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We revisit a paper by Charles Stein, and discuss its follow-up.

1. Introduction. Stein’s paper [52] is less than 9 pages in length, but can be viewed as
the seminal paper for semiparametric statistics, making the transition from the asymptotic
theory for regular parametric models to the estimation of smooth functionals on infinite-
dimensional models.

Stein is modest about his achievements and writes in the Introduction:

Very few results are obtained here, and, with the exception of the lemma of Section 3, they are not
rigorous. Also, even for the example of Section 4, where a definite procedure is given, the results are
not of immediate practical value. The computations required are excessive, and the procedure is not
efficient for sample sizes likely to occur in practice.

It is true that the paper is mostly about information calculations that suggest that certain
statistical procedures may exist. However, not only did the paper have much follow-up in
constructing these procedures, it also motivated a theory of information calculus on infinite-
dimensional models.

We start by revisiting Stein’s paper, and next discuss some follow-up.

2. Stein’s paper. For a smoothly parametrised finite-dimensional statistical model, the
best possible quality of an estimator of a function of the parameter can be characterised by
the Fisher information matrix. If θ is the parameter and pθ , the density of a single observation
X, then the Fisher information matrix is

Iθ = Eθ �̇θ (X)�̇θ (X)T = Covθ

(
�̇θ (X)

)
,

where the gradient (i.e., vector of partial derivatives)

�̇θ (x) = ∂

∂θ
logpθ(x),

is the score function of the model. The smallest possible mean square error (in a certain
asymptotic sense) of an estimator of a parameter φ(θ) ∈ R based on a sample of n observa-
tions) is then (for ∇φ the gradient of φ)

(1)
1

n
∇φ(θ)T I−1

θ ∇φ(θ).

Under some regularity conditions (Stein refers to [33]), the maximum likelihood estimator
θ̂n based on an i.i.d. sample X1, . . . ,Xn from pθ satisfies that

√
n(θ̂n − θ) tends to a normal

distribution with mean zero and variance ∇φ(θ)T I−1
θ ∇φ(θ), and hence attains this bound.

Even if the parameter set � may be multi-dimensional, this lower bound for estimation of
a real-valued parameter φ(θ) can already be obtained from considering a one-dimensional
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submodel. Specifically, for given θ0 and v0 = I−1
θ0

∇φ(θ0), one might consider the submodel
pθ0+tv0 parameterised by t in a neighbourhood of 0 ∈ R. Then estimating φ(θ0 + tv0) for
unknown t is easier than estimating φ(θ0 + h) for h = θ − θ0 ∈ �, but one can readily work
out that the information bounds are the same.

Stein continues to explain the main idea of the paper:

When � is infinite-dimensional, that is, in nonparametric problems, the maximum likelihood method
often breaks down. Frequently, the maximum likelihood estimate is undefined, [. . .], and it is not
clear that it is good when it exists. However, the existence of a one-dimensional subproblem asymp-
totically as difficult as the original problem (of a single real-valued function) often persists, at least
formally.

Stein’s paper works this out for three models, which we shall review in detail. His method
is based on clever parameterisations of these models, and a purely algebraic lemma on the
inverse of a partitioned matrix, derived in Section 3 of his paper (the “only rigorous” part of
the paper).

Stein partitions the parameters of this model in three parts, as (θ, η, γ ), where θ is the
parameter of interest, η an additional parametric component, knowledge of which is impor-
tant for estimating θ , and γ a parameter that is not relevant to the problem of estimating θ .
In modern language both η and γ are nuisance parameters. Uncertainty about η has a neg-
ative influence on our ability of estimating θ , but to the unknown value of γ we can adapt
without losing quality. Because quality can be read off from the Fisher information matrix
(although Stein points out that this may not be relevant “for sample sizes likely to occur in
practice”), the classification of the three parts of the parameters can be made precise in terms
of properties of this matrix.

The Fisher information matrix for a partitioned parameter τ = (θ, η, γ ) can be partitioned
as1

Iτ =
⎛
⎝Iθ,θ Iθ,η Iθ,γ

Iη,θ Iη,η Iη,γ

Iγ,θ Iγ,η Iγ,γ

⎞
⎠ .

The optimal quality of estimation is determined by the inverse of this matrix, as shown
in (1). Specifically, for a function φ(θ, η, γ ) = χ(θ) that depends only on θ , the gradient
∇φ(θ, η, γ ) = (∇χ(θ),0,0) depends only on the first coordinate, and hence (1) depends
only on the (θ, θ)-submatrix of the inverse. The point now is that this submatrix is not equal
to (Iθ,θ )

−1, in general. In fact, in general,

(2)
(
I−1
τ

)
θ,θ ≥ (Iθ,θ )

−1,

in the sense that the difference of the two matrices is nonnegative definite. The inequality
is a property of general nonnegative-definite matrices, but in this case has a statistical inter-
pretation. The matrix on the right would be the relevant inverse if η and γ were known, and
hence the full information matrix of the model would be Iθ,θ . The matrix on the left is bigger,
because it is harder to estimate θ when η and γ are unknown.

In Stein’s examples, γ plays the role of a nuisance parameter that does not make the
estimation of θ harder when it is unknown, whereas η may increase the information bound,
that is, in his examples the three parameters are chosen so that

(3)
(
I−1
τ

)
θ,θ =

((
Iθ,θ Iθ,η

Iη,θ Iη,η

)−1)
θ,θ

.

1In general, each of the matrices on the right depends on the full parameter τ . Here, and when writing score
functions, we alleviate, but abuse, notation by not showing this dependence.
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The irrelevant parameter γ is taken to be Euclidean, but may index any parametric submodel
within an encompassing nonparametric model. It is thus that the paper concerns “efficient
nonparametric testing and estimation”, as promised in its title.

Clearly, the parameter η must be chosen carefully to render the preceding display correct.
It should index what in modern language would be called a least favourable submodel for
estimating θ . In two of Stein’s three examples, the parameterisation is natural, albeit that the
adaptive nature is not obvious. In the third example, he employs a clever reparameterisation,
and the least favourable submodel seems to come somewhat from the air.

Stein’s way of proving the correctness of his choices is based on verifying the preceding
display (3). In a lemma, he first reduces (3), by a page of elementary calculations, to the
identity Iθ,γ = Iθ,ηI

−1
η,ηIη,γ , another result valid for general nonnegative-definite matrices.

In the next sections, we revisit Stein’s three examples. A modern perspective is to present
information identities not through matrices, but, indirectly, through a calculus of score func-
tions [1, 59]. For a partitioned parameter τ = (θ, η, γ ), the score function can be partitioned
as well, as

�̇τ (x) =
⎛
⎜⎝�̇θ (x)

�̇η(x)

�̇γ (x)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂θ
logpθ,η,γ (x)

∂

∂η
logpθ,η,γ (x)

∂

∂γ
logpθ,η,γ (x)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The information matrix Iτ is the covariance matrix of the vector �̇τ (X), and partitions in the
covariance and cross-covariance matrices of the three component scores (which are vectors
of lengths the dimensions of θ , η, γ ).

It turns out that the inverse information matrix I−1
τ can be found as a partitioned matrix of

covariances as well, but of projected score functions. Each coordinate function of �̇τ is an el-
ement of the Hilbert space L2(pτ ) of square-integrable functions. Let �η,γ be the orthogonal
projection2 onto the closure of the subspace of L2(pτ ) spanned by all coordinate functions
of �̇η and �̇γ , and let

�̃θ (x) = �̇θ (x) − �η,γ �̇θ .

LEMMA 2.1. If Ĩθ,θ = Covτ (�̃θ (X)), then (I−1
τ )θ,θ = (Ĩθ,θ )

−1.

PROOF. For a given random vector (UT ,V T )T with mean zero and covariance matrix J ,
the decomposition U = (U − �V ) + �V is orthogonal for the matrix � = JU,V J−1

V,V , if J is
partitioned in the submatrices JU,U , JU,V , JV,U and JV,V . The covariance matrix of U −�V

is JU,U −�JV,V �T = JU,U −JU,V J−1
V,V JV,U . By the formula for the inverse of a partitioned

matrix, the inverse of the last matrix is (J−1)U,U . �

The interpretation is that the information loss due to not knowing the nuisance parameter
(η, γ ) is coded in the loss of the part of the score function �̇θ (x) that also arises as a score
function for (η, γ ). The remaining part �̃θ of the score function is called the efficient score

2By definition the orthogonal projection �η,γ � of � ∈ L2(pτ ) minimizes the map g �→ ∫
(� − g)2pτ dμ

over g ∈ lin(�̇η, �̇γ ). If θ is multi-dimensional, it is here applied coordinatewise to the coordinates of �̇θ .
The projection is characterised by the orthogonality relationship 〈�̃θ , g〉τ = 0, for every g ∈ lin(�̇η, �̇γ ). Here,
〈g1, g2〉τ = ∫

g1(x)g2(x)pτ (x) dμ(x), where μ is the dominating measure for the densities pτ , is the inner prod-
uct.)
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function for θ , and its covariance matrix the efficient information for θ . The inverse of this
matrix is the lower bound for estimating θ in the presence of the unknown nuisance parame-
ters (η, γ ). Since the right-hand side of inequality (2) is the covariance matrix of �̇θ (X), this
inequality is a consequence of the fact that projections decrease variance.

Equation (3) allows an information loss for estimating θ due to the parameter η being
unknown, but expresses that there is no loss through not knowing γ . In terms of score func-
tions, it means that the projection of �̇θ onto lin(�̇η, �̇γ ) is no different than the projection
onto lin(�̇η), or, equivalently, if �η is the orthogonal projection onto the latter space, then
�̇θ − �η�̇θ is orthogonal to lin(�̇γ ). The interpretation is that after having corrected for the
fact that η is unknown, further corrections for γ being unknown are unnecessary.

An optimal estimation procedure for θ should thus be able to “adapt” to the unknown pa-
rameter γ : it should have the same (asymptotic) mean square error as the best procedure that
may depend on the true value of γ . It is of historical interest that Stein presents his exam-
ples within the preceding framework with three component parameters. In later literature, the
term adaptation became specialised to the situation of parameters (θ, γ ) with two compo-
nents, with the same requirement that estimation of θ is as difficult with or without knowing
γ . In this usage, γ is typically allowed to be “nonparametric”, rather than finite-dimensional
as in Stein’s paper, but this is not essentially more general, as information bounds are always
suprema over finite-dimensional submodels. Allowing a third component and considering
parameters (θ, η, γ ) does make a big difference. For instance, Stein’s third example, the
errors-in-variables model would not be considered “adaptive” in present terminology. Stein’s
second example, the two-sample problem, is said to satisfy the condition for adaptive esti-
mation in Proposition 1 on page 101 of [8], but strictly speaking is also not adaptive, in the
sense of, for instance, [6].

For a k-dimensional parameter θ , there are k components to the score function �̇θ , and
then equally many projections on the score space of other unknown parameters. If it were
possible to choose “directions” in the set of other parameters along which the score functions
are the k projections of �̇θ , then this might give a submodel indexed by a k-dimensional
parameter η such that the efficient score function for θ in this submodel would agree with
the efficient score function in the full model. The remaining part of the parameter, possibly
infinite-dimensional, could then be marked γ , yielding exactly the structure as considered by
Stein. Such least favourable submodels are known for many situations. It seems that in this
sense, Stein’s paper is much more general than “adaptive models”.

While least favourable submodels often exist, there are exceptions. The worst type of fail-
ure comes from the fact that the projection �η,γ defining �̃θ is onto the linear span of the
nuisance scores, whence �η,γ �̇θ may not be a nuisance score itself. In that situation, there
may not exist a submodel in the sense of Stein and his heuristic will be overly optimistic. The
linearity arises within the context of the Cramér–Rao bound from the fact that this is based
on covariance. The covariance between an estimator and a set of score functions imposed by
unbiasedness of the estimator, automatically determines the covariance between the estima-
tor and elements from the linear span of the score functions. This leads to a lower bound on
the variance not only for every score (and hence submodel in the sense of Stein), but also for
elements in the linear span of the scores. The asymptotic version of this phenomenon was in-
vestigated in [58, 62]. If one imposes restrictions on estimators such as unbiasedness or local
uniformity (“regularity”), again the linear span of the score vectors drives the lower bound.
For the local minimax criterion, this remains true (only) if the set of score vectors is convex.

If the efficient score does not correspond to a least favourable submodel at parameter val-
ues chosen by maximum likelihood estimators, then the efficient score may not provide a
likelihood equation. To analyse maximum likelihood estimators, [41] introduced “approx-
imate” least favourable models. Further observations on least favourable submodels were
made by [51, 70] and [12, 13].
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2.1. Symmetric densities. The example of estimating the median of symmetrically dis-
tributed observations, discussed in Section 4 of Stein’s paper, was followed up by many au-
thors, who in various ways completed Stein’s program. It became perhaps the most famous
example of a semiparametric model, competing, or ex aequo, with the Cox model.

In his understated style, Stein starts his discussion with the remark:

The problem we discuss in this chapter is not one which often arises in practice. However, it is so
simple that we can almost treat it satisfactorily without introducing any really new methods [. . .].

The score function for θ of the one-dimensional location model p(x − θ) is given by

�̇θ (x) = −p′

p
(x − θ).

If the probability density p is symmetric about zero, that is, p(x) = p(−x) for all x ∈ R,
then this is an odd function around θ . On the other hand, perturbing the shape p, leads to
symmetric functions: if γ �→ pγ is a smooth curve through the symmetric densities, then

∂

∂γ
logpγ (x − θ) = b

(|x − θ |),
for some function b. By the (anti-)symmetry

∫
�̇θ (x)b(|x − θ |)p(x − θ) dx = 0, and hence

�̇θ is orthogonal to all nuisance scores. No projection is needed, the efficient score function is
equal to the ordinary score, and no additional parameter η need be involved. The remarkable
message is that estimating θ when p has a completely unknown shape should not be more
difficult than estimating θ when p is known to be a particular density.

This promise was fulfilled in steps, under increasingly mild regularity conditions [2, 50,
54, 56, 65]. Eventually it was proved that there exist estimators θ̂n, based on a sample of n

observations and not on the shape p, such that
√

n(θ̂n − θ) tends to a normal distribution
N(0, I−1

p ), for any p that is absolutely continuous, where Ip = ∫
(p′/p)2(x)p(x) dx is the

Fisher information for location. (If the latter is infinite, then the normal limit is understood
to be degenerate. Infinite values of Ip are characteristic of “irregular” or “singular” densities;
see [23], Chapters V and VI for a detailed treatment.)

The simplest way to construct such estimators is to estimate the density p using the sam-
ple absolute values |X1 − θ̃n|, . . . , |Xn − θ̃n| for a preliminary

√
n-consistent estimator θ̃n,

and use a single iteration of the Newton method to solve the estimated likelihood equation∑n
i=1(p̂

′/p̂)(Xi − θ) = 0, starting from the same initial estimator θ̃n. Estimators based on
rank statistics, with estimated score function, have also been considered in the literature;
see, for example, [2] and [21]. The second reference studies and exploits asymptotic equiv-
alence of tangent space projections and projections onto residual ranks via conditioning on
order statistics in settings (such as the one and two-sample shift models considered by Stein)
in which ranks and order statistics are available. A mathematical proof of existence of ef-
ficient estimators under the minimal condition is relatively straightforward (see, e.g., [64],
Section 25.8.1), but practical implementation is as tricky as in the 1950s, due to the necessity
of tuning the density estimator.

In his paper, Stein considers the problems of testing H0 : θ = 0 versus H1 : θ > 0, rather
than the estimation problem, which similarly is adaptive to the shape of the density p. Without
giving a detailed proof, he seems to give a complete solution of this problem. He proposes
test statistics of the form

n∑
i=1

Zi1Z2
i ≤εn

∑n
i=1Z

2
i

sign(Xi),
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where εn → 0 and the Zi are functions of the absolute values |X1|, . . . , |Xn|, given by, for Sn

the empirical distribution function of the absolute values and a > 0 some constant,

Zi = 2n[Sn(|Xi | + a/
√

n) − 2Sn(|Xi |) + Sn(|Xi | − a/
√

n)]
a
√

n[Sn(|Xi | + a/
√

n) − Sn(|Xi | − a/
√

n)] .

Under the null hypothesis, Sn(t) → P(|X| ≤ t) = ∫ t
0 2p(x)dx, whence the scaled second-

order and first-order differences in the numerator and denominator of the quotient Zi estimate
4a2p′(|Xi |) and 4a2p(|Xi |). It follows that Zi sign(Xi) ≈ (p′/p)(Xi) and the test statistic
should behave similarly to

∑n
i=1�̇0(Xi), the optimal test statistic when p is known. Given

that, conditionally on the the absolute values, the signs are independent variables with values
in {−1,1}, a central limit theorem can be invoked to make this precise.

The theory of asymptotically optimal tests was being developed in the same era, for ex-
ample, in the paper [29] presented at the same Berkeley Symposium as Stein’s paper, or [30]
and [18].

2.2. Two sample location-scale. Given two independent samples from the same location-
scale family, defined by a single density shape p, but with different location-scale parameters
for the two samples, the location and scale are confounded with the parameter p, but the
difference of the locations of the two samples and the quotient of the scales are identifiable.
In Section 5 of his paper, Stein shows essentially that the least favourable submodels for
these relative parameters are within the submodels indexed by the two pairs of location-scale
parameters, and do not involve the shape density. To facilitate his calculations, he reparame-
terises the two location parameters in terms of their half difference and average, and the two
scale parameters by the square roots of their quotient and product.

For our calculus of scores, it is slightly easier to use a different parameterisation. For
simplicity, we also assume that the sample sizes are equal and pair the two samples to a
single sample from the distribution of a pair (X,Y ). This latter pair has density

(x, y) �→ p(x)p

(
y − μ

σ

)
1

σ
.

The parameter of interest is θ = (μ,σ ), while the nuisance parameters η and γ jointly corre-
spond to p.

The score function for θ takes the form

�̇θ (x, y) =

⎛
⎜⎜⎝

−p′

p

(
y − μ

σ

)
1

σ

−
[
1 + y − μ

σ

p′

p

(
y − μ

σ

)]
1

σ

⎞
⎟⎟⎠ .

The score function corresponding to the perturbation pt(x) = p(x)(1 + tb(x)), for t ≈ 0 and
a given (bounded) function b with

∫
b(x)p(x) dx = 0, is

∂

∂t |t=0
log

[
pt(x)pt

(
y − μ

σ

)
1

σ

]
= b(x) + b

(
y − μ

σ

)
.

To find the efficient score function for θ , we must project �̇θ onto the set of all functions of the
latter type, within the L2-space corresponding to the distribution of (X,Y ). Since (Y −μ)/σ

has density p, this is equivalent to projecting⎛
⎜⎜⎝

−p′

p
(y)

1

σ

−
[
1 + y

p′

p
(y)

]
1

σ

⎞
⎟⎟⎠ .
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Onto the set of functions b(x) + b(y) in the space L2(p × p), for freely varying b. Now
orthogonality of b(x) + b(y) to �(x) + �(y) in L2(p × p) is equivalent to orthogonality
of b and � in L2(p). This readily shows that the projection of a function �(y) onto the set
of functions b(x) + b(y) is the function (�(x) + �(y))/2. Consequently, the efficient score
function for θ is given by

�̃θ (x) =

⎛
⎜⎜⎝

1

2

[
p′

p
(x) − p′

p

(
y − μ

σ

)]
1

σ
1

2

[
1 + x

p′

p
(x) − 1 − y − μ

σ

p′

p

(
y − μ

σ

)]
1

σ

⎞
⎟⎟⎠ .

We recognise the projections as scores arising from a location-scale model pη,γ (x) =
pγ ((x−η1)/η2)/η2. Thus the irrelevant nuisance parameter γ corresponds to a shape pγ with
a standardised location and scale; the relevant nuisance parameter η = (η1, η2) parametrizes
the location and shape of X within the location-scale family; the parameter of interest shifts
the location and scale of Y relative to the location scale of X.

Following [44], Sections 18.3 and 18.5, Theorem 1 on page 99 of [8] extend this type of
“adaptive” structure to any two-sample group model.

Efficient estimators fulfilling Stein’s program can be constructed using a preliminary esti-
mator of the unknown density p, along similar lines as for the symmetric location model [2,
43, 54, 65, 67, 69].

2.3. Errors-in-variables. In Section 6, Stein considers observing a sample from the dis-
tribution of a two-dimensional vector X = Y +Z, for independent vectors Y and Z, where Y

has an unspecified distribution that is concentrated on an unspecified line L = {a + λb : λ ∈
R} ⊂ R

2, and Z is bivariate normally distributed with mean zero and unknown covariance
matrix �. The parameter of interest is the slope of the line L, or, equivalently, a normalised
version of the vector b.

This is a version of the errors-in-variables model: the first coordinate X1 is the sum of an
“independent variable” Y1 = a1 + �b1 and a Gaussian error Z1, and, provided b1 �= 0, the
second coordinate X2 is equal to the sum of the linear function a2 + b2(Y1 − a1)/b1 of Y1
and the Gaussian error Z2. The slope parameter b2/b1 had been proven to be identifiable if
the distribution of Y is not normal (and not degenerate) in [46].

Stein’s remarkable insight in the information structure of the model is based on splitting
the error vector Z into a component on the line L and an independent remainder. Fix any
nonzero vector c ∈ R

2 such that the vectors b and c form an orthogonal basis relative to
the inner product generated by �−1, that is, bT �−1c = 0. Then Z = Ub + V c, for the uni-
variate variables U = bT �−1Z/bT �−1b and V = cT �−1Z/cT �−1c, which can be seen to
be Gaussian and independent. If Y = a + �b for a univariate variable �, then this leads to
X = a + (� + U)b + V c. Choosing b and c of unit length and decomposing the intercept as
a = νb + μc, we can further rewrite the equation as

(4) X = R

(
cos θ

sin θ

)
+ S

(
sinφ

cosφ

)
=

(
cos θ sinφ

sin θ cosφ

)(
R

S

)
,

where θ , φ are unknown parameters, and R and S are independent univariate random vari-
ables, with the distribution of R unspecified but not normal, and S normal with unknown
mean μ and unknown variance σ 2. The slope of the line L is given by the parameter θ .

Stein presents a (7 × 7) information matrix for the parameters θ , φ, μ, σ , the location and
scale parameters of R and an additional parameter γ for the shape of the density of R. At
first reading, he seems to suggest that the information for the pair (θ,φ) does not decrease if
any of the other parameters are unknown. At second reading, this situation, which Stein calls
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“curious” in the last sentence of his paper, is due to his special choice of true values of the
parameters: he fixes θ = φ = 0, and sets the means and variances of R and S to 0 and 1.3

For general parameter values, it is still true that the estimation of (θ,φ) does not become
harder from not knowing the shape of the density of R. In other words, the least favourable
submodel for (θ,φ) (together corresponding to θ in the partitioned parameter (θ, η, γ ) in
our general Introduction) is contained in the four-dimensional model (corresponding to η)
generated by (μ,σ ) and the location and scale parameters of R, and the problem is adaptive
to the shape of the density of R (corresponding to γ ). As this seems not obvious, we present
details on the proof of this fact.

The defining equation (4) can be inverted to show that, with the dependence of R = Rθ,φ

and S = Sθ,φ on the parameters made explicit,

Rθ,φ = X1 cosφ − X2 sinφ

cos(θ + φ)
, Sθ,φ = −X1 sin θ + X2 cos θ

cos(θ + φ)
.

The Jacobian of the linear transformation from (R,S)T to X is cos(θ + φ). (If we
choose c to be the counterclockwise rotation by π/2 of �−1b, then cos(θ + φ) =
bT �−1b/(‖b‖‖�−1b‖) > 0.) Thus we find that a probability density of X is given by

(5) pX(x) = pR(rθ,φ)ϕ

(
sθ,φ − μ

σ

)
1

σ

1

cos(θ + φ)
.

With a little algebra (especially for the fourth and fifth equations), we see that

2
∂

∂θ

1

cos(θ + φ)
= tan(θ + φ)

cos(θ + φ)
,

∂

∂θ
log cos(θ + φ) = − tan(θ + φ),

∂

∂θ
Rθ,φ = Rθ,φ tan(θ + φ),

∂

∂φ
Rθ,φ = −Sθ,φ

cos(θ + φ)
,

∂

∂θ
Sθ,φ = −Rθ,φ

cos(θ + φ)
,

∂

∂φ
Sθ,φ = Sθ,φ tan(θ + φ).

Using that ϕ′/ϕ(s) = −s, we find, again after some algebra, that the score functions for θ , φ,
μ, σ are given by (for notational convenience we omit the subscripts θ , φ from R and S),

�̇θ (X) =
[
1 + R

p′
R

pR

(R)

]
tan(θ + φ) + S − μ

σ 2

R

cos(θ + φ)
,

�̇φ(X) = p′
R

pR

(R)
−S

cos(θ + φ)
−

[
(S − μ)S

σ 2 − 1
]

tan(θ + φ),

�̇μ(X) = S − μ

σ 2 ,

�̇σ (X) = 1

σ

[
(S − μ)2

σ 2 − 1
]
.

The remaining scores result from varying pR along submodels. For pR unspecified, the pos-
sible scores for pR would include any square-integrable function b(R) of mean zero, and the
orthogonal projection onto the score space for R would be the conditional expectation rela-
tive to R. Although within the original model R = ν + � + U always contains a nontrivial
Gaussian component U , and hence cannot have any possible distribution, we adopt as work-
ing hypothesis that pR is unspecified. We shall see that it actually only matters that the set of
pR is closed under location and scale changes.

3We understand Stein’s explicitly named location and scale parameters η and λ for R to be the mean and
standard deviation.
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The efficient scores for (θ,φ) relative to the other parameters viewed as nuisance param-
eters are by definition the scores �̇θ and �̇φ minus their projections onto the sum of the score
space for pR and lin(�̇μ, �̇σ ). By the product structure in the likelihood, the latter spaces are
orthogonal, and hence the projection onto the full nuisance score space is the sum of the
conditional expectation relative to R and the projection onto lin(�̇μ, �̇σ ).

The first component of �̇θ is completely explained by a score for pR , and drops out when
forming the efficient score �̃θ . As this particular function is the score at τ = 1 for the sub-
model τ �→ pR(r/τ)/τ , the projection would be the same if pR were known just up to its
scale. The second component of �̇θ is orthogonal to the score space for pR and its projection
onto lin(�̇μ, �̇σ ) changes R into its mean value. It follows that

(6) �̃θ (X) = S − μ

σ 2

R − ER

cos(θ + φ)
.

The projection of the first component of �̇φ onto the score space for R changes the variable
S to its mean ES = μ; the projection is a multiple of the location score of R. The second
component of �̇φ is contained in lin(�̇μ, �̇σ ). It follows that

(7) �̃φ(X) = p′
R

pR

(R)
μ − S

cos(θ + φ)
.

Thus we find that the projections of �̇θ and �̇φ are within the sum of the score spaces of the
location-scale families of R and S.

Incidentally, the nonidentifiability of the θ in the case that R is normally distributed is
visible in the efficient information: if R were normal, then the location score p′

R/pR would
be a linear function of R, and hence �̃θ and �̃φ would be proportional and the efficient Fisher
information for θ in the absence of knowledge of φ equal to zero.

Efficient estimators for the slope b2/b1 (equivalently θ ) were first constructed in [9] and
[63]. These authors used a different principle, but also factorised the likelihood, based on
the sufficiency of the “statistic” bT �−1(X − a), which depends on the parameters (a, b,�),
for the remaining parameter of the model: the distribution of � (as readily follows from the
sufficiency of this statistic for the univariate parameter λ in the model X = a + bλ + Z). It
can then be argued from completeness of the Gaussian exponential family (at least in the case
of a true continuous distribution of �) that the projection onto the nonparametric nuisance
scores is the conditional expectation relative to bT �−1(X − a), and one arrives at similar
formulas (6)–(7).

Models with sufficient statistics for the nuisance parameter, but then without dependence
on the parameter of interest, had earlier been considered in [25, 44]. Actually, if dependence
is allowed, all three models considered by Stein are characterised by a sufficient statistic, and
a unified theory of adaptive estimation is possible [63].

The connection to Stein’s decomposition is the identity

bT �−1(X − a) = bT �−1b(R − ν),

by the relation X − a = (R − ν)b + V c and the orthogonality relation bT �−1c = 0. Thus
the sufficient statistic is a scaled version of R − ν, and the likelihood factorisation (5) is
equivalent to the one given by the factorisation theorem for sufficient statistics.

An asymptotically efficient estimator for (θ̂ , φ̂) can be obtained as the (approximate) so-
lution to the efficient score equations (cf. [64], Section 25.8 for this method in general)

n∑
i=1

Sθ,φ,i − μθ,φ,�

σ 2

Rθ,φ,i − ÊRθ,φ

cos(θ + φ)
= 0,

n∑
i=1

p̂′
R

p̂R

(Rθ,φ,i)
μθ,φ,� − Sθ,φ,i

cos(θ + φ)
= 0.
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Here, Ê, p̂′
R and p̂R refer to estimates that involve the infinite-dimensional parameter. As

pR is the density of the density of bT �−1(X − a)/bT �−1b + ν, given a, b, � it can be
estimated nonparametrically, similarly as in the symmetric location and two-sample models.
The papers [9] and [63] applied kernel density estimators for this purpose. Because R = ν +
�+U , the distribution of R is the convolution of a Gaussian distribution with the distribution
of �. By estimating the mixing distribution � instead of the density pR , for instance by the
nonparametric maximum likelihood estimator as in [24], the inherent instability of density
estimators can be avoided [61, 64].

An alternative is the full maximum likelihood estimator, which maximizes the likelihood

(a, b,�,H) �→
n∏

i=1

∫ 1√
det�

e−(Xi−a−λb)T �−1(Xi−a−λb)/2 dH(λ),

where the scales of a and b and possibly the shape of � are restricted, and H ranges over all
probability distributions on R. In [24], this estimator was shown to be consistent, provided
identifiability, and in [60], the slope component was shown to be efficient, in a version of the
model that identifies the parameters through restrictions on � rather than nonnormality of
�, as assumed by Stein. It appears that Stein’s insight in the information structure may be
exploited to derive also the asymptotic normality in his version of the model.

Stein discusses the version of the errors-in-variables model in which the independent vari-
ables � are random and i.i.d.. Another version, considered in the same decade by [42, 45],
lets the values λ1, . . . , λn attached to the observations X1, . . . ,Xn be arbitrary constants. For
the errror-in-variables model, it was shown in [40] that the maximum likelihood estimator
of the slope, as in the preceding display, is asymptotically normal also in this version of the
model. Estimators based on kernel density estimators were considered in [62]. In the model
with an increasing number of parameters, Stein’s heuristic of least favourable submodels does
not apply and the notion of asymptotic optimality is unclear, but within a class of “perturba-
tion symmetric” estimators, the heuristic can be applied to show that the limiting distribution
is optimal [55].

3. Follow-up. Stein began his paper [52] squarely in the context of the theory of finite-
dimensional statistical models as known at that time: under suitable regularity conditions
the MLE is asymptotically normal and efficient in the sense of the Cramér–Rao bound. (See
Stigler [53] for a fascinating history of maximum likelihood estimation theory up to the mid
1950s.) In the last paragraph of his Section 2, he neatly pivoted to infinite-dimensional models
and laid out a program of research, which took 40 or 50 years to fully explore and develop:

The general theory of the infinite-dimensional case would seem to be technically quite involved.
However, a procedure which may work is the following. We can often integrate the field of most
difficult directions, thus expressing the parameter space � as a union of one-dimensional subprob-
lems, each of which is asymptotically a most difficult one-dimensional problem through each of its
points. We then make a crude estimate of the parameter point θ , using this estimate to select one of
the one-dimensional subproblems. We then proceed as if the true parameter point lay on this curve,
using, for example, the maximum likelihood method to complete the estimation of ϕ(θ). To prove
that this works under fairly general conditions seems to be quite difficult.

During the period 1956–1982, efficient estimators of θ in Stein’s examples 1 and 2 (the
symmetric location model and the two-sample location-scale model) were constructed using
a wide variety of methods, as we noted in Sections 2.1 and 2.2. These methods were also
extended to a number of other problems featuring adaptivity in the “narrow sense” discussed
in Section 1, culminating in Peter Bickel’s Wald lectures [6].
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New lower bound theory for finite-dimensional problems was still evolving, with the
asymptotic minimax and convolution lower bounds of Hájek [19, 20] and Le Cam [32] (re-
viewed in [66]), and Le Cam’s [31] detailed scrutiny of the conditions for asymptotic nor-
mality of maximum likelihood estimators. By the middle of the 1970s, these new tools were
developing in the direction of models involving infinite-dimensional parameters: Beran [32]
obtained a convolution type lower bound for the problem of estimating a distribution function
and Beran [3–5] used Hájek’s convolution formulation to establish lower bounds in several
related problems. Millar [37–39] developed infinite-dimensional versions of both the asymp-
totic minimax and convolution theorems.

Parallel developments in Russia by Ibragimov and Has’minskii [22, 23] and their students
Koshevnik and Levit [26, 34–36] contributed to these developments from the perspective
of differentiable functionals defined on nonparametric (or infinite-dimensional) families of
probability distributions. Pfanzagl [44] summarised and extended these developments.

New models in survival analysis began developing rapidly following Cox’s [11] intro-
duction of the proportional hazards model. Efron [16] established efficiency of Cox’s partial
likelihood estimators using a clever (brute force) construction of a least favourable submodel.
Efron’s paper provided considerable motivation for construction of a lower bound theory for
semiparametric models which would handle Stein’s examples, and Cox’s model, and other
semiparametric models of interest. This lead to [1], where the type of models considered were
called “parametric-nonparametric”. (The term “semiparametric” apparently did not come into
common use until slightly later.) And this lead in turn to [7, 8], and a calculus of informa-
tion bounds for differentiable parameters in [59], which unified the nonparametric functional
approach of the Russian school and the “parametric-nonparametric” approach of the Seattle-
Berkeley groups.

The differentiability referred to in the last paragraph is Hellinger (pathwise) differentia-
bility along paths in the class of densities describing the model. This leads to local approx-
imations by Gaussian limit experiments in the sense of Le Cam [32]. Unfortunately, this
approach to lower bounds breaks down when the classes of distributions involved are too
large for existence of (initial) estimators that can localize the problem, or when the parameter
of interest is not smooth enough relative to the Hellinger metrics. See Bickel and Ritov (1987)
[10], Ritov and Bickel (1990) [71], Donoho and Liu (1991) [14], Donoho and Low (1992)
[15], Groeneboom and Wellner (1992) [17], Laurent and Massart (2000) [28] and Tchetgen,
Robins and van der Vaart (2009, 2017) [47, 48] for more on this and, for example, Bin Yu
(1997) [71] for different methods (Assouad, Fano and Le Cam), for establishing lower bounds
on rates of convergence. In some cases, the latter is still possible through considering one-
dimensional submodels (and sometimes non-Gaussian limit experiments), whereas in other
cases submodels of increasing dimension must be used to bound a minimax risk, even for a
one-dimensional parameter of interest. Thus Stein’s heuristic does not always work.

For further developments in the general area of semiparametric models since Stein (1956),
see [27, 49, 57] and [68]. Stein’s insight in the information structure has inspired considerable
progress in the construction and study of various types of (partially) efficient estimators and
tests.

Funding. The research leading to these results is partly financed by the NWO Spinoza
prize awarded to A. W. van der Vaart by the Netherlands Organisation for Scientific Research
(NWO).
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