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A GLIVENKO-CANTELLI THEOREM AND STRONG LAWS
OF LARGE NUMBERS FOR FUNCTIONS
OF ORDER STATISTICS

By JoN A. WELLNER

University of Rochester

A strengthened version of the Glivenko-Cantelli theorem for the
uniform empirical distribution function is proved. The strengthened
Glivenko-Cantelli theorem is used to establish strong laws of large num-
bers for linear functions of order statistics.

1. Introduction. Let &, &,, - - - be a sequence of ‘independent and identically
distributed uniform (0, 1) rv’s with distribution function 7 (I(r) = ¢) on [0, 1],
and let I', denote the empirical df of the first » variables in the sequence:

M) =L Siilea) for 0<r<1.
n

(Here 1, denotes the function which is 1 for xe 4 and O otherwise.) The
Glivenko-Cantelli theorem says that with probability one (w.p. 1)

oLy, I) = supy,, [T, (1) — ] >0 as n—oo.
Let & be a continuous nondecreasing function on [0, 1] and define

ou(Las 1) = o(To/hs I[h) = supogiz [Ta(r) — 1l/A(7) -
In Theorem 1 below we prove that {j(1/k)dl < co is both necessary and suf-
ficient for p,(I',,7) -0 w.p. 1 as n — co. (Here and in the following § . dI
denotes integration with respect to Lebesgue measure.) Theorem 1 may be
viewed as a (special but important) strong law of large numbers for Banach-
space valued random elements; this connection will be discussed in more detail
in Section 2.

Our primary motivation for this type of Glivenko-Cantelli theorem is as a
tool for proving strong laws of large numbers for linear functions of order sta-
tistics. Let & denote the set of left continuous functions on (0, 1) that are of
bounded variation on (6,1 — @) for all § > 0; fix ge &. Letc,, ---,c,, for
n = 1 be known constants. In Section 3 we prove strong laws of large numbers
for

(1) T,=n" 20 ¢,9(0)
where 0 < &, < ... < €&, < 1denote the order statistics of the first n &’s (i.i.d.
uniform (0, 1) rv’s). Note that if g = #(F~*) for some df F, then T, has the same
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distribution as S, = n! Y7 ¢,;#(X,;) where X,; < ... < X,, are the order sta-
tistics of a sample of size n from F.

Most limit theory for statistics like 7, has focused on central limit theorems,
and several good theorems giving conditions under which 7, has a limiting nor-
mal distribution have been established: see Shorack [4], and Stigler [5] in par-
ticular. However, I know of no general strong law for 7,. Our approach to
strong laws for T, in Section 3 parallels Shorack’s [4] approach to central limit
theorems for T,. By use of the strengthened Glivenko-Cantelli theorem proved
in Section 2, we prove a general strong law of large numbers for T, under weak
conditions on the ¢,;’s and the df F. Our sufficient conditions are also close to
being necessary; this is illustrated by several examples.‘

2. A strengthened Glivenko-Cantelli theorem.

DerINITION. Let S#7( ) denote the set of all nonnegative, nondecreasing,
continuous functions on [0, 1] for which §i(1/k)dI < co. Let 5 denote the
set of all  such that k() = k(1 — t) = k(f) for 0 < t < } and some % in (/).

THEOREM 1. (A) If he 5Z(/) then
2) lim, ., p(T,, I) =0 w.p. L.
(B) Furthermore, if h is increasing on [0, 1] and §5 (1/h) dl = 4 co then
lim sup, .. 04(C,, 0) = +c0  w.p. L.

Proor. We begin with (B). Suppose that 4 is increasing and {j (1/h) dI =
+ 0. Since
pI(Fm O) = Supostsl (F'n(t)/t) ; Fn(gnl)/&:nl = (nsnl)“1 ’

(i) of Theorem 1 of Robbins and Siegmund [3] implies that lim sup,,_., o,(I',, 0) =
+oo w.p. 1. Hence, if & < al for some a > 0,

lim sup,_., o(T,, 0) = a~*lim sup,_, p(T',, 0) = + 0 Ww.p. 1,
and therefore we may assume that # > al for some a > 0. (If h < al for some
a > 0 does not hold, then, for every a > 0, k(z) > at for some t¢ [0, 1]; by
monotonicity of & this implies that & > al for some a > 0.) Let Qy(#) = lj,1(5:)
so that
L) =n" 27 Q1) -
Let M > 0 and define events B, and D, by

B, = {p(T,, 0) > M} = {0,(Z} Q;, 0) > nM}

D, = {ox(Q,, 0) > nM}.

