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The Annals of Probabilrty 
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BOOK REVIEW 

GALENR.SHORACK Empirical Processes with Applica- AND JON A. WELLNER, 
tions to Statistics, Wiley, New York, 1986, xxxvii + 938 pages, $59.95. 

University of Munich 

My own interest in empirical processes arose after having read Pyke's [811 
beautiful survey where he underlines his view that "the development of em-
pirical processes provides an excellent illustration of the interplay between 
statistics and probability and of the increased sophistication of mathematical 
techniques which have been introduced into these disciplines in recent years." 
Since then the theory of empirical processes has grown in an enormous way. This 
growth is extensively covered by the present book, which confirms Pyke's view in 
a very impressive way. 

Based on random samples of size n ,  one basic idea of the subject is to build up 
a stochastic process X, such that certain statistics T, of interest can be 
represented as functionals T(X ,). If the probabilistic behavior of X, (for finite 
sample sizes n as well as asymptotically as n tends to infinity) is well tractable 
using intrinsic properties of X ,, then one can expect the same for T, = T(X ,). 
From this observation it is evident that the richer the class of processes X, with 
interesting inherited properties (e.g., martingale properties), the richer the class 
of statistics T, that can be successfully treated this way. As to asymptotic 
results for T, (e.g., CTL's), they usually (at least for smooth T )  can then be 
inferred from corresponding results for X ,. This is demonstrated in the present 
book in a very efficient way based in part of the special Skorokhod construction 
of various processes as opposed to classic weak convergence results (cf. additional 
remarks that follow). 

Another main feature is the construction of special versions of X, and 
versions X; of the limiting process X such that the sample paths of both 
versions are a.s. very close together (wrt the supremum metric 1 1  - 11) with a rate 
of convergence that is good enough to infer, e.g., LIL-type results for X, from 
those for X; or X. These are the famous strong approximation results of the 
Hungarians Koml6s, Major and Tusnhdy (1975), called in the present book the 
"Hungarian constructions" (and usually referred to as KMT approximations in 
the literature). In this context a recent major theorem of Mason and van Zwet 
[(1985), Theorem 12.3.41 gives a very remarkable refinement of the KMT in- 
equality. 

A third basic technique stressed by the authors is the reduction to the case of 
samples with distribution concentrated on the unit interval, in which case the 
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processes under consideration can be viewed as random elements (re's) in 
Skorokhod's D[O, 11 space; cf. the classical result 1.1.3 and the fine reductions 
described on pages 99 and 102 for some basic processes under general alterna- 
tives. 

Chapter 3 is in some sense the core of the present book. Starting with the 
simplest processes X,, this chapter deals with one of the main themes: the 
convergence and distributions of empirical processes. Here the special construc- 
tion (Theorem 3.1.1) is basic. I t  covers the uniform empirical process U, [defined 
by 

where 6, denotes the empirical distribution function (df) based on uniform(0,l) 
rv's t,, . . . , [,I; the uniform quantile process Vn = 6 ( 6 i 1  - I )  (with Idenoting 
the identity function); the weighted uniform empirical process Wn [defined by 

where {c,,, . . . , c,,; n 2 1)  is a triangular array of known constants with 
c'c = and where the ti 's are again uniform(0,l) rv's. Note that Wn =C ~ , , C ~ ~  U, 
if cni = 11; and the empirical rank process [W ,[defined by 

where Dnl, . . . , Dnn are the antiranks defined by tD,,= tn:i, tn:, I . . I tn: 
being the order statistics of t,, . . . , t,, and ( - ) denotes the greatest integer 
function]. In addition, the general (reduced) weighted empirical process Z, 
defined by 

~ , ( t )= ( c f c )  fc n [ - ~ , t ]  for 0 5 t I I 
1 = 1  

is studied, where now G,,, . . . , G,, are arbitrary df's on [0, 11 and where the tni's 
arise via the reduction described on page 99. The sequential uniform empirical 
process 

based on independent uniform(0,l) rv's t,, . . . , t, [and restricted to (s, t) E 

[O,  112]is shown [following Bickel and Wichura (1971)l to converge weakly to a 
Kiefer process K ,  being a normal process with EK(s, t) = 0 and 

[correcting (5) on page 301. The special constructions for the processes X n  and 
their corresponding limiting processes X (e.g., with X = U = Brownian bridge in 
case X ,= U,, with X = V = -U in case X ,= V,, with X = W = U in case 
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X, = Wn and with X = W in case X, = Rn and cn = n-lC?="=,,, = 0] allow for 
representations of the limiting rv's T(X) of T(Xn), which is another appealing 
feature of the presentation chosen by the authors. 

The main ingredient consists in the extensive use of martingale theory 
associated with various processes mentioned before, as pointed out in Section 6 
of Chapter 3, and thus making available powerful martingale inequalities which, 
together with many of the classic inequalities of probability theory presented in 
Appendix A, "are the key to strong theorems." This is beautifully worked out in 
the present book! 

Finally, another basic technique consists of the treatment of the empirical 
process via Poisson methods, thereby carefully defining the link between em- 
pirical, quantile and Poisson processes (see Chapter 8). Many first proofs of 
results presented in other chapters make use of these methods (cf., e.g., the 
Poisson embeddings in Sections 14.5-14.7). 

This extremely rich exposition of the theory of empirical processes and its 
statistical applications may be of limited use for beginners, but surely it will be 
an invaluable source for all those already acquainted with some parts of that 
theory 2nd its fundamental role in nonparametric statistics (cf. Chapter 19-23 
for the main statistical applications). 

The great extent of all kinds of empirical process theory and statistical 
applications contained in the present book (as indicated by the list of more than 
500 references!) forces the reviewer to confine special detailed comments on each 
chapter to those parts that he thinks are of greatest importance. Otherwise we 
will only roughly comment on the other parts. In any case, we will follow the 
clear introductions to each chapter given by the authors (cf. also the survey of 
results presented in Chapter 1). Thereby we will use the notation as given in the 
list of special symbols on page xxxv. 

After an introduction and survey of some results in Chapter 1, Chapter 2 is 
concerned with foundations, special spaces and special processes. Weak conver- 
gence (3)of a sequence of re's in an arbitrary (usually nonseparable) metric 
space (M, 6) is defined in the sense of Dudley (1966), being further pursued by 
Wichura [9] and Gaenssler [(1983), Section 31; cf. also [3] for a presentation in 
case (M, 6) = (D[O, 11, 1 1  . 11) and [4] for a straightforward generalization to 
handle also empirical processes based on multivariate observations up to em- 
pirical processes based on random data in arbitrary sample spaces and indexed 
by certain classes of sets or functions, respectively, as considered in Chapter 26. 
Other more general approaches to the weak convergence of re's in nonseparable 
spaces are provided by Hoffmann-J~rgensen's theory (cf. [l] for an illustration). 

Donsker's (1951) theorem on the weak convergence of the partial sum processes 
S, to Brownian motion S is established. Special constructions of S ,  that 
converge a.s. are summarized briefly, Skorokhod's (1965) embedding is presented 
and the Hungarian construction is given (without proof) after the Wasserstein 
distance it uses is discussed. Strassen's (1964) theorems on the relative compact- 
ness (-+) of scaled Brownian motion S(nI) /  6and of the partial sum process 
S, are presented. The Darling-Erdos (1956) theorem is stated for the supremum 
of normalized Brownian motion S(t)/  6. 



BOOK REVIEW 1375 

In addition to the remarks already made on the content of Chapter 3, let us 
stress here the following main point: Theorem 3.1.1 presents the fundamental 
"special construction" of various processes X ,via the construction of a triangu- 
lar array of row-independent uniforrn(0,l) rv's {tni: 1 I i I n; n 2 1) on which 
the processes X ,, like X ,= U,, V,, Wn or R ,, are based. These rv's together 
with the limiting processes like U, V and W, are all defined on a common 
probability space, such that, e.g., 

(1) I~u,-U I ~  a s n  + m.+ O  
a s .  

The proof (given in Section 3) is based on Theorem 3.3.1 (showing weak 
convergence of Z ,) and the famous Skorokhod-Dudley-Wichura Theorem 2.3.4 
which allows for replacing processes that converge weakly by equivalent processes 
whose sample paths converge a.s. The idea is then to establish additional results 
for the equivalent processes using the as .  convergence and then claim these 
results (if possible) for the original processes. Also, compared with classical weak 
convergence results, the special Skorokhod constructions pursued in the present 
book whenever possible yield simpler and more intuitive proofs of results. These 
constructions are especially important for applications to statistics. Note that 
from (1) it follows a t  once that for all T being 1 1  . 11-continuous as .  
U one has T(Skorokhod's U,) +,,, T(U), and since T(Skorokhod's 111,) 2 
T(any U,), one obtains from (1) that T(any U,) +, T(U) for all T that are 
1 1  . 11-continuous as .  U.  

In Section 1 of Chapter 4 on Alternatives and Processes of Residuals it is 
shown that the key for the asymptotic behavior of the weighted empirical 
process [E ,, defined by 

< X  < m,E,(x) E (c'c) 1'2 2
n 

Cni ( ' [ X ~ ,  r x]  - F(x)), - m  
i = l  

is constituted by the deterministic term (c'c)- '/~C~,,C,,[F~~- F],  provided 
that  the df's F,,, . . . , F,, of the underlying independent rv's X,,, . . . , X,, satisfy 
the "nearly null-type" condition max{F,, - R 1I i I n)  + 0 as n + m. A new 
sort of contiguity condition is specified [which implies the usual one (cf. Exercise 
2 on page 157)] on the basis of which the behavior of the deterministic term is 
particularly simple, and results in a representation of the limiting process 
pertaining to E n  on the probability space of the special construction. Analogous 

In Section 2, following Hajek and Sldak [(1967), Section VI.4.51, the authors 
give an interesting expansion of the local asymptotic power of the ll(G, - I)+ll 
test for local alternatives. Section 3 describes the asymptotic optimality of the 
empirical df IF, as an estimator of the underlying df F. Here Beran's (1977) 
theorem is proved. The asymptotic minimax theorem of Dvoretzky, Kiefer and 
Wolfowitz (1956), which shows that IF, is "asymptotic minimax" for a "supre- 
mum type" of loss function, is stated without proof. Finally some other small 
sample optimality properties of IF,, among which the fact that IF, is the 
"nonparametric maximum likelihood estimator" of F ,  are summarized without 
proof. As to the latter, the reader may consult the recent paper by Gill [5]. 

,. Rresults are shown to hold for the empirical rank process 

http:VI.4.51
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The basic problem that motivates Chapter 5 on Integral Tests for Fit and the 
Estimated Empirical Process is to determine the distribution of the Cram&-von 
Mises goodness-of-fit statistic 

00 

W: = 1 n[lF,(x) F ( x ) ~ ~  = i1U;(t) dt.- d ~ ( x )  
-00  

Just as an n X n covariance matrix $ can be represented as $ = Zy=Jjyjyjl, 
where the X j  are eigenvalues and the yj are orthonormal eigenvectors of $, so 
too the covariance function K of many processes can be represented as 

for functions fj  orthononnal wrt the 2Z2 metric, i.e., X j  and fj are eigenvalues 
and (orthonormal) eigenfunctions of K defined by the relationship 
Jif(s)K(s,  t )  ds = X f ( t )  for 0 I t I 1. Let Z f ,  Z,*, . . . be iid N(0 , l )  rv's. Just 
as Z;= l&~;Iyj is a X(O,$) random vector, so too the process X, defined by 

is a normal process with mean-value function 0 and covariance function K = K,. 
Integrating (3) we see that 

is distributed as a weighted infinite sum of independent chi-square (1)rv's. This 
heuristic treatment can be made rigorous for fairly general processes X. This 
general theory is applied to obtain the Kac and Siegert (1947) decomposition (3) 
of % = U and the Durbin and Knott (1972) decomposition of U,. Then, just as 
(4) follows from (3), the distributions of W: and its limiting form W2 = 
J;[U(t)12 dt  follow. The determination of the distribution of rv's such as W2 
began the application to statistics of the type of methodology that is presented 
in Section 5. Sections 1-4 provide the theory for using integral tests of fit like 
W: to test whether or not a sample comes from a population with completely 
specified continuous df F. In Section 5 the df F is allowed to depend on a 
parameter 8 whose value is unknown. The natural extension of W: is then 

for some estimator 8 of 8, d, being an appropriate estimated empirical process. 
Following Darling (1955) it is shown that the natural limit of the dnprocess is a 
process of the form (when 8 is one dimensional) d = U + Zg, where g is a 
known function and the rv Z arises as the limit of rv's Z, of the type /,'hdU,. 
Results on convergence of dn to d are summarized for location, scale and 
location-scale cases. Section 6 considers the distribution of the natural limit 
w2= j;d 2(t)  dt of w:. In Section 9 i t  is assumed that F(. - 8) is the correct 
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df for some value of 8 and then 0 is estimated by the value 8, that minimizes 
00 

w.' = /-,n [IF,(x) - F(x  - 8)] d ~ ( x  - 8) .  

Following Pyke (1970), an improvement of Blackman's (1955) theorem on the 
asymptotic distribution of 8, is presented. 

Chapter 6 on Martingale Methods starts with a nice heuristic discussion of 
counting processes and martingale theory associated with the work of Aalen 
(1976), Aalen and Johansen (1978), Gill (1980, 1983), Rebolledo (1980) and 
Khmaladze (1981). Conditions under which the heuristics are actually true are 
given in Appendix B, which itself provides a useful introduction to basic facts on 
martingale theory in connection with counting processes and stochastic integrals. 
Most of the results in Appendix B, which also covers important martingale 
inequalities and Rebolledo's martingale CLT, are stated without proof but the 
authors took great care to give sufficient references. Given iid rv's Xnl,. . . ,X,, 
with arbitrary df F,  Section 1 introduces the cumulative hazard function A 
associated with F and defines the basic martingale (M,(x)), - cc < x < co, by 

where h-  denotes the left-continuous version of h. The natural limiting process 
to associate with M, is 

where 

~ o v [ M , ( x ) , ~ , ( y ) ]= C o v [ ~ ( x ) , M ( y ) l= V(x A Y) 

with V(x) = j"(l - AA) d F  (AA = A - A_). I t  is then shown that 

IlMn - Mil% as.  0+ 

for the special construction; moreover M = S(V) for an appropriate Brownian 
motion S. Next the predictable variation process (M,) of M, is 

(M,)(x) = /f (1 - En-)(1 - Ah) dA 
00 

(i.e., - (M,) is a 0 mean martingale). Finally extensions to the weighted case 
of M, are considered. In Section 2 convergence in 1 1  411 metric for U-shaped 
4 E Y2(V) is treated for the processes U,(F) and Wn(F). Based on the weighted 
basic martingale M,, Section 3 deals with the process K,(x) = j?,hclM, for 
- oo < x < co, where h E B2(V). I t  is shown that K, is a 0 mean martingale 
and its predictable variation is evaluated. Then the existence of K(x) = j? ,h dM 
is proved and convergence of K ,  to K in 1 1  411 metrics is studied. Similarly, 
Section 4 is concerned with processes of the form jl ,h dU,(F) and 
j:,hdW,(F) for h €B2(F )  and its limiting processes j l , hdU(F)  and 
j 1, h d W( F ) .  Again convergence in 1 1  . 4 1 1  metrics is proved based on two 
powerful inequalities (which in turn rely on the evaluated martingale structures, 
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whence, as in many cases before, the Birnbaum-Marshall inequality can be 
used). 

Chapter 7 is concerned with Censored Data and the Product-Limit Estimator. 
Given iid nonnegative rv's XI, . . . , X, ("survival times") with arbitrary df F on 
[0, m) (assumed to be nondegenerate) and iid rv's Yl, . . . , Y, ("censoring times") 
with arbitrary df G and independent of the X's, suppose that the only observ- 
able variables are Zi = Xi A Y,and Si = I[,, .,,, for i = 1,.. . , n, on the basis of 
which one wants to get a reasonable estimator of F. In this so-called random 
censorship model the Kaplan-Meier (1958) product-limit estimator inof F plays 
the same fundamental role as the empirical df IF, does in former chapters in case 
of no censoring (i.e., in case G = 0). The main object is to present results for f,  
and the corresponding empirical process X, = 6 ( f ,  - F )  on [0, co), where a 
major novelty in the present approach consists of the efficient usage of martingale 
theory of counting processes as summarized in Appendix B. Besides f,, the 
empirical cumulative hazard function a, ,  serving as an estimator for the 
cumulative hazard function A associated with F,  plays a fundamental role 
through the study of the empirical cumulative hazard process 8, = h ( a ,  - A) 
on [0, co). The study of this process together with the process 
X J(l  - F )  = 6 ( f ,  - F)/(1 - F )  facilitates the study of X ,, since it is 
shown that both 8, and X J(l - F )  can be represented as stochastic integrals 
wrt some basic martingale M,. By Theorem 7.1.1, there exists a special construc- 
tion of both the rv's Xnl, Ynl, . . . , X,,, Y,, and the Brownian motion S such that 
llMn - S(V)llr +a.s, 0 as n + co, where V(t) = jJ(l - G-)(1 - AA) dF. Section 
3 establishes strong consistency of f, and A,, i.e., that, e.g., 

sup Ii,(t) - ~ ( t ) l-+ o as n -+ co, 
O I t 1 7  a s .  

where 7 = H-'(1) and 1- H = (1 - F)(1 - G). At the end of the proof on page 
305, after having established that for any 8 < 7, 

(6) sup lf,(t) - F ( ~ ) I-+o a s n  co, --+ 

O I t 1 9  8.8. 

the argument that (6) implies (5) seems to be incomplete. Section 4 is concerned 
with the asymptotic behavior of the processes 8, and X ,with limiting processes 
B and X being both representable as stochastic integrals wrt M = S ( V ) . I t  is 
shown that for the special construction of Theorem 7.1.1, 118, - 81 1 ;  +,,, 0 and 
IIX, - x 11; +a.s. 0 as n -, w for any 8 < 7. 

In Chapter 8 on Poisson and Exponential Representations one finds first the 
well known representations of uniform order statistics in terms of exponential 
rv's and as waiting times of a conditional Poisson process. Section 3 establishes 
representations of uniform quantile processes as exploited by Breiman (1968), 
and Section 4 is concerned with three different representations (conditional, 
Chibisov and Kac representations) of the uniform empirical process U, showing 
that many of its properties are inherited from properties of a Poisson process. 
The representations of UJ, in terms of Poisson processes have the proper 
distributions for each fixed n, but incorrect distributions when viewed jointly in 
n. Thus they are unsuitable for proving strong limit theorems involving +a.s. 
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type results. Section 5 overcomes this difficulty by use of a two-dimensional 
Poisson process and Poisson bridge, respectively, to provide a representation of 
U ,  that has correct distributions when viewed jointly in t and n. 

To describe the content of Chapter 9 on Some Exact Distributions, we may 
again follow closely the author's introduction. In Section 1 formulas are de- 
termined for the probability that the uniform empirical df 6 ,  crosses an 
arbitrary line in order to obtain the exact distribution of 11(6,- I ) ' 1 1  and also 
the powerful Dvoretzky, Kiefer and Wolfowitz (DKW) inequality. More gener- 
ally, for general functions g and h recursion formulas for the probabilities 
P ( g  I 6 ,  I h on [0, 11) are evaluated and used to obtain the exact distribution 
of 116, - 111. There are three types of methods used in this chapter: the 
analytical, the combinatorial and the Poisson representation methods. Using the 
analytical method based on exact binomial and uniform calculations, Dempster's 
(1959)key formula for the probablility that 6 ,  crosses a line for the first time a t  
height i/n is derived. The analytical method is used throughout Sections 1-3. 
The combinatorial method is used to rederive Dempster's key formula and 
additional applications are given. Dwass's (1974)beautiful approach to 6 ,  based 
on Poisson processes is also given. Concerning the Poisson representation method, 
an extension of the Dwass approach using purely probabilistic tools is contained 
in recent papers by Gaenssler and Gutjahr [2]and Gutjahr and Haeusler [6]. 

Chapter 10 is concerned with Linear and Nearly Linear Bounds on the 
Empirical Distribution Function 6,. Section 1 examines from an as.  point of 
view how small and how large for fixed k 2 1 the uniform order statistics [,: 
can be: Two fundamental results of Kiefer (1972) and Robbins and Siegrnund 
(1972) are presented. In Section 2 Lai's (1974) SLLN for 11(6,- I)+II is proved. 
Inequalities for the distributions of llG ,/Ill and 1 1  I/Gn11kn:, are the content of 
Section 3. Based on the results of Section 9.1, Section 4 provides "in probability 
linear bounds" on G,, which means that for any E > 0 there exists a constant Me 
such that both 6,(t) IM,t for all t and G,(t) 2 t / M ,  for all t 2 En:, occur 
with probability exceeding 1 - E. On the other hand, the results of Section 1 
show that a.s. linear bounds on 6 ,  do not exist. So the authors describe three 
ways around this: The first is to allow the slope of the lines to depend on n; the 
second approach is to use for the upper (lower) bound a "nearly linear" function 
that  has infinite (zero) slope at  t = 0, an approach which turns out to be useful 
in the establishment of a SLLN and a LIL for linear combinations of order 
statistics. The third approach is to truncate off near zero, thus considering 
IIG,Jrlll,n, llI/Gnllk,, IIG;l/Illi, and l l ~ / ~ ~ l l as~ a ,  JO.l n 

Chapter 11 deals with Exponential Inequalities and 1 1  /qll-Metric Conver- 
gence of U ,  and V,. Treatment of goodness-of-fit statistics often reduces to the 
consideration of functionals of the form j,lU,(t)+(t) dt ,  say. Based on the fact 
that for the special construction one has 

it is tempting to write 
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Then, if jig+ dt < co and if (1) can be strengthened to U, +,, U in the 1 1  /qll 
metric in the sense that II(U, - U)/qll +,,.
 0, one can conclude that 

Proving in probability convergence wrt 1 1  /qll metrics leads naturally (as shown 
in the proof of Theorem 3.7.1) to application of the Pyke-Shorack inequality 
according to which, for suitable q functions, 

Chibisov (1964) proved that 

implies 

(8) II(U,- u)/qII a s n +  a. 

This was reexamined by O'Reilly (1974): For symmetric (around t = fr) functions 
q, which satisfy both q increasing on (0, fr] and t-lI2q(t) decreasing on (0, +I, the 
Chibisov-O'Reilly theorem refines "(7) implies (8)" to the assertion that (8) 
holds for the special construction if and only if lim,, ,q(t)/ \iw= co. 
The author's approach in the present chapter for proving 1 1  . /qll convergence 
results for U, and Vn is based on good exponential bounds for binomial rv's and 
for uniform order statistics. These exponential bounds are then extended to 
neighborhoods of zero for U, and V,, yielding probability inequalities for 
~lU,#/qllt and ~~V,#/qllt, respectively [where 0 I a < (1 - S)b < b I S I fr, and 
where f # denotes, simultaneously, anyone of f +,f - or I f I], on which the proofs 
in Section 5 of weak convergence of U, and Vn in 1 1  . /q11 metrics are based. 

The Hungarian constructions of K ,, U, and V, are contained in Chapter 12. 
Let us comment on this by first comparing it with Skorokhod's (1956) construc- 
tion, which provided the special construction of a triangular array 1I i I n; 
n 2 1) of row-independent uniform(0,l) rv's and a Brownian bridge U, all on a 
common probability space such that, e.g., for the uniform empirical process U, 
based on [,,, . . . , [,, ( = Skorokhod's U,) one has 

IIU,- Ull + O  a s n  + co 
a.s. 

Given that Skorokhod's U, is based on a triangular array, one knows nothing 
about the joint distribution of Skorokhod's (U,, U,, . . .). Thus this construction 
can only be used to infer from (1) that 

(9) T(any U,) +d T(U) 

[or T(any U,) +,T(U)] for all T being I I 1 1  continuous as .  U , but not to infer 
+,,. convergence. The Hungarian construction [begun in Csorg6 and Rbvbsz 
(1975a) and fundamentally strengthened by Komlbs, Major and Tusnhdy (1975)l 
improves Skorokhod's construction in that it only uses a single sequence ([i)i 
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of uniform(0,l) rv's and a Kiefer process on a common probability space that 
satisfy 

7 

dn 
(10) 	 lim sup -,IIU, - B,Il I some M < w a s .  

n+cc (logn) 

Here U, is the uniform empirical process based on c,, . . . , En linked with the 
corresponding sequential uniform process K ,through K ,(k/n, = @Uk for3 )  

1 I k I n; B, = K(n, a ) /  6 is a Brownian bridge. Since T(B,) E T(U), this 
construction also yields (9). But it is also capable of yielding +,,.
 results 
though the subscript n on B, may make the problem difficult. Its real value is in 
the rate i t  establishes. In Section 1the Hungarian construction of K, leading to 
(10) is summarized without giving a proof establishing the basic construction. 
Section 2 shows how a sequence of uniform quantile processes V, that converge 
a t  a rate can be constructed from the partial-sum process of independent 
exponential rv's. The basic ideas here are due to Breiman (1968) and Brillinger 
(1969). Although use of Skorokhod embedding gives an a.s. rate. of nearly 
O(n-'I4), i t  is also possible to use the Hungarian construction (as presented in 
Section 2.7) to obtain an as .  rate of O((1ogn)/ 6 ) .  The constructions and 
approximation rates discussed in Sections 1 and 2 all concern the supremum 
metric 1 1  1 1 .  In Section 3 yet another construction of U, and V, is summarized, 
which pays close attention to the behavior of these processes near 0 and 1: I t  is 
due to Csorgij, Horvath and Mason (1984a): This refined construction is based on 
the same partial-sum approximation as in Section 2, but particular care is taken 
in treating the approximation error near 0 and 1. The result is a construction 
that is suited to the sharper metrics 1 1  /qll, where q(t) = [t(l - t)I1/,-" with 
0 I v < i. Finally the aforementioned major theorem of Mason and van Zwet 
(1985) is presented stating that there exists a sequence of independent 
uniform(0,l) rv's El, t,,. . . and a sequence of Brownian bridge processes B, on a 
common probability space such that for universal positive constants ci, 

sup ~ ~ , ( t ) - ~ , ( t ) ~ ~ ( c , l o g d + x ) / 6 ~ s c , e x p ( - c , x )  
O s t s d / n  

forall - w  < x  < w a n d 1  ~ d n ,  s 

with the same inequality holding for the supremum taken over 1- d/n It < 1. 
Thus 

i n  
limsup -IIU, 	 - B,ll some M < co a s .  
,+, logn 

In Chapter 13 on Laws of the Iterated Logarithm Associated with U, and V,, 
a t  first Smirnow's (1944) LIL is established, according to which 

IIU # I 1  I n - I - -1 -lim sup -= lim sup 	 as . ,  
n-+m bn n+ cc 6bn 2 

where b, = /-. Recall that f # denotes, simultaneously, any one of f ', f -
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1. 
or I f  This result is then strengthened to Chung's (1949) characterization of 
upper class sequences A n  T : 

A; < cO 
P(liUnI 2 A n  i.0.) = {:accordingas -exp(-2~;)( = m .  

n = l  n 

Also an estimate is given for the order of magnitude of the probability that llUnll 
ever crosses an barrier. The proofs are based on maximal inequalities for 
IIU JqII [due to James (1975) and Shorack (1980)l in conjunction with the DKW 
inequality 9.2.1. Section 3 contains Finkelsteins's (1971) theorem according to 
which UJbn -, 2 as .  wrt 1 1  . 1 1  on D[O, 11 as n -, co, where again bn = /-
and &'= {h: h is absolutely continuous on [O, 11 with h(0) = h(1) = 0 and 
/;[h(t)l2 dt I 1). Also Cassel's (1951) theorem is proved: I t  shows that, given 
any E > 0, for a.e. o there exists an N,,, such that for all n 2 N,, ,the 
increments of Un satisfy 

lLJn((s, t])/bnl 5 {(t - s ) ( l  - ( t -  s ) )  + E forall0 I s < t I 1. 

Combining Finkelstein's theorem with the previous Hungarian constkction (10) 
yields 

K(n, . ) / h b n  -,2 a s .  wrt 1 1  1 1  on D[o, 11 as n -, co 

Section 4 extends these results to 1 1  /q11 metrics by giving James's (1975) 
characterization of those q functions for which 

UJ(qbn) -,zq= {h/q: h E 2) a s .  wrt 1 1  1 1  on D[o, 11. 

Chapter 14 studies Oscillations of the Empirical Process. For this, let X 
denote a stochastic process viewed as a re taking values in D[O, 11: If C denotes 
an interval (s, t] c [O,l], let (CJ = t - s and X(C) = X(t) - X(s). The modulus 
w ,  of continuity of X is defined by @,(a) = suplc,, ,lX(C)I. Set &(a)  = 
suplcl=,lX(C)I and let the Lipschitz + modulus 3, be defined by 3,(a) = 
supa,, c j l l ~ ( ~ ) ~ /  = U, let o = o,, Z = Z, and 3 = 6,. Theoremm. If X 
14.1.1 establishes LBvy's (1937) classical theorem according to which 

Theorems 14.1.2 and 14.1.4, respectively, prove (11) with o replaced by Z and 3 ,  
respectively. Section 2 considers analogous results for Un [Stute's (1982) theo- 
rem]. The results of Mason et al. (1983) on the as .  limiting behavior of 
w$ n( an)/[2 a,l~g(l/a,)]'/~ on the "boundary sequences" of Stute's theorem are 
also presented together with extensions concerning 

There are also two alternative approaches of importance to these same theorems 
based on the Hungarian construction and Poisson embedding which are carefully 
developed in Section 4 and in Sections 5-7, respectively. 
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The main concern of Chapter 15 is the Empirical Difference Process 

The study of D,(t) for fixed t was introduced by Bahadur (1966). Kiefer (1967, 
1972) obtained the results for the process [ID, presented here, the main result 
being that (with b, - /-), 

n1/411~n~~ 1 
limsup $_ = a s .,, b logn 

This allows functionals of V, to be treated as functionals of U,. 
Chapter 16 is concerned with the Normalized Uniform Empirical Process h,  

and the Normalized Uniform Quantile Process, where h,  is defined by 

h,(t) = ~ , ( t ) / J w  for o < t < 1 

(having mean zero and variance 1). From Chibisov's Theorem 11.5.1 it follows 
that  =, fails for h, and from James's Theorem 13.4.1 that -+ fails for 
H J  \i-; but in both cases the function t + /- "just missed." This 
chapter considers the rate at  which h, blows up: Let E, denote the df of the 
extreme value distribution, i.e., 

E,(x) - exp(-exp(-x)) for -m  < x < m, 

and let b, ,/-= 
 and c, = 
210g2n + 2-llog,n - 2-'log4m. Then the main 
result established by Jaeschke (1979) and proved in Section 1 states that 

b n l l ~ ~ l l- c, jdE: and bnllhnll- C, +d E: as n + m 

A reasonable "studentized version" of IIh,+II considered by Eicker (1979) is also 
presented. Section 2 exhibits the as .  rate of divergence of and Section 3 
the as .  behavior of llhn11;f with a, J 0 presenting a main result of Cs6ki (1977). 
Section 4 considers the normalized quantile process showing that [according to 
CsorgG and RBvBsz (1978a)I 

lim sup 11 ~ , / / l ( l I l  lPan/bnI 2 a.s., 
n+ o~ 


where a, = 9(log2n)/n. 
Chapter 17 on the Uniform Empirical Process Indexed by Intervals and 

Functions deals with UJ, "indexed" by a collection 9of functions, i.e., with 

for f E 9. Instead of 9 =  {I[,, ,,: 0 I t I I ) ,  now 9 =  % = (1,: C = (s, t], 
0 I s < t I 1)  and 9 =  %(a, b) = {C E 9:a I ICI I b) are considered as in- 
dex sets for U,. Section 1 parallels Section 11.2, developing inequalities for 
IlU Jqll Q(a, b )  - sup{lUJn(C)l/q(lCI): C E %(a, b)) and Section 2 is concerned 
with weak convergence of UJ, in 1 1  . /qllQ(a,,l) metrics with a, - ( ~ l o g n ) / n ,  
E > 0. Indexing by 9 c  C[O, 11is considered (as a special case) in Section 3. The 
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main theorem there implies weak convergence of {Un( f ): f E 9 )  when 9 =  
{ f E C[O, 11: I f ( t )  - f (s)I I It - sla), a > $, representing a result due to Stras- 
sen and Dudley (1969) and being closely related to the higher-dimensional results 
in Chapter 26. 

The standardized quantile process Qn studied in Chapter 18 is defined by 
Qn(t)  = g(t)6[[Fl1(t)  - F-'(t)] for 0 < t < 1, where [Fn is the empirical df 
based on iid rv's Xi, 1I i I n, with df F. Suppose F has a density f that is 
positive on (c, d )  where - co I c < d I co, and zero elsewhere, and let g = 
f (F- l )  be the density quantile function. Based on the special construction of 
Theorem 3.1.1, Section 1 shows weak convergence of Q n  to Brownian bridge 
V - -UJ in 1 1  /q11 metrics. Section 2 establishes that for "smooth" df's F on 
(- co,co) the difference 1169, - VJ goes to zero at  a rate that is almost n-'I2; 
this is enough to imply that important theorems of Kiefer and Bahadur, 
Finkelstein and so on extend trivially from Vn to Qn and thus allows for 
miscellaneous applications presented in the same section. 

Chapters 19-23 constitute the main body of statistical applications. Chapter 
19 is concerned with L-statistics, i.e., linear combinations of a function of order 
statistics Xn :,I . -< Xn:, of the form 

based on iid rv's Xi, known constants cni and a known function h of the form 
h = h, - h., with each h i  increasing and left continuous. Again let IFn be the 
empirical df based on XI,. . . ,Xn and define Jn(t) = cni for (i - l) /n < t I i/n, 
with Jn(0) = cnl and %(t) - j$, Jn(s)ds for 0 I t I 1. Tn can then be repre- 
sented as 

A natural centering constant is 

Supposing that Xi = FP1(ti) for iid uniform(0,l) rv's t i ,  let 6, denote the 
empirical df based on t,, . . . ,tn and let g - h(FP1) on (0,l). Then, provided 
that Jn-+ J in some sense [cf. Section 4 for the verification of step ( * )  under 
Assumption 1 on page 6621, 

= - - I]J d gL'[G,

( *  * )  
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with = /,l[l,,cs,, - t] J ( t )  dg(t) being iid! Thus the key of this approach is to 
control the size of the error y, = T, - p, - (l/n)CF=,X made in using the 
approximation of step ( *  *)  in order to obtain a WLN, SLLN, CLT or LIL for 
T,. This is achieved under certain "bounded growth" and "smoothness" assump- 
tions on J,assuming also that J, + J locally uniformly as n + co. Functional 
versions of the main theorems are also considered. General examples are given 
and examples build around randomly trimmed and Winsorized means. 

The main concern of Chapter 20 is linear rank statistics. For this, let 
X,,,. . . , X,, be iid having a continuous df. Let D,,,.. . , D,, denote the anti- 
ranks (defined by XnDn, = X,: i)  of Xnl, . . . , X,,. Let c,,, . . . , c,, denote known 
weights and d,,, . . . , d,, denote known scores. Then the linear rank statistics 
are defined as 

T, = (c'c)-"~ 
1 

dnicnDn,= 4h, dR ,= 
1 

-1R ,dh,, 
i =  1 0 

where h, is the score(s) function defined by h,(t) = dni  for (i - l)/n < t I i/n 
with h, right continuous at  0 and where R ,is the empirical rank process which 
satisfies (assuming En = n-lCr=,c,i = 0) 

for the special construction of Theorem 3.1.1, W being a Brownian bridge. 
Section 1 introduces a basic martingale M, = {M,(i/n), 0 I i I n) being linked 
with R ,through the relation 

with pni= i/(n + 1). Extending M, to [O,l] by letting M,(t) = M,(i/n) for 
i/n I t < ( i  + l)/n, the natural limiting process to associate with M, is [note 
(13) and (12)] 

I t  is shown that 

for the special construction, provided that En = 1I i I n) +0 and ma~{c~~/c ' c :  
0 and q is increasing on [O, 11 with j,'[q(t)]-2 dt < co. Section 2 studies 
processes of the form T, = j ih,  d R ,  so tha t  Un(pnk)= Tnk = 
( C ' C ) - ' ' ~ C ~ = ~ ~ , ~ C , ~ , ,  made to T, by the first k orderis the contribution 
statistics X,: ,, . . . , X,: ,. As to the asymptotic behavior of T,, again 1 1  . /qll 
metrics are considered requiring that I[(h, - h)/q]l + 0, h/q E S 2 ,  to obtain 
Il(Un - T)/qll +, 0 for the special construction under the same assumptions as in 
(14) and with T = jih dW. An interesting corollary is obtained by setting q = 1 
in these hypotheses to conclude that T, = Un(l) +, T = T(l) E X(0, a:) for 
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a: = [[h]12- X2 (X = jihdt) (cf. Hijek and Sidak [(1967), page 1631 for this 
result under the same conditions with q = 1). Section 3 considers rank statistics 
T, under contiguous alternatives, the asymptotic power of tests based on rank 
statistics, the Pitman efficiency of tests and asymptotic linearity. Section 4 is 
devoted to the famous Chernoff-Savage theorem and the final Section 5 presents 
some exercises for order statistics and spacings. 

Chapter 21 on Spacings considers the small-sample distribution theory of 
uniform spacings Sni = (, : - (, : i- , where [, : , I . . . I [, : ,are the order 
statistics of uniform(0,l) rv's (,, . . . , En. The limiting distribution of (8,: ,,6,: ,+ ,) 
is presented. Uniform spacings can be considered (for fixed n) to be the 
interarrival times of a renewal process of exponential rv's that has been stan- 
dardized by dividing by the total sum. Empirical, quantile and weighted em- 
pirical processes of such renewal rv's are studied and are specialized to the 
exponential case. Statistics used to test for a uniform distribution are considered; 
they are viewed as functionals on the processes of Section 4, which process 
depends on the type of alternatives considered. Section 6 states some LIL-type 
results for spacings. 

Chapter 22 is concerned with Symmetry. The so-called empirical symmetry 
process and the empirical rank symmetry process together with identities relat- 
ing these processes to U, are introduced. Testing goodness of fit (supremum tests 
of fit and integral tests of fit,respectively) are treated for a symmetric df and the 
processes under contiguity are considered. Some asymptotic results for signed 
rank statistics under symmetry are presented and estimators for estimating an 
unknown point of symmetry based on signed rank statistics and on variants of 
the Cramdr-von Mises statistic are established. Finally the problem of estimat- 
ing the df of a symmetric distribution with unknown point of symmetry is 
treated. 

Further Applications are presented in Chapter 23: Bootstrapping the em-
pirical process; smooth estimators of F with density f based on Kernel estima- 
tors of f ; the a-shorth estimate of 0 when the model is given by iid rv's with df 
F, = F(. - 0)' where F has a density f that is symmetric about 0; convergence 
of U-statistic empirical processes; reliability and econometric functions (mean 
residual life function, Lorenz curve, scaled total time on test function). A unified 
treatment of the theory of corresponding processes has been developed by CsorgB 
et al. (1983). 

Chapter 24 is concerned with Large Deviations. Section 1 introduces the 
concept of Bahadur efficiency [based on Bahadur's (1971) fundamental mono- 
graph] and presents the key theorem for deriving the exact slope of a test. The 
fundamental requirement of this theorem is a large deviation result. A large 
deviation result for binomial rv's is applied to G,(t) and extend to DZ,= 
[[(G,- I ) $ [ [for a weight function # such that # is positive and continuous on 
(0, I), symmetric about t = h, and lim,,,#(t) exists in [0, a].Section 3 intro- 
duces the Kullback-Leibler information number and gives some of its basic 
properties. The Sanov problem and theorems giving conditions under which 
Sanov's conclusion is valid are stated. 
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Extensions to the case of Independent but Not Identically Distributed Ran- 
dom Variables are considered in Chapter 25. Good theorems for the empirical 
process in this situation require an extension of the DKW inequality 9.2.1 which 
is the subject of Section 1, where Bretagnolle's (1980) main inequalities are 
proved. Just as nGn(t) 2 binomial(n, t), in the present situation of independent 
but not identically distributed rv's Xnl, . . . ,Xnn with df's Fnl, . . . ,Fnn, nffn(x) = 
C~=,1(-,,,,(Xni) has for a fixed x the generalized binomial distribution 

,,[I(- ,,(Xni) being independent Bernoulli rv's with probabilities of success 
pi = Fni(x)]. Compared with binomial(n, p), p = ( p ,  + +pn)/n, the gener- 
alized binomial distribution is in a very strong sense less dispersed as shown by 
Hoeffding (1956). This remarkable fact is the subject of Section 2 being used in 
Section 3 to obtain in probability "linear bounds" on the empirical df En. On 
their basis the weak convergence of the empirical, weighted empirical and 
quantile process based on independent but not identically distributed rv's in 
1 1  . /qll metrics is established. Section 5 presents a CLT for linear combinations 
of a function of order statistics of independent but not identically distributed 
rv's and explores some of its consequences. 

The final Chapter 26 on Empirical Measures and Processes for General Spaces 
gives an outline of the research of empirical processes during the past decade 
which has aimed to generalize the results to higher-dimensional observations and 
more abstract sample spaces. Further details and elaboration on these themes 
are provided by Dudley's (1984) monograph "A course on empirical processes" 
[Lecture Notes in Math. 1097 1-142. Springer, Berlin], by Pollard's (1984) book 
on convergence of stochastic processes and by Gin6 and Zinn (1984). 

Altogether the book of Shorack and Wellner will serve as an encyclopedia on 
empirical processes and its statistical applications. I t  includes a lot of good 
exercises, illustrations accompanying the proofs of major results and useful 
tables. The community of statisticians and probabilists should be grateful to the 
authors for the immense work they did in writing such a book which can be 
highly recommended to statisticians as well to the probabilists [when the latter 
are hopefully willing to follow Kempthorne's (1985) suggestion (Inst. Math. 
Statist. Bull. 14 321-323) that "the broad needs of society are addressed only by 
the combination of mathematical probability and statistical ideas"]. 
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