
IMS Collections
Volume Title
Vol. 0 (0000) 1–6
c© Institute of Mathematical Statistics, 0000

arXiv: math.PR/0000000

Estimation of Mean Residual Life
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Abstract: Yang (1978) considered an empirical estimate of the mean resid-
ual life function on a fixed finite interval. She proved it to be strongly uni-
formly consistent and (when appropriately standardized) weakly convergent
to a Gaussian process. These results are extended to the whole half line, and
the variance of the the limiting process is studied. Also, nonparametric simul-
taneous confidence bands for the mean residual life function are obtained by
transforming the limiting process to Brownian motion.
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1. Introduction and summary

This is an updated version of a Technical Report, Hall and Wellner (1979), that
has been referenced repeatedly in the literature — e.g., Csörgo and Zitikis (1996),
Berger et al. (1988), CsörgHo et al. (1986), Hu et al. (2002), Kochar et al. (2000),
Qin and Zhao (2007) — although not having been published. We take this op-
portunity to honor the many achievements of Andrei Yakovlev and his devotion to
modeling life processes throughout his career by making this work broadly available.

Let X1, . . . , Xn be a random sample from a continuous d.f. F on R+ = [0,∞)
with finite mean µ = E(X), variance σ2 ≤ ∞, and density f(x) > 0. Let F =
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2 Hall and Wellner

1−F denote the survival function, let Fn and Fn denote the empirical distribution
function and empirical survival function respectively, and let

e(x) ≡ eF (x) ≡ E(X − x|X > x) =

∫ ∞
x

FdI/F (x), 0 ≤ x <∞

denote the mean residual life function or life expectancy function at age x. We use
a subscript F or F on e interchangeably, and I denotes the identity function and
Lebesgue measure on R+.

A natural nonparametric or life table estimate of e is the random function ên
defined by

ên(x) =

{∫ ∞
x

FndI/Fn(x)

}
1[0,Xnn)(x)

whereXnn ≡ max1≤i≤nXi; that is, the average, less x, of the observations exceeding
x. Yang (1978) studied ên on a fixed finite interval 0 ≤ x ≤ T < ∞. She proved
that ên is a strongly uniformly consistent estimator of e on [0, T ], and that, when
properly centered and normalized, it converges weakly to a certain limiting Gaussian
process on [0, T ].

We first extend Yang’s (1978) results to all of R+ by introducing suitable metrics.
Her consistency result is extended in Theorem 2.1 by using the techniques of Wellner
(1977, 1978); then her weak convergence result is extended in Theorem 2.2 using
Shorack (1972) and Wellner (1978).

It is intuitively clear that the variance of ên(x) is approximately σ2(x)/n(x)
where σ2(x) = V ar[X − x|X > x] is the residual variance and n(x) is the number
of observations exceeding x; the formula would be justified if these n(x) observations
were a random sample of fixed sized n(x) from the conditional distribution P (·|X >
x). Noting that Fn(x) = n(x)/n→ F (x) a.s., we would than have

nV ar[ên(x)] = nσ2(x)/n(x)→ σ2(x)/F (x).

Proposition 2.1 and Theorem 2.2 validate this (see (2.4) below): the variance of the
limiting distribution of n1/2(ên(x)− e(x)) is precisely σ2(x)/F (x).

In Section 3 simpler sufficient conditions for Theorems 2.1 and 2.2 2 are given
and the growth rate of the variance of the limiting process for large x is considered;
these results are related to those of Balkema and de Haan (1974). Exponential,
Weibull, and Pareto examples are considered in Section 4.

In Section 5, by transforming (and reversing) the time scale and rescaling the
state space, we convert the limit process to standard Brownian motion on the unit
interval (Theorem 5.1); this enables construction of nonparametric simultaneous
confidence bands for the function eF (Corollary 5.2). Application to survival data
of guinea pigs subject to infection with tubercle bacilli as given by Bjerkedal (1960)
appears in Section 6.

We conclude this section with a brief review of other previous work. Estimation of
the function e, and especially the discretized life-table version, has been considered
by Chiang; see pages 630-633 of Chiang (1960) and page 214 of Chiang (1968).
(Also see Chiang (1968), page 189, for some early history of the subject.) The
basis for marginal inference (i.e. at a specific age x) is that the estimate ên(x) is
approximately normal with estimated standard error Sk/

√
k, where k = nFn(x)

is the observed number of observations beyond x and Sk is the sample standard
deviation of those observations. A partial justification of this is in Chiang (1960),
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Mean Residual Life 3

page 630, (and is made precise in Proposition 5.2 below). Chiang (1968), page 214,
gives the analogous marginal result for grouped data in more detail, but again
without proofs; note the solumn Sêi in his Table 8, page 213, which is based on a
modification and correction of a variance formula due to Wilson (1938). We know
of no earlier work on simultaneous inference (confidence bands) for mean residual
life.

A plot of (a continuous version of) the estimated mean residual life function of
43 patients suffering from chronic gramulocytic leukemia is given by Bryson and
Siddiqui (1969). Gross and Clark (1975) briefly mention the estimation of e in a
life - table setting, but do not discuss the variability of the estimates (or estimates
thereof). Tests for exponentiality against decreasing mean residual life alternatives
have been considered by Hollander and Proschan (1975).

2. Convergence on R+; covariance function of the limiting process

Let {an}n≥1 be a sequence of nonnegative numbers with an → 0 as n → ∞. For
any such sequence and a d.f. F as above, set bn = F−1(1 − an) → ∞ as n → ∞.
Then, for any function f on R+, define f∗ equal to f for x ≤ bn and 0 for x > bn:
f∗(x) = f(x)1[0,bn](x). Let ‖f‖ba ≡ supa≤x≤b |f(x)| and write ‖f‖ if a = 0 and
b =∞.

Let H(↓) denote the set of all nonnegative, decreasing functions h on [0, 1] for

which
∫ 1

0
(1/h)dI <∞.

Condition 1a. There exists h ∈ H(↓) such that

M1 ≡M1(h, F ) ≡ sup
x

∫∞
x
h(F )dI/h(F (x))

e(x)
<∞.

Since 0 < h(0) <∞ and e(0) = E(X) <∞, Condition 1a implies that
∫∞
0
h(F )dI <

∞. Also note that h(F )/h(0) is a survival function on R+ and that the numerator
in Condition 1a is simply eh(F )/h(0); hence Condition 1a may be rephrased as: there
exists h ∈ H(↓) such that M1 ≡ ‖eh(F )/h(0)/eF ‖ <∞.

Condition 1b. There exists h ∈ H(↓) for which
∫∞
0
h(F )dI < ∞ and ‖eh(F )‖ <

∞.

Bounded eF and existence of a moment of order greater than 1 is more than suffi-
cient for Condition 1b (see Section 3).

Theorem 2.1. Let an = αn−1 log log n with α > 1. If Condition 1a holds for a
particular h ∈ H(↓), then

ρh(F )e/F (ê∗n, e
∗)

≡ sup

{
|ên(x)− e(x)|F (x)

h(F (x))e(x)
: x ≤ bn

}
→a.s. 0 as n→∞.(2.1)

If Condition 1b holds, then

ρ1/F (ê∗n, e
∗)

≡ sup{|ên(x)− e(x)|F (x): x ≤ bn} →a.s. 0 as n→∞.(2.2)
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4 Hall and Wellner

The metric in (2.2) turns out to be a natural one (see Section 5); that in (2.1)
is typically stronger.

Proof. First note that for x < Xnn

ên(x)− e(x) =
F (x)

Fn(x)

{
−
∫∞
x

(Fn − F )dI

F (x)
+
e(x)

F (x)
(Fn(x)− F (x))

}
.

Hence

ρh(F )e/F (ê∗n, e
∗) ≤

∥∥∥∥ FFn
∥∥∥∥bn
0

{
sup
x

|
∫∞
x

(Fn − F )dI|
h(F (x))e(x)

+ sup
x

|Fn(x)− F (x)|
h(F (x))

}

≤
∥∥∥∥ FFn

∥∥∥∥bn
0

· ρh(F )(Fn, F )(M1 + 1)

→a.s. 0

using Condition 1a, Theorem 1 of Wellner (1977) to show ρh(F )(Fn, F )→a.s. 0 a.s.,

and Theorem 2 of Wellner (1978) to show that lim supn ‖F/Fn‖
bn
0 <∞ a.s..

Similarly, using Condition 1b,

ρ1/F (ê∗n, e
∗) ≤

∥∥∥∥ FFn
∥∥∥∥bn
0

{
sup
x
|
∫ ∞
x

(Fn − F )dI|+ sup
x
e(x)|Fn(x)− F (x)|

}
≤

∥∥∥∥ FFn
∥∥∥∥bn
0

· ρh(F )(Fn, F )

(∫ ∞
0

h(F )dI + ‖eh(F )‖
)

→a.s. 0.

To extend Yang’s weak convergence results, we will use the special uniform em-
pirical processes Un of the Appendix of Shorack (1972) or Shorack and Wellner
(1986) which converge to a special Brownian bridge process U in the strong sense
that

ρq(Un,U)→p 0 as n→∞

for q ∈ Q(↓), the set of all continuous functions on [0, 1] which are monotone

decreasing on [0, 1] and
∫ 1

0
q−2dI <∞. Thus Un = n1/2(Γn − I) on [0, 1] where Γn

is the empirical d.f. of special uniform (0, 1) random variables ξ1, . . . , ξn.
Define the mean residual life process on R+ by

n1/2(ên(x)− e(x)) =
1

Fn(x)

{
−
∫ ∞
x

n1/2(Fn − F )dI + e(x)n1/2(Fn(x)− F (x))

}
d
=

1

Γn(F (x))

{
−
∫ ∞
x

Un(F )dI + e(x)Un(F (x))

}
≡ Zn(x), 0 ≤ x < F−1(ξnn)

where ξnn = max1≤i≤n ξi, and Zn(x) ≡ −n1/2e(x) for x ≥ F−1(ξnn). Thus Zn has
the same law as n1/2(ên− e) and is a function of the special process Un. Define the
corresponding limiting process Z by

Z(x) =
1

F (x)

{
−
∫ ∞
x

U(F )dI + e(x)U(F (x))

}
, 0 ≤ x <∞.(2.3)
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Mean Residual Life 5

If σ2 = V ar(X) < ∞ (and hence under either Condition 2a or 2b below), Z is a
mean zero Gaussian process on R+ with covariance function described as follows:

Proposition 2.1. Suppose that σ2 = V ar(X) <∞. For 0 ≤ x ≤ y <∞

Cov[Z(x),Z(y)] =
F (y)

F (x)
V ar[Z(y)] =

σ2(y)

F (y)
(2.4)

where

σ2(t) ≡ V ar[X − t|X > t] =

∫∞
t

(x− t)2F (x)

F (t)
− e2(t)

is the residual variance function; also

Cov[Z(x)F (x),Z(y)F (y)] = V ar[Z(y)F (y)] = F (y)σ2(y).(2.5)

Proof. It suffices to prove (2.5). Let Z′ ≡ ZF ; from (2.3) we find

Cov[Z′(x),Z′(y)] = e(x)e(y)F (x)F (y)− e(x)

∫ ∞
y

F (x)F (z)dz

− e(y)

∫ ∞
x

(F (y ∧ z)− F (y)F (z))dz

+

∫ ∞
x

∫ ∞
y

(F (z ∧ w)− F (z)F (w))dzdw.

Expressing integrals over (x,∞) as the sum of integrals over (x, y) and (y,∞), and
recalling the defining formula for e(y), we find that the right side reduces to∫ ∞

y

∫ ∞
y

(F (z ∧ z)− F (z)F (w)dzdw − e2(y)F (y)F (y)

=

∫ ∞
y

(t− y)2dF (t)− F (y)e2(y)

= F (y)σ2(y)

which, being free of x, is also V ar[Z′(y)].

As in this proposition, the process Z is often more easily studied through the
process Z′ = ZF ; such a study continues in Section 5. Study of the variance of
Z(x), namely σ2(x)/F (x), for large x appears in Section 3.

Condition 2a. σ2 <∞ and there exists q ∈ Q(↓) such that

M2 ≡M2(q, F ) ≡ sup
x

∫∞
x
q(F )dI/q(F (x))

e(x)
<∞.

Since 0 < q(0) <∞ and e(0) = E(X) <∞, Condition 2a implies that
∫∞
0
q(F )dI <

∞; Condition 2a may be rephrased as: M2 ≡ ‖eq(F )/q(0)/eF ‖ <∞ where eq(F )/q(0)

denotes the mean residual life function for the survival function q(F )/q(0).

Condition 2b. σ2 <∞ and there exists q ∈ Q(↓) such that
∫∞
0
q(F )dI <∞.

Bounded eF and existence of a moment of order greater than 2 is more than
sufficient for 2b (see Section 3).
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6 Hall and Wellner

Theorem 2.2. (Process convergence). Let an → 0, nan → ∞. If Condition 2a
holds for a particular q ∈ Q(↓), then

ρq(F )e/F (Z∗n,Z∗)

≡ sup

{
|Zn(x)− Z(x)|F (x)

q(F (x))e(x)
: x ≤ bn

}
→p 0 as n→∞.(2.6)

If Condition 2b holds, then

ρ1/F (Z∗n,Z∗) ≡ sup{|Zn(x)− Z(x)|F (x): x ≤ bn} →p 0 as n→∞.(2.7)

Proof. First write

Zn(x)− Z(x) =

{
F (x)

Γn(F (x))
− 1

}
Z1
n(x) + (Z1

n(x)− Z(x))

where

Z1
n(x) ≡ 1

F (x)

{
−
∫ ∞
x

Un(F )dI + e(x)Un(F (x))

}
, 0 ≤ x <∞.

Then note that, using Condition 2a,

ρq(F )e/F (Z1
n, 0) ≤ sup

x

|
∫∞
x

Un(F )dI

q(F (x))e(x)
+ ρq(Un, 0)

≤ ρq(Un, 0){M2 + 1)} = Op(1);

that ‖I/Γn − 1‖1−an0 →p 0 by Theorem 0 of Wellner (1978) since nan → ∞; and,
again using Condition 2a, that

ρq(F )e/F (Z1
n,Z) ≤ sup

x

|
∫∞
x

(Un(F )− U(F ))dI|
q(F (x))e(x)

+ ρq(Un,U)

≤ ρq(Un,U){M2 + 1} →p 0.

Hence

ρq(F )e/F (Z∗n,Z∗) ≤
∥∥∥∥ IΓn − 1

∥∥∥∥1−an
0

ρq(F )e/F (Z1
n, 0) + ρq(F )e/F (Z1

n,Z)

= op(1)Op(1) + op(1) = op(1).

Similarly, using Condition 2b

ρ1/F (Z1
n, 0) ≤ sup

x

∣∣∣∣ ∫ ∞
x

Un(F )dI

∣∣∣∣+ sup
x
e(x)|Un(F (x))|

≤ ρq(Un, 0)

{∫ ∞
0

q(F )dI + ‖eq(F )‖
}

= Op(1),

ρ1/F (Z1
n,Z) ≤ sup

x

∣∣∣∣ ∫ ∞
x

(Un(F )− U(F ))dI

∣∣∣∣+ sup
x
e(x)|Un(F (x))− U(F (x))|

≤ ρq(Un,U)

{∫ ∞
0

q(F )dI + ‖eq(F )‖
}
→p 0,

and hence

ρ1/F (Z∗n,Z∗) ≤
∥∥∥∥ IΓn − 1

∥∥∥∥1−an
0

ρ1/F (Z1
n, 0) + ρ1/F (Z1

n,Z)

= op(1)Op(1) + op(1) = op(1).
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3. Alternative sufficient conditions; V ar[Z(x)] as x → ∞.

Our goal here is to provide easily checked conditions which will imply the somewhat
cumbersome Conditions 2a and 2b; similar conditions also appear in the work of
Balkema and de Haan (1974), and we use their results to extend their formula for
the residual coefficient of variation for large x ((3.1) below). This provides a simple
description of the behavior of V ar[Z(x)], the asymptotic variance of n1/2(ên(x) −
e(x)) as x→∞.

Condition 3. E(Xr) <∞ for some r > 2.

Condition 4a. Condition 3 and limx→∞
d
dx (1/λ(x)) = c <∞ where λ = f/F , the

hazard function.

Condition 4b. Condition 3 and lim supx→∞{F (x)1+γ/f(x)} <∞ for some r−1 <
γ < 1/2.

Proposition 3.1. If Condition 4a holds, then 0 ≤ c ≤ r−1, Condition 2a holds,
and the squared residual coefficient of variation tends to 1/(1− 2c):

lim
x→∞

σ2(x)

e2(x)
=

1

1− 2c
.(3.1)

If Condition 4b holds, then Condition 2b holds.

Corollary 3.1. Condition 4a implies

V ar[Z(x)] ∼ e2(x)

F (x)
(1− 2c)−1 as x→∞.

Proof. Assume 4a. Choose γ between r−1 and 1/2; define a d.f. G on R+ by G = F
γ

and note that g/G = γf/F = γλ. By Condition 3 xrF (x) → 0 as x → ∞ and
hence xγrG(x) → 0 as x → ∞. Since γr > 1, G has a finite mean and therefore
eG(x) =

∫∞
x
GdI/G(x) is well-defined.

Set η = 1/λ = F/f , and note that η(x)G(x) → 0 as x → ∞. (If lim sup η(x) <
∞, then it holds trivially; otherwise, η(x)→∞ (because of 4a) and lim η(x)G(x) =
lim(η(x)/x)(xG(x)) = lim η′′(x)xG(x) = 0 by 4a and L’Hopital. Thus by L’Hopital’s
rule

0 ≤ lim
η(x)

eG(x)
= lim

η(x)G(x)∫∞
x
GdI

= lim
η(x)g(x)−G(x)η′(x)

G(x)

= γ − lim η′(x) = γ − c by 4a.

Thus c ≤ γ for any γ > r−1 and it follows that c ≤ r−1. It is elementary that c ≥ 0
since η = 1/λ is nonnegative.

Choose q(t) = (1− t)γ . Then γ− c > 0, q ∈ Q(↓), and to verify 2a it now suffices
to show that lim(η(x)/eF (x)) = 1− c <∞ since it then follows that

lim
eG(x)

eF (x)
= lim

η(x)/eF (x)

η(x)/eG(x)
=

1− c
γ − c

<∞.
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8 Hall and Wellner

By continuity and eG(0) < ∞, 0 < eF (0) < ∞, this implies Condition 2a. But
r > 2 implies that xF (x)→ 0 as x→∞ so η(x)F (x)→ 0 and hence

lim
η(x)

eF (x)
= lim

ηF (x)∫∞
x
FdI

= lim(1− η′(x)) = 1− c.

That (3.1) holds will now follows from results of Balkema and de Haan (1974), as
follows: Their Corollary to Theorem 7 implies that P (λ(t)(X−t) > x|X > t)→ e−x

if c = 0 and → (1 + cx)−1/c if c > 0. Thus, in the former case, F is in the domain
of attraction of the Pareto residual life distribution and its related extreme value
distribution. Then Theorem 8(a) implies convergence of the (conditional) mean and
variance of λ(t)(X−t) to the mean and variance of the limiting Pareto distribution,
namely (1− c)−1 and (1− c)−2(1− 2c)−1. But the conditional mean of λ(t)(Xt) is
simply λ(t)e(t), so that λ(t) ∼ (1− c)−1/e(t) and (3.1) now follows.

If Condition 4b holds, let q(F ) = F
γ

again. Then
∫∞
0
q(F )dI < ∞, and it

remains to show that lim sup{e(x)F (x)γ} <∞. This follows from 4b by L’Hopital.

Similarly, sufficient conditions for Conditions 1a and 1b can be given: simply
replace “2” in Condition 3 and “1/2” in Condition 4b with “1”, and the same proof
works. Whether (3.1) holds when r in Condition 3 is exactly 2 is not known.

4. Examples.

The typical situation, when e(x) has a finite limit and Condition 3 holds, is as
follows: e ∼ F/f ∼ f/(−f ′) as x → ∞ (by L’Hopital), and hence 4b, 2b, and 1b
hold; also η′ ≡ (F/f)′ = [(F/f)(−f/f ′)]− 1→ 0 (4a with c = 0, and hence 2a and
1a hold), σ(x) ∼ e(x) from (3.1), and V ar[Z] ∼ e2/F ∼ (F/f)2/F ∼ 1/(−f ′). We
treat three examples, not all ‘typical’, in more detail.

Example 4.1. (Exponential). Let F (x) = exp(−x/θ), x ≥ 0, with 0 < θ < ∞.
Then e(x) = θ for all x ≥ 0. Conditions 4a and 4b hold (for all r, γ ≥ 0) with
c = 0, so Conditions 2a and 2b hold by Proposition 3.1 with q(t) = (1 − t)1/2−δ,
0 < δ < 1/2. Conditions 1a and 1b hold with h(t) = (1 − t)1−δ, 0 < δ < 1. Hence
Theorems 2.1 and 2.2 hold where now

Z(x) =
U(F (x))

1− (x)
− 1

1− F (x)

∫ 1

F (x)

U
1− I

dI
d
= θB(ex/θ), 0 ≤ x <∞

and B is standard Brownian motion on [0,∞). (The process B1(t) = U(1 − t) −∫ 1

1−t(U/(1 − I))dI, 0 ≤ t ≤ 1, is Brownian motion on [0, 1]; and with B2(x) ≡
xB1(1/x) for 1 ≤ x ≤ ∞, Z(x) = θB2(1/F (x)) = θB2(ex/θ).) Thus, in agreement
with (2.4),

Cov[Z(x),Z(y)] = θ2e(x∧y)/θ, 0 ≤ x, y <∞.

An immediate consequence is that ‖Z∗nF‖ →d ‖F‖
d
= θ sup0≤t≤1 |B1(t)|; general-

ization of this to other F ’s appears in Section 5. (Because of the “memoryless”
property of exponential F , the results for this example can undoubtedly be obtained
by more elementary methods.)
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Mean Residual Life 9

Example 4.2. (Weibull). Let F (x) = exp(−xθ), x ≥ 0, with 0 < θ < ∞. Condi-
tions 4a and 4b hold (for all r, γ > 0) with c = 0, so Conditions 1 and 2 hold with h
and q as in Example 1 by Proposition 3.1. Thus Theorems 2.1 and 2.2 hold. Also,
e(x) ∼ θ−1x1−θ as x→∞, and hence V ar[Z(x)] ∼ θ−2x2(1−θ) exp(xθ) as x→∞.

Example 4.3. (Pareto). Let F (x) = (1 + cx)−1/c, x ≥ 0, with 0 < c < 1/2.
Then e(x) = (1 − c)−1(1 + cx), and Conditions 4a and 4b hold for r < c−1 and
γ ≥ c (and c of 4a is c). Thus Proposition 3.1 holds with r > 2 and c > 0 and
V ar[Z(x)] ∼ c2+(1/c)(1 − c)−2(1 − 2c)−1x2+(1/c) as x → ∞. Conditions 1 and 2
hold with h and q as in Example 1, and Theorems 2.1 and 2.2 hold.

If instead 1/2 ≤ c < 1, then E(X) < ∞ but E(X2) = ∞, and 4a and 4b hold
with 1 < r < 1/c ≤ 2 and γ ≥ c. Hence Condition 1 and Theorem 2.1 hold, but
Condition 2 (and hence our proof of Theorem 2.2) fails. If c ≥ 1, then E(X) =∞
and e(x) =∞ for all x ≥ 0.

Not surprisingly, the limiting process Z has a variance which grows quite rapidly,
exponentially in the exponential and Weibull cases, and as a power (> 4) of x in
the Pareto case.

5. Confidence bands for e.

We first consider the process Z′ ≡ ZF on R+ which appeared in (2.5) of Proposi-
tion 2.1. Its sample analog Z′n ≡ ZnFn is easily seen to be a cumulative sum (times
n−1/2) of the observations exceeding x, each centered at x + e(x); as x decreases
the number of terms in the sum increases. Moreover, the corresponding increments
apparently act asymptotically independently so that Z′n, in reverse time, is behav-
ing as a cumulative sum of zero-mean independent increments. Adjustment for the
non-linear variance should lead to Brownian motion. Let us return to the limit
version Z′.

The zero-mean Gaussian process Z′ has covariance function Cov[Z′(x),Z′(y)] =
V ar[Z′(x ∨ y)] (see (2.5)); hence, when viewed in reverse time, it has indepen-
dent increments (and hence Z′ is a reverse martingale). Specifically, with Z′′(s) ≡
Z′(− log s), Z′′ is a zero-mean Gaussian process on [0, 1] with independent incre-
ments and V ar[Z′′(s)] = V ar[Z′(− log s)] ≡ τ2(s). Hence τ2 is increasing in s, and,
from (2.5),

τ2(s) = F (− log s)σ2(− log s).(5.1)

Now τ2(1) = σ2(0) = σ2, and

τ2(0) = lim
ε↓0

F (− log ε)σ2(− log ε) = lim
x→∞

F (x)σ2(x) = 0

since

0 ≤ F (x)σ2(x) ≤ F (x)E(X2|X > x) =

∫ ∞
x

y2dF (y)→ 0.

Since f(x) > 0 for all x ≥ 0, τ2 is strictly increasing.
Let g be the inverse of τ2; then τ2(g(t)) = t, g(0) = 0, and g(σ2) = 1. Define W

on [0, 1] by

W(t) ≡ σ−1Z′′(g(σ2t)) = σ−1Z′(− log g(σ2t)).(5.2)
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10 Hall and Wellner

Theorem 5.1. W is standard Brownian motion on [0, 1].

Proof. W is Gaussian with independent increments and V ar[W(t)] = t by direct
computation.

Corollary 5.1. If (2.7) holds, then

ρ(Z
′∗
n ,Z

′∗) ≡ sup
x≤bn

|Zn(x)Fn(x)− Z(x)F (x)| = op(1)

and hence ‖ZnFn‖bn0 →d ‖ZF‖ = σ‖W‖10 as n→∞.

Proof. By Theorem 0 of Wellner (1978) ‖Fn/F − 1‖bn0 →p 0 as n → ∞, and this
together with (2.7) implies the first part of the statement. The second part follows
immediately from the first and (5.2).

Replacement of σ2 by a consistent estimate S2
n (e.g. the sample variance based

on all observations), and of bn by b̂n = F−1n (1− an), the (n−m)−th order statistic
with m = [nan], leads to asymptotic confidence bands for e = eF :

Corollary 5.2. Let 0 < a < ∞, and set d̂n(x) ≡ n−1/2aSn/Fn(x). If (2.7) holds,
S2
n →p σ

2, and nan/ log log n ↑ ∞, then, as n→∞

P
(
ên(x)− d̂n(x) ≤ e(x) ≤ ên(x) + d̂n(x) for all 0 ≤ x ≤ b̂n

)
→ Q(a)(5.3)

where

Q(a) ≡ P (‖W‖10 < a) =

∞∑
k=−∞

(−1)k{Φ((2k + 1)a)− Φ((2k − 1)a)}

= 1− 4{Φ(a)− Φ(3a) + Φ(5a)− · · · }

and Φ denotes the standard normal d.f.

Proof. It follows immediately from Corollary 5.1 and Sn →p σ > 0 that

‖ZnFn‖bn0 /Sn →d ‖ZF‖/σ = ‖W‖10.

Finally bn may be replaced by b̂n without harm: letting cn = 2 log log /(nan) → 0

and using Theorem 4S of Wellner (1978), for τ > 1 and all n ≥ N(ω, τ), b̂n ≡
F−1n (1 − an)

d
= F−1(Γ−1n (1 − an)) ≤ F−1({1 + τc

1/2
n }(1 − an)) w.p. 1. This proves

the convergence claimed in the corollary; the expression for Q(a) is well-known (e.g.
see Billingsley (1968), page 79).

The approximation 1 − 4Φ(a) for Q(a) gives 3-place accuracy for a > 1.4. A
short table appears below:

Table 1
Q(a) for selected a

a Q(a) a Q(a)
2.807 .99 1.534 .75
2.241 .95 1.149 .50
1.960 .90 0.871 .25

Thus, choosing a so that Q(a) = β, (5.3) provides a two-sided simultaneous
confidence band for the function e with confidence coefficient asymptotically β.
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In applications we suggest taking an = n−1/2 so that b̂n is the (n −m)−th order
statistic with m = [n1/2]; we also want m large enough for an adequate central limit
effect, remembering that the conditional life distribution may be quite skewed. (In
a similar fashion, one-sided asymptotic bands are possible, but they will be less
trustworthy because of skewness.)

Instead of simultaneous bands for all real x one may seek (tighter) bands on
e(x) for one or two specific x−values. For this we can apply Theorem 2.2 and
Proposition 2.1 directly. We first require a consistent estimator of the asymptotic
variance of n1/2(ên(x)− e(x)), namely σ2(x)/F (x).

Proposition 5.1. Let 0 ≤ x < ∞ be fixed and let S2
n(x) be the sample variance

of those observations exceeding x. If Condition 3 holds then S2
n(x)/Fn(x) →a.s.

σ2(x)/F (x).

Proof. Since Fn(x)→a.s. F (x) > 0 and

S2
n(x) =

2
∫∞
x

(y − x)Fn(y)dy

Fn(x)
− ê2n(x),

it suffices to show that
∫∞
x
yFn(y)dy →a.s.

∫∞
x
yF (y)dy. Let h(t) = (1−t)γ+1/2 and

q(t) = (1−t)γ with r−1 < γ < 1/2 so that h ∈ H(↓), q ∈ Q(↓), and
∫∞
0
q(F )dI <∞

by the proof of Proposition 3.1. Then,∣∣∣∣ ∫ ∞
x

yFn(y)dy −
∫ ∞
x

yF (y)dy

∣∣∣∣ ≤ ρh(F )(Fn, F )

∫ ∞
0

Ih(F )dI →a.s. 0

by Theorem 1 of Wellner (1977) since∫ ∞
0

Ih(F )dI =

∫ ∞
0

(I2F )1/2q(F )dI <∞.

By Theorem 2.2, Propositions 2.1 and 5.1, and Slutsky’s theorem we have:

Proposition 5.2. Under the conditions of Proposition 5.1,

dn(x) ≡ n1/2(ên(x)− e(x))F1/2

n (x)/Sn(x)→d N(0, 1) as n→∞.

This makes feasible an asymptotic confidence interval for e(x) (at this particular
fixed x). Similarly, for x < y, using the joint asymptotic normality of (dn(x), dn(y))
with asymptotic correlation {F (y)σ2(y)/F (x)σ2(x)}1/2 estimated by

{Fn(y)S2
n(y)/Fn(x)S2

n(x)}1/2,

an asymptotic confidence ellipse for (e(x), e(y)) may be obtained.

6. Illustration of the confidence bands.

We illustrate with two data sets presented by Bjerkedal (1960) and briefly mention
one appearing in Barlow and Campo (1975).

Bjerkedal gave various doses of tubercle bacilli to groups of 72 guinea pigs and
recorded their survival times. We concentrate on Regimens 4.3 and 6.6 (and briefly
mention 5.5, the only other complete data set in Bjerkedal’s study M); see Figures
1 and 2 below.
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12 Hall and Wellner

First consider the estimated mean residual life ên, the center jagged line in
each figure. Figure 1 has been terminated at day 200; the plot would continue
approximately horizontally, but application of asymptotic theory to this part of ên,
based only the last 23 survival times (the last at 555 days), seems unwise. Figure 2
has likewise been terminated at 200 days, omitting only nine survival times (the last
at 376 days); the graph of ên would continue downward. The dashed diagonal line
is X−x; if all survival times were equal, say µ, then the residual life function would
be (µ− x)+, a lower bound on e(x) near the origin. More specifically, a Maclaurin
expansion yields

e(x) = µ+ (µf0 − 1)x+ (1/2){(2µf0 − 1)f0 + f ′0}x2 + o(x2)

where f0 = f(0), f ′0 = f ′(0), if f ′ is continuous at 0, or

e(x) = µ− x+
µd

r!
xr + o(xr)

if f (s)(0) = 0 for s < (r − 1) (≥ 0) and = d for s = r − 1 (if f (r−1) is continuous
at 0). It thus seems likely from Figures 1 and 2 that in each of these cases either
f0 = 0 and f ′0 > 0 or f0 is near 0 (and f ′0 ≥ 0).

Also, for large x, e(x) ∼ 1/λ(x), and Figure 1 suggests that the corresponding λ
and e have finite positive limits, whereas the e of Figure 2 may eventually decrease
(λ increase). We know of no parametric F that would exhibit behavior quite like
these.

The upper and lower jagged lines in the figures provide 90% (asymptotic) con-
fidence bands for the respective e’s, based on (5.3). At least for Regimen 4.3, a
constant e (exponential survival) can be rejected.

The vertical bars at x = 0, x = 100, and x = 200 in Figure 1, and at 0, 50, and
100 in Figure 2, are 90% (asymptotic) pointwise confidence intervals on e at the
corresponding x−values (based on Proposition 5.2). Notice that these intervals are
not much narrower than the simultaneous bands early in the survival data, but are
substantially narrower later on.

A similar graph for Regimen 5.5 (not presented) is somewhat similar to that in
Figure 2, with the upward turn in ên occurring at 80 days instead of at 50, and a
possible downward turn at somewhere around 250 days (the final death occurring
at 598 days).

A similar graph was prepared for the failure data on 107 right rear tractor brakes
presented by Barlow and Campo (1975), page 462. It suggests a quadratic decreasing
e for the first 1500 to 2000 hours (with f(0) at or near 0 but f ′(0) definitely
positive), with X = 2024, and with a possibly constant of slightly increasing e
from 1500 or so to 6000 hours. The e for a gamma distribution with λ = 2 and
α = .001 (e(x) = α−1(αx+ 2)/(αx+ 1) with α = .001) fits reasonably well – i.e. is
within the confidence bands, even for 25% confidence. Note that this is in excellent
agreement with Figures 2.1(b) and 3.1(d) of Barlow and Campo (1975). Bryson and
Siddiqui’s (1969) data set was too small (n = 43) for these asymptotic methods,
except possibly early in the data set.)

7. Further developments

The original version of this paper, Hall and Wellner (1979), ended with a one-
sentence sketch of two remaining problems: “Confidence bands on the difference
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Fig 1. 90% confidence bands for mean residual life; Regimen 4.3
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14 Hall and Wellner

Fig 2. 90% confidence bands for mean residual life; Regimen 6.6

imsart-coll ver. 2011/05/20 file: MRL-revived-v5b.tex date: February 18, 2012



Mean Residual Life 15

between two mean residual life functions, and for the case of censored data, will be
presented in subsequent papers.” Although we never did address these questions
ourselves, others took up these further problems.

Our aim in this final section is to briefly survey some of the developments since
1979 concerning mean residual life, including related studies of median residual
life and other quantiles, as well as developments for censored data, alternative
inference strategies, semiparametric models involving mean or median residual life,
and generalizations to higher dimensions. For a review of further work up to 1988
see Guess and Proschan (1988).

7.1. Confidence bands and inference

CsörgHo et al. (1986) gave a further detailed study of the asymptotic behavior
of the mean residual life process as well as other related processes including the
Lorenz curve. Berger et al. (1988) developed tests and confidence sets for comparing
two mean residual life functions based on independent samples from the respective
populations. These authors also gave a brief treatment based on comparison of
median residual life, to be discussed in Subsection 7.3 below. Csörgo and Zitikis
(1996) introduced weighted metrics into the study of the asymptotic behavior of
the mean residual life process, thereby avoiding the intervals [0, xn] changing with
n involved in our Theorems 2.1 and 2.2, and thereby provided confidence bands
and intervals for eF in the right tail. Zhao and Qin (2006) introduced empirical
likelihood methods to the study of the mean residual life function. They obtained
confidence intervals and confidence bands for compact sets [0, τ ] with τ < τF ≡
inf{x:F (x) = 1}.

7.2. Censored data

Yang (1977/78) initiated the study of estimated mean residual life under random
right censorship. She used an estimator F̂n which is asymptotically equivalent to the
Kaplan - Meier estimator and considered, in particular, the case when X is bounded
and stochastically smaller than the censoring variable C. In this case she proved
that

√
n(ê(x)−e(x)) converges weakly (as n→∞) to a Gaussian process with mean

zero. Csörgo and Zitikis (1996) give a brief review of the challenges involved in this
problem; see their page 1726. Qin and Zhao (2007) extended their earlier study
(Zhao and Qin (2006)) of empirical likelihood methods to this case, at least for
the problem of obtaining pointwise confidence intervals. The empirical likelihood
methods seem to have superior coverage probability properties in comparison to
the Wald type intervals which follow from our Proposition 5.2. Chaubey and Sen
(1999) introduced smooth estimates of mean residual life in the uncensored case. In
Chaubey and Sen (2008) they introduce and study smooth estimators of eF based
on corresponding smooth estimators of F = 1−F introduced by Chaubey and Sen
(1998).

7.3. Median and quantile residual life functions

Because mean residual life is frequently difficult, if not impossible, to estimate in
the presence of right-censoring, it is natural to consider surrogates for it which
do not depend on the entire right tail of F . Natural replacements include median
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residual life and corresponding residual life quantiles. The study of median residual
life was apparently initiated in Schmittlein and Morrison (1981). Characterization
issues and basic properties have been investigated by Gupta and Langford (1984),
Joe and Proschan (1984b), and Lillo (2005). Joe and Proschan (1984a) proposed
comparisons of two populations based on their corresponding median (and other
quantile) residual life functions. As noted by Joe and Proschan, “Some results differ
notably from corresponding results for the mean residual life function”. Jeong et al.
(2008) investigated estimation of median residual life with right-censored data for
one-sample and two-sample problems. They provided an interesting illustration of
their methods using a long-term follow-up study (the National Surgical Adjuvant
Breast and Bowel Project, NSABP) involving breast cancer patients.

7.4. Semiparametric models for mean and median residual life

Oakes and Dasu (1990) investigated a characterization related to a proportional
mean residual life model: eG = ψeF with ψ > 0. Maguluri and Zhang (1994) stud-
ied several methods of estimation in a semiparametric regression version of the
proportional mean residual life model, e(x|z) = exp(θT z)e0(x) where e(x|z) de-
notes the conditional mean residual life function given Z = z. Chen et al. (2005)
provide a nice review of various models and study estimation in the same semi-
parametric proportional mean residual life regression model considered by Maguluri
and Zhang (1994), but in the presence of right censoring. Their proposed estima-
tion method involves inverse probability of censoring weighted (IPCW) estimation
methods (Horvitz and Thompson (1952); Robins and Rotnitzky (1992)). Chen and
Cheng (2005) use counting process methods to develop alternative estimators for the
proportional mean residual life model in the presence of right censoring. The meth-
ods of estimation considered by Maguluri and Zhang (1994), Chen et al. (2005), and
Chen and Cheng (2005) are apparently inefficient. Oakes and Dasu (2003) consider
information calculations and likelihood based estimation in a two-sample version of
the proportional mean residual life model. Their calculations suggest that certain
weighted ratio-type estimators may achieve asymptotic efficiency, but a definitive
answer to the issue of efficient estimation apparently remains unresolved. Chen and
Cheng (2006) proposed an alternative additive semiparametric regression model
involving mean residual life. Ma and Yin (2010) considered a large family of semi-
parametric regression models which includes both the additive model proposed by
Chen and Cheng (2006) and the proportional mean residual life model considered
by earlier authors, but advocated replacing mean residual life by median residual
life. Gelfand and Kottas (2003) also developed a median residual life regression
model with additive structure and took a semiparametric Bayesian approach to
inference.

7.5. Monotone and Ordered mean residual life functions

Kochar et al. (2000) consider estimation of eF subject to the shape restrictions that
eF is increasing or decreasing. The main results concern ad-hoc estimators that are
simple monotizations of the basic nonparametric empirical estimators ên studied
here. These authors show that the nonparametric maximum likelihood estimator
does not exist in the increasing MRL case and that although the nonparametric
MLE exists in the decreasing MRL case, the estimator is difficult to compute.
Ebrahimi (1993) and Hu et al. (2002) study estimation of two mean residual life
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functions eF and eG in one- and two-sample settings subject to the restriction
eF (x) ≤ eG(x) for all x. Hu et al. (2002) also develop large sample confidence
bands and intervals to accompany their estimators.

7.6. Bivariate residual life

Jupp and Mardia (1982) defined a multivariate mean residual life function and
showed that it uniquely determines the joint multivariate distribution, extending
the known univariate result of Cox (1962); see Hall and Wellner (1981) for a review
of univariate results of this type. See Ma (1996, 1998) for further multivariate
characterization results. Kulkarni and Rattihalli (2002) introduced a bivariate mean
residual life function and propose natural estimators.
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