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This paper sketches a review of the developments in semiparametric
statistics since the publication in 1993 of the monograph by Bickel,
Klaassen, Ritov, and Wellner.

1. Introduction

This paper gives a brief review of some of the major theoretical devel-
opments in the theory of semiparametric models since publication of our
jointly authored book, Bickel, Klaassen, Ritov, and Wellner (1993), hence-
forth referred to as BKRW (1993). It is, for reasons of space, a very selec-
tive and somewhat personal review. We apologize in advance to all of those
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whose works we have not covered for any reason.
A major focus in semiparametric theory is on asymptotic efficiency. A

special case of this semiparametric efficiency occurs when the least favorable
parametric submodel of the semiparametric model is a natural parametric
model. Typically this natural parametric model is the model from which the
semiparametric model is built by relaxing distributional assumptions. For
example in the semiparametric symmetric location model the least favorable
parametric submodel is the symmetric location model with the symmetric
density known. In the semiparametric linear regression model with the er-
ror distribution unknown with mean zero, the least favorable parametric
submodel is the linear regression model with the error distribution known.
The first semiparametrically efficient procedures were developed in these
cases and they were called adaptive because they adapted themselves to
the unknown underlying density. Stone (1975) and Beran (1974) were the
first to construct efficient estimators in the semiparametric symmetric lo-
cation model, preceded by van Eeden (1970) who proved efficiency of her
estimator with the symmetric densities assumed to be strongly unimodal.
A milestone in this line of research was the paper by Bickel (1982). Actu-
ally, existence of adaptive procedures was suggested already in the fifties
by Stein (1956) and the first adaptive test was presented by Hájek (1962).

Meanwhile Cox (1972) introduced the proportional hazards model and
his estimators for the parametric part of the model, and Cox (1975) in-
troduced his notion of “partial likelihood”. There was a flurry of work in
the late 1970’s in an effort to understand the efficiency properties of Cox’s
“partial likelihood” estimators: e.g. Efron (1977), Oakes (1977), and Kay
(1979). The work of the first author of the present paper (culminating in
Begun, Hall, Huang and Wellner (1983)), began with an effort to rework
and generalize the calculations of Efron (1977) along the lines of some of
the modern information bound theory in papers of Beran (1977a, 1977b).

The first appearances of the term “semiparametric” in the literature
(of which we are aware) occur in a Biometrics paper by Gail, Santner,
and Brown (1980) and in a paper in Demography by Finnas and Hoem
(1980). Within a year the term was also used by Oakes (1981) in his in-
fluential review of work on the Cox (1972) model, and by Turnbull (1981)
in his Mathematical Reviews review of Kalbfleisch and Prentice (1980).
Subsequently the term was applied by Epstein (1982, 1983) in reviews of
Whitehead (1980) (who used the terminology “partially parametric”) and
Oakes (1981), by Louis, Mosteller, and McPeek (1982), page 95, and by
Andersen (1982), page 67. Unfortunately, the first author of the present



September 20, 2005 8:10 WSPC/Trim Size: 9in x 6in for Review Volume bickfs-krw-f14

Review of Progress since BKRW (1993) 3

paper in writing Begun, Hall, Huang, and Wellner (1983) used the termi-
nology “parametric - nonparametric” and “mixed model”. The terminology
“semiparametric” became accepted, however, as can be seen from Figure 1
which shows appearance of the term “semiparametric” in title, keywords,
or abstract in three major indexes of statistical literature: MathSciNet, the
Current Index of Statistics, and the ISI Web of Science.
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Fig. 1. Numbers of papers with “semiparametric” in title, keywords, or abstract, by
year, 1984 - 2004. Red = MathSciNet; Green = Current Index of Statistics (CIS); Blue
= ISI Web of Science

2. Progress in semiparametric model theory since 1993: a
short review

The theory of estimation and testing for semiparametric models has been
developing rapidly since the publication of BKRW in (1993). Here we briefly
survey some of the most important of these developments from our per-
spective and pose some questions and challenges for the future. We will not
attempt to review the many applications of semiparametric models since
they have become too numerous to review in the limited space available
here. [A search on MathSciNet in early May 2005 for “semiparametric”
gave 1185 hits.] Our review will be broken down according to the following
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(somewhat arbitrary and overlapping) categories:

• Missing data models.
• Testing and profile likelihood theory.
• Semiparametric mixture model theory.
• Rates of convergence via empirical process methods.
• Bayes methods and theory.
• Model selection methods.
• Empirical likelihood.
• Transformation and frailty models.
• Semiparametric regression models.
• Extensions to non-i.i.d. data.
• Critiques and possible alternative theories.

2.1. Missing data models

[A search on MathSciNet in early May 2005 for “semiparametric” and
“missing data” gave 15 hits.] A major development in this area was the
systematic development of information bounds for semiparametric regres-
sion models with covariates missing at random by Robins, Rotnitzky, and
Zhao (1994), Robins, Rotnitzky, and Zhao (1995), and Robins, Hsieh, and
Newey (1995); see also Robins and Rotnitzky (1992), Robins and Rotnitzky
(1995), and Nan, Emond, and Wellner (2004). For another recent treatment
of the information bound calculations under Coarsening At Random (CAR)
and Missing At Random (MAR), see van der Vaart (1998), pages 379 - 383.

The information bounds for missing data models have been shown to be
achievable in some special cases: for examples involving two-stage sampling,
see Breslow, McNeney, and Wellner (2003), and see Chen (2002), Chen
(2004), and Wang, Linton, and Härdle (2004) for further examples and
recent developments. Much further work is needed in this area.

2.2. Testing and profile likelihood theory

[A search on MathSciNet in early May 2005 for “semiparametric” and “pro-
file likelihood” gave 13 hits; a search for “semiparametric” and “testing”
gave 233 hits.] Although BKRW (1993) did not manage to treat the theory
of tests for semiparametric models, the literature developed rapidly in this
area during the mid and late 1990’s, with contributions by Choi, Hall, and
Schick (1996), Murphy and van der Vaart (1997), and Murphy and van der
Vaart (2000). In particular, Severini and Wong (1991) initiated the study of
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profile likelihood methods in semiparametric settings, and their study was
developed further by Murphy and van der Vaart (1997) and Murphy and
van der Vaart (2000). Murphy and van der Vaart (1997, 2000) show that
semiparametric profile likelihoods have quadratic expansions in the efficient
scores under appropriate Donsker type hypotheses on the scores correspond-
ing to a least favorable sub-model and a certain “no-bias” condition. This
important development opens the door to likelihood ratio type tests and
confidence intervals in many semiparametric models for which the least fa-
vorable sub-models can be constructed. The main difficulty in applying the
results of Murphy and van der Vaart (2000) seems often to be in construc-
tion of least favorable submodels with the right properties. Severini and
Staniswalis (1994) develop methods based on combining techniques from
profile likelihood and quasi-likelihood considerations, while Lee, Kosorok,
and Fine (2005) propose Bayesian MCMC methods applied to the semipara-
metric profile likelihood. Banerjee (2005) has studied the power behavior
of likelihood ratio tests under contiguous alternatives, and shows that the
limiting distributions under local alternatives are non-central chi-square
with shift parameter involving a quadratic form in the efficient informa-
tion matrix. Murphy and Van der Vaart (1999) study the use of “observed
information” in semiparametric models and applications thereof to testing.

Testing a parametric fixed link single-index regression model against a
semiparametric alternative single-index model was considered by Horowitz
and Härdle (1994), but with the parameter θ0 involved in the single index
under both null and alternative. The case of index parameter allowed to
differ under the alternative was considered by Härdle, Spokoiny, and Sper-
lich (1997). Kauermann and Tutz (2001) consider testing certain classes of
parametric and semiparametric regression models against general smooth
alternatives. On the other hand, Bickel, Ritov, and Stoker (2005a) argue
that there is no real notion of optimality in testing of semiparametric com-
posite hypotheses. Any test would have negligible power against departures
in most directions. Their recommendation is to use tailor-made tests, which
concentrate power in directions which are important to the investigator.
These general ideas were applied to index models in Bickel, Ritov, and
Stoker (2005b).

2.3. Semiparametric mixture model theory

[A search on MathSciNet in early May 2005 for “semiparametric” and “mix-
ture model” gave 37 hits.] In a classical paper proposing models alterna-
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tive to those considered by Neyman and Scott (1948), Kiefer and Wol-
fowitz (1956) showed that maximum likelihood estimators are consistent
in a large class of semiparametric mixture models before the term “semi-
parametric” was in existence. Although other less satisfactory estimators
had been constructed for many models of this type during the 1970’s and
1980’s (see e.g. van der Vaart (1988)), efficiency and asymptotic normality
of maximum likelihood estimators were completely unknown through the
mid-1990’s. But van der Vaart (1996) succeeded in using empirical pro-
cess theory methods together with methods and results of Pfanzagl (1988)
and Pfanzagl (1990) to establish asymptotic normality and efficiency of the
maximum likelihood estimators for several important examples of this type
of model (including an exponential frailty model, a normal theory errors
in variables model, and a model involving scale mixtures of Gaussians). It
seems difficult to formulate a completely satisfactory general theorem, but
it also seems clear that the methods of van der Vaart (1996) will apply to
a wide range of semiparametric mixture models.

2.4. Rates of convergence via empirical process methods

[A search on MathSciNet in early may 2005 for “semiparametric” and
“convergence rate” gave 27 hits. Searching for “nonