~ ) l [ s = ~ ~ )log^. 
0 , E 3 +  

For (00,P,(R * )/P,(R)), the log-likelihood is 

TI-' log L,(Oo, P n ( R .)/IP,(R)) = pn{Rlog f (1- IX;00))- (PnR) log(npnR) 

The difference is bounded above by 

sup I,{R log I BQ) } + p i n  P, { (1 - ~ ) 1 [ ~ , ~ ~ )loge 
0 f (Y IX :  Qo) JEJ+ 

where the third tern converges to a finite quantity not depending on E.  Since the first term does 
not depend on E and is O(1) as.  by C4, and 

p i n  Pn  { ( l- ~ ) l [ s = j ~ )-+ min (1 -pj)Qj(Qo.Go) > 0,  
, E 3 +  =.s. , E 3 +  

it follows that for sufficiently small E > 0 the difference is strictly negative eventually, almost 
surely. Hence the maximum likelihood estimator cannot remain inside the set of (0,G) such that 
minj J+ Q (19;G) < E for such small e. 

Assume from now on without loss of generality that minlSjsJ Qj(8,, gn)2 E > 0 for 
some E .  Define 

J 

S ( X ,  Q 3  (3= 1 - c ( 1  - p,) Q ~ ( Q o l G O )Q;(xlQ) 
,=I Qj(0,G )  

LEMMAA.3. i,(x) = s(x,8,, I??,) + o(1) a.s. uniformly in x. 
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Pro05 We have 

Because Q, ( O n ,  G,,) is bounded away from O by Lemma A.2, Lemma A.3 is immediate from 
thestronglawandPn(1 - R ) l ( S= j) = (1-pJ)Qj(Qo,Go). 

Supose for the moment that we can prove that, in an almost sure sense, 8 + On and 
Qj ( B ,  G) +-Qj (Bo,  Go) for j = 1, . . ., J. Then by the preceding lemma and C2 we have 
that 

because CjQ j(z ,6') = 1. The convergence in this display is uniform in x. Then we can 
A 

concludethe proof of Theorem 2 by deducing the consistencyof G from the likelihoodequations, 
as follows. By (7), 

uniformly in h in a Glivenko-Cantelli class such that Po(R/so) lhl = Golhl is uniformly 
bounded in h. 

Thus the proof of Theorem 2 is complete once we have proved that d and the probabilities 
Qj  ( 8 ,E) are consistent estimators. This turns out to be the hard part of the proof, and is the 
subject of the remainder of the paper. 

By C5 and the fact that xjQj*(z,6') = 1, the function so(x) s (z ,Bo,  Go) is bounded 

away from O.Thus for O < X < 1 we can define a probability measure exby 

In view of (7) and the fact that P n R ( l / i n )= 1, 

and, by the definition of (8, e), 
Pn R log -L(y  I x) + R log[ I  + (1 - / 

X + (1- X)dn/so 

For fixed X > 0, the measures ex are convenient because the densities dG/dex exist and are 
bounded. Later in the proof, it will be necessary to let X -+0 to conclude consistency. 
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LEMMAA.4. Under C2-C3 the class offunctions {Qj' ( . ,8)  : Q E O) is Glivenko-Cantelli. 

ProoJ: This follows from finiteness of the L1-bracketing numbers. See van der Vaart (1998), 
Example 19.8,p. 272. 

LEMMAA.5. Suppose that C 2 4 4  hold. Then, almost surely, 

1 ~ + ( i - A )
s ( . . Qo, Go) 

+(1 - R) log 
Qs ( i  I 2 - o(1). (10) 

Q s ( ~ 0 .C) 

ProoJ: The idea is to replace the empirical measure in (9) by Poand s, by s (  . , 0 ,  z)+.The 
latter is permitted in view of Lemma A.3. 

By C2-C4 the functions {log(fol f ~ , ): 8 E O)  form a one-sided Glivenko-Cantelli class 
with an integrable upper envelope. See the one-sided Glivenko-Cantelli theorem of Le Cam 
(1953) as given by Ferguson (1996). Thus we can replace P,by Poin the first term of (9). 

The functions s ( . ,8. G) are multiplesof convex combinations of the functions Qj' ( . , 8),and 
hence form a GC-class. The transformation to 

is continuous and these functions are uniformly bounded. By the GC-preservationtheorem of van 
der Vaart & Wellner (2000),this is also a GC-class. Furthermore P,,(Rlso) +, , Po(R/so)= 
1. Thus we can also replace Pn by POin the second term of (9). 

The third term can be handled by just the ordinary law of large numbers applied to the aver-
ages IIDn(l- R)lsJ (Y,X).  The lemma follows. 

Because the functions {Q; ( . , 8) : 8 E 0 ) form a GC-class, so do the functions 

for every fixed EO > 0, by the GC-preservation theorem of van der Vaart & Wellner (2000).Thus 
we have that, almost surely, for every E > 0, 

Fix some w for which this is true, for every I. > 0, and such that (10)is true. By the compactness 
of O and the unit simplex, every subsequence of n has a further subsequence along which, for 
the chosen w ,  and some Qj,, ,Qg,,, and Q,, 8, + O,, 
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LEMMAA.6. Assume C2-C3 and let Q,,,, Q:,,, and 8, be constructed as in the preceding 
discussion. Then 

(i) Po(RIs2)  F 1. 

(ii) QJ,m 2 QJ(Q,, G,), j = . . , J .  

(iii) Q:,, > Q, ( Q o ,  G,), j = 1,. . . , J for the sub-probabilitymeasure G, dejined by: 

where 

Pro05 It is clear that, for every x, sn(x)  = S ( X ,  Q ,  e)+ o(1) -+ s,(x). For every E > 0, we 
have 

where the last step follows by dominated convergence, and the equality in the next to last step 
follows because the functions b,  are of the form CjXjQJ (x,0). Letting E j.0 yields (i), and 
hence G, is a well-defined sub-probabilitymeasure. 

For every E > 0, we have 

Letting E 40 yields 

This gives (ii). Assertion (iii) follows by the same argument, but with dn replaced by 00. 

If we had equality in (i) of Lemma A.6, then G, would be a probability measure. This does 
not seem to be automatic. If (i) is an equality, then so are (ii)-(iii), because both left and right 
sides then sum up to 1. (The left sides always do.) 

LEMMAA.7. Assume C2-C4. Then in the setting as described before Lemma A.6, 

+(1 - R,)log Q S , ~  

XQ;,, + (1 - X)Qs(00,Go) 
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Proof. We have 

by the definition of C, h = Po(RhlsA ) and the fact that Goh = Po (Rhlso). Also note that 
Go( s z  = 0) = 0 by Lemma A.6(i). These functionsare uniformly bounded above and bounded 
away from zero. Lemma A.7 now follows from Lemma A.5, Fatou's lemma, and dominated 
convergence, and 

By Lemma A.6(ii) and (iii), we have 

Qj,, 2 Qj(Q,, G,), XQ,O,, + (1- X ) Q j ( O o ,  Go) 2 Qj(00,AG, + (1 - X)GoI. (12) 

These are equalities if and only if G ,  is a probability measure. If these were equalities, then 
(11) would read 

+ (1 -R) log 
Q s ( ~ ,  , G,) 

Qs(Qo,XG, + (1 - X)Go) 
} 2 0. (13) 

This does imply (0, , G,) = (00,Go)because (00,GO)is identifiable from the data, and the 
following lemma. 

LEMMAA.8. If,for probability densities p, q and PO, 

for every X E (0,l),then p = po. 

Proof. Let px = Xq + (1 - X)po and let H denote the Hellinger distance. Because log z <-
2(& - 1) for every z 2 0, 
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because (PO+ q)  /PA 5 1/ (1 - A) + 1/X. If the left side is nonnegative,then it follows that 

As X 1 0 we have p~ + po pointwise, and 5 + @ is dominated by a square-
integrable function. Conclude that H ( P ,PA)+ H ( P ,Po). Because the right side converges to 
0, we have H ( P ,Po)= 0. 

The left side of (13) is the expectation in the preceding lemma for po ,p and q the densitiesof 
the data under (00, Go),(0, , G, ) and (00,G, ), respectively. Therefore, we can conclude that 
if G, in Lemma A.6 is a probabilitymeasure, then ( O w ,  G,) = (00,Go). 

Finally, consider the case that G, is not a probability measure. Then (13) is not valid, but 
we have an analogue of it under the following condition: There exists a probability measure G 
such that 

Under this condition we have 

-

+ (1 - R)  log 
Qs(em,  G) 

Qs(o0, AG+ (1 - XIGO)
} 2 0 (15) 

To see this, note that 

is increasing, so that (11) increases if G, is replaced by c. The resulting inequality can be 
rewritten in the form (15). 

As before, condition (15) implies 0, = 80 and G = Go, and hence Qj,, = Q:,, = 
Qj(80,Go).T ~ u s ~ L - + B ~ ~ ~ ~ Q ~ ( B , G )+Qj(%o,Go)foreveryj = 1,. . . ,  J .  

Condition (14) requires that we can "add the missing mass" to G, such that the numbers 
Qj(O,, G,) and Qj(Bo,G,) increase to Qj,, and Q:,m. Under conditions C1<5 this is 
possible. The proof of the following lemma shows that the "missing mass" must actually be 
orthogonal to Go. As it "drifts away" and apparently does not cause trouble, we shall allow it to 
drift "outside X" and next solve (14) for ??a measure on the completion of X. 

LEMMAA.9. Assume C1-C2. men in the setting of Lemma A.6 there exists a probability-* 
measure G on the completion X of X such that (14)holds, where Qj(8,??) = GQj ( . , 0)for 
-* 
Qj ( . , 0) the continuous extension to ;i: 
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Pmo$ The measures a,Go, G ,  can be viewed as Bore1 measures on z.The functions Q; ( , 8 )  
and hence s, and s( . ,%, G )can be extended to %,,by continuity. Recall that Q,,, and Qg,, 
are constructed as limits along a subsequence of {n). By Prohorov's theorem, there exists a 
further subsequence along which en-+ ??in distribution for some probability measure ?? on F. 
By the equicontinuity of the functions % -+ Q5 ( x ,  8 )  and Lemma A.3, 

uniformly in x E z.Thus for every continuous function h:2 -+ R, 
AE ( s ,h ) = ~ ( i :h) = g ( s L  h )  + o(1)-+ c ( s ;  h ) ,  

by the continuity of s k  . On the other hand, 

A 

G(sn h) = p,(Rh) -+ Po ( R h )= G ,  ( s k  h ) ,  

because 
G,(s;h) = P ~ { ( R / S ; ) S : ~ }= ~ o { R h l ( s ;> 0 ) )= Po(Rh). 

It follows that 	 -
~ ( s :h ) = G,  ( s k  h) .  

This implies that ??' and G ,  coincide on the set {x E : s k  ( x )  > 0) . Because Go and G ,  are 
concentrated on this set with Go and G ,  mutually absolutely continuous, G is the sum of G ,  
and a measure that is orthogonal to Go: 

is the Lebesgue decomposition of G relative to Go. Obviously G > G,. Finally by equiconti- 
nuity of Qj' (x ,8 ) , we have 

The third line of (14) follows similarly. 

If X were compact, then ,Y = .Yand the preceding lemma solves (14) within the original 
set-up. In that case the proof is complete. If X is not compact, then by C1 its completion is 
compact. We can apply our proof to this compactified ,Yprovided that we can "lift" the whole 
problem into the compactification. We shall now show that this is always possible under the 
conditions C 1-C5. 

By C2 the functions ( 8 ,x )  -+ Q: ( x ,%)can be extended (uniquely) to continuous functions 
-* 
Q, on O x X ,  for X the completion of A', which is compact by C1. The next step is to define 
an extension 7> Y and densities fe ( . I x ) on 7for x E - X and 8 E O and to define sets 
Sj c7x in such a way that 

and such that the maps % + fs ( y I x )  are upper semicontinuous. In that case C1-C5 cany over 
to the extended model, with sample space 7x ;t'and parameter set the product of O and the 

13 
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set of all probability measures on F.Because under (00 , Go)the observations (k::, Xi) fall with 
probability one into y x X, the (restricted) maximum likelihood estimator will not change, and 
we obtain consistency of 8 and the probabilities Q j  ( 6 ,  G) by the preceding argument. 

Under some conditions, the extended model can be  constructed from natural extensions of fs 
and the strata Sj. However, an extension exists under minimal conditions. For instance, define -
y = y U { 1,. . . , J ) and let fe ( . I x )  be the density of a discrete distribution Fs ( . I x) on the set 
{ 1 , 2 , .  . . , J ) suchthat 

Furthermore,definesj = Sju({ j )x z - x ) , s o t h a t ( s j ) ,  =_( j ) forx  € 7 - 2 .  Toobtaina 
partitioning of 7x ;i;we must also add the stratum 7x 7- USj, but this will have probability 
zero under all possible parameters. 
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