Then, since Y Q; = Q,, (X7 @i, 0) = 04(Q., 0), and hence {D,i.0.} C {B,
i.o.}. But the events D, are independent and therefore, by Borel-Cantelli,

and

3) P(D,i.0.)=0 or 1 accordingas 3 P(D,) <oo oOr =oo.
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Now we compute P(D,). Since the Q,’s are independent and identically dis-
tributed we may drop the subscript n; hence for » sufficiently large

P(D,) = P(oi(Q, 0) > nM)
. = P(1/n(¢) > nM)
= P(¢ < B~ (n"'M™Y))
= h~(n"'M)
where 4~ denotes the inverse of 4. Therefore the series in (3) is YA~ (n"'M™Y)
and this converges or diverges, by monotonicity, with
(R~ (M) dt = M~ §,s7*h~(s) ds .
Integration by parts together with 2 > al shows that the latter integral converges
and diverges with {§ (1/h) dI. Hence {} (1/h) dI = + oo implies, by the divergence
half of (3), that P(D, i.0.) = 1 and therefore P(B, i.0.) = 1 forall M > 0. Since
M is arbitrary, this completes the proof of (B).
Note that we have also proved that S (1/h) dI < oo implies P(p,(Q,, 0) > ne
i.0.) = 0 for all e > 0.
We now prove (A). Suppose ke 5#(,"). Let ¢ > 0 and choose 6 so small
that §¢ (1/k) dI < ¢/2. Then
“4) ou(Tay 1) = sUpyci<p (Lou(1)/A(2)) + SUPy<zo (2/A(2))
+ SUPyziz [1a()) — 1l/R(O) ,

sUPy<.<o (n(#)/1(2)) = sUPyc,<o ™ 107 Lio,00(§2)/R(2)
=D IR T (LI
— ¢ (1/h)ydl w.p. 1

and

by the ordinary strong law of large numbers. Since #/h(r) < §¢(1/k) dI implies
SUPy<i<o (2/R(1)) = §§ (1/R) dI, the first two terms in (4) have a limit superior on
n which is less than ¢ w.p. 1, and the third term converges to zero w.p. 1 by the
Glivenko-Cantelli theorem. Therefore

limsup, ., 0,(T',, I) < ¢
w.p. 1 for any ¢ > 0, and (A) is proved. []

REMARK 1. Note that (A) of the theorem may be extended, using symmetry,
to give the conclusion

lim,_, p(T,, I) = lim,_, p,(T, —1,0) =0 w.p. 1
for he 57. Also note, however, that (A) implies
lim, ., p,(T',, 0) = p,(1, 0) w.p. 1
for he 5#(,"), but that the latter is an empty statement for z ¢ 57 (both sides

being +oo). The point is that the functions & € 2#7( ") are appropriate for either
of the processes Q(f) = 1, 4(§) or Q(r) — ¢ = 1, ,1(§) — ¢ whereas the functions
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h e 57 are appropriate only for processes which are zero at both 0 and 1 such
as Q(t) — t. For he 27, p(Q,0) = +oo w.p. 1.

REMARK 2. For he 57( ), define processes X; on [0, 1] by X(r)=Q(1)/h(1)=
1o(E)/A(t), and write ||f]| = o(f, 0) for fe D[0, 1] = D where D[0, 1] is the
set of right continuous functions on [0, 1] with left limits. Then (D, [|+]]) is an
(inseparable) Banach space, and (A) of Theorem 1 is a strong law of large num-
bers for Banach space valued random elements: E(X,) = I/h, || X\|| = 0,(C1, 0) =
1/h(&,), and hence (A) asserts that if

E||\X|| = Ss (1/h) dI < oo,
then
lim, . ||n~* 57 X, — E(X)|| =0 w.p. 1.
REMARK 3. The convergence half of Theorem 1 has also been established by
Lai [1] (page 81). For other strong laws for Banach spaces see [2].

COROLLARY 1. If he 57( ) then for all ¢ > 1
P(T (1) > (I, O)h(t) for some 0 <t <1 io0.)=0.

Proor. (A) implies that p,(T',, 0) — o,(/, 0) w.p. 1asn — co. Hence, for any
> 1, P(o,(T,, 0) > 70,(1,0) i.0.) = 0. ]

For example, when h(r) = (log (e/t))” with y > 1, then h e ZZ7(,7), pu(l, 0)=1,
(A) of the theorem holds, and for every = > 1, I,<chfornz=N,. w.p.l.
On the other hand, if y < 1, {}(1/h)dl = + oo and by (B) of the theorem,
lim sup,, ., 04(L5, 0) = 400 W.p. 1.

In [6] (Theorem 1) we established almost sure “nearly linear” bounds for T,
and T',~}, the left continuous inverse of I',. Those nearly linear bounds are
crucial to our proofs in the following section and therefore we restate them here
as Theorem 2. The inequalities (5) and (8) below, especially the upper bound
half of (5), are strongly related to Corollary 1 above. In fact, Corollary 1 to-
gether with (B) of Theorem 1 give a strong (integral test) version, and a com-
pletely different proof, of the upper bound half of (5). Thus (5) and (8) below
are easy further corollaries of Corollary 1; for the proofs of (6), (7), (9) and (10)
see [6]. It would be interesting to know the strong form corresponding to (6).

THEOREM 2. Let 7,, 7, > 1 be fixed. Then there exists 0 < B = p(1,75) < %
and a set A — Q with P(A) = 1 having the following properties: for all w € A there
is an N = N(w, t,, t,) for which n > N implies

) - (%) <T.() < (s for 0=t=1,
6) pri < T () forall t suchthat 0 < T.(1),
Q) T ()1 —p(1—12 forall t suchthat T,(1)<1,

(®) pro<T, ()= 1—p(l— 1 for 0<1<1,
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©) T,74() < (¢/B)Vr for t= and

=[>—-

(10) 1 — (1 3 ’)U"" <T,71) for t<1— %

3. A strong law for T,. We now consider the statistic T, given in (1). For
n = 1 define functions J, on [0, 1] by J,(t) = c,, for (i — 1)/n < t < i/n and
1 <ignand J,(0) =c,. Set

(11) = \sJ,gdl .

The main theorem of this section, Theorem 3, gives sufficient conditions for
(T, — tt.) — 0 w.p. 1 as n — oco; that these conditions are almost necessary may
be seen from Examples 2, 3 and 4. Theorem 3 takes care of the “random” part
of the strong law for 7,; Assumption 1 below suffices for its proof. No assump-
tion concerning the convergence of the J,’s is needed for Theorem 3.

Let J denote a fixed measurable function on (0, 1) and set

(12) © = \3Jgdl;

note that if J and g satisfy Assumption 1 below then |¢| < co. In Theorem 4
we give conditions on the J,’s which imply s, — g. This is an easy deterministic
problem as opposed to the more difficult random problem which is handled by
Theorem 3. For Theorem 4, convergence of the J,’s is the essential additional
requirement; it is not necessary that J be continuous a.e. |g| as in the central
limit theorem for T, (confer [4], page 413 and Example 3, page 418).

For fixed b,, b, and M define a “scores bounding function” B by

B(t) = Mt=%(1 — 1)~%2, 0<r<l.
For 6 > 0 define
D(f) = Mt=+0+3(1 — f)=1+bp+s 0<r<1,
h(t) = [«(1 — ", 0<e<l,
h*(t) = [t(1 — 0)]~o4, O0<r<l.

Let g be a fixed function in & (see Section 1).

AsSUMPTION 1 (Boundedness). Let |g| < D, all}J,| < B,and |J| £ Bon (0, 1).
Suppose that 3 Bhd|g| < co.

THEOREM 3. If Assumption 1 holds, then
lim, . (T, — p,) =0 w.p. 1.

Proor. From Shorack [4] (modifying the notation there by the factor nt),
integration by parts yields

S, = Sfm AT, — I)dg = 3 A, 5T, — I)dg ,

where
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with 4,* equal to 4, on [§,,, §,,) and O otherwise, and where ¢,(f) = —{}J, dI
for 0 < ¢t < 1. Here

T = 9(Em)[$a(0) — ¢u(€a)]»
Tna = g(£nﬂ)¢n($nn) ’

Tns = S[énl,é,,m]" Jng di

are terms which will be shown to be negligible. By Assumption 1, when b,,
b, >0,

and

and Theorem 2 may be used to bound 4, in terms of B. Choose 7,, 7, in Theo-
rem 2 so that bz, = b, + 6/4, b,z, = b, + d/4, and fix we A. Then, n = N,,
(6) and (7) imply that
(13) |A4,*| £ M, ,MI-br7y(1 — )~

= M, B[I(1 — )]~
for some constant M, , depending on 8 of Theorem 2. Clearly (13) also holds if
either b, or b, equals zero. In the case b, or b, < 0, use of (5) of Theorem 2 and

an argument similar to that given for ,, b, > 0 also yields (13).
Hence, w.p. 1, forn = N,
1S, = §514,%[|T — 1] dlg]

< My, $s BII(1 — DI7X(T, — 1|/h*)h* d|g|

< My,04(T — 1, 0) §3 Bh dlg]
using (13) and A*[I(1 — I)]=** = h. But h*e 5Z, so Theorem 1 implies
o(T, — 1,0) >0 w.p. 1 as n— oo; also, {jBhd|g| < co by Assumption 1.
Hence S, - 0 w.p. 1 as n — oo.

It remains only to show that (y,, + 7, + 7.5) — 0 W.p. 1 as n — co; but each
7.: is easily shown, Using Assumption 1, to be of the order £}, — 0 w.p. 1. []

CoROLLARY 2. If lim,_, ¢, = p,, exists (with |p,| < oo) and Assumption 1
holds, then
lim,_, T, = ¢, w.p. 1.

PROOF. T, — proo| < (T, — pto| + |1t — tto|- [
AssumPTION 2 (Convergence). J(f) = lim,_, J,(¢) exists for every ¢ € (0, 1).
THEOREM 4. If Assumptions 1 and 2 hold, then

lim, . T,=p¢ w.p.1

with p of (12) finite.

Proor. If we show that lim,_, ¢, = g, then Corollary 2 with g, = p is in
force and the proof is complete. But, by Assumption 1,

Va9l = M1 — D]+
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which is in L(7), and, by Assumption 2, J,(t)g(t)—J(#)g(¢) for all € (0, 1). Hence,
by the dominated convergence theorem, p, = (§J,9dl — (§Jgdl = p. ]

Now we give several Examples; the first two parallel Examples 1 and 1a of [4].

ExampLE 1. Let X, --., X, be a random sample from an arbitrary df F for
which E|X|" < co for some r > 0. Let
T, =n" 20 J(t,:) X

where max,,, |t,; — i/n| — 0 as n — oo and suppose that for some a > 0

[Er (=) s =2 2)

for 1 < i < n. Suppose that
()| < M[t(1 — £)]7H+r+e o<1
for some § > 0 where J is continuous with the exception of a finite number of
points. Then
lim,_., T, = \§JF'dl w.p.1.
ProOF. We use Theorem 4 with g = F~' and b, = b,=1 — 1/r — 4. Since
E|X|" < oo we have

HF )" < SE|FY(s)["ds < (2.0 |s|"dF(s) -0 as t—0.

using F~'o F(f) < t for —co < t < oo. Thus |g| £ D with the choice —1 +
b 4+ 6 = —1/r. The “a-condition” on the ¢,;’s implies that |/,| < B = M,[#(1 —
1)]-**¥7+% for some constant M,. The above inequalities and an integration by
parts also show that {} Bhd|g| < co. Thus Assumption 1 holds. The “max
condition” on the #,;’s and the continuity of J implies Assumption 2. Hence
the result follows from Theorem 4. []

EXAMPLE 2. Let X, ..., X, be a random sample from a df having E|X|" < oo
for some r > 1. Then
lim, X = \}F'dl = { xdF(x) w.p. 1.

n—00

This example shows that the ordinary law of large numbers “just fails” to be a
corollary to Theorem 4.

ExAMPLE 3. Let g = I and let c,; = J(i/n) where J = B = [7*** with 6 > 0,
i.e.,b, =2 — 5,b, = 0. Since {} Bhdl = {3 [7*+*(1 — I)*"*2dl < co, Assump-
tion 1 holds. Assumption 2 holds easily and Theorem 4 yields

T e A 17-148 g — 1
—n Z‘()T) £, W dl = p W.p.

as n — oco. Note that p = (JI7'*°dl = o7,

ExAMPLE 4. Now let g = Iand let ¢,; = J(i/n) where J = B =I"% i.e., b, = 2,
b, = 0. Then Assumption 1 fails since {§ Bhdl = {3 I7*=*(1 — I)'=**dl = +oo.
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Note that
: -2
=5t (L) €z néa Dti
n
and hence
limsup,_., T, = (limsup,_. né,) >7i? = +oo

w.p. 1 by Theorem 1 (ii) of Robbins and Siegmund [3]. Taking a sequence of
0’s converging to zero in Example 3 shows, in fact, that

lim, 7T, = +oc0 w.p. 1.

ExAMpPLE 5. Let X, -.-, X, be a random sample from a df F for which
E|X|" < oo for some r > 1. Let J, = ¢, for n odd and J, = ¢, + ¢, for n even.
Then, by the same reasoning used in Example 1, Assumption 1 holds, but clearly
Assumption 2 fails to hold. Hence, by Theorem 3,

lim, (T, — p,) =0 w.p. 1;

but y, oscillates between ¢, {} F~'dI and ¢, {} F-*dl. Thus Theorem 3 may hold
while Theorem 4 fails.

ExAMPLE 6. Let X, ..., X, be independeﬁt Bernoulli (1) rv’s. Let g = F~%.
Thus g(f) = —00, 0,1 fort=0,0< <L, 1 <t < 1. Let J(f) equal 0, 1 for
0<t<4,$4<t<1,and let ¢,; = J(i/n). Then T, equals } if more than  of

the X;’s are positive, while T, equals the proportion of positive X;’s if less than
3 of the X;’s are positive. Thus g = §i1,,,,d] = &, Assumptions 1 and 2 are
satisfied, and 7, — { w.p. 1 as n — oo by Theorem 4.

This example illustrates that J need not be continuous a.e. |g| for T, to obey
a strong law (confer Example 3 of [4], page 416).
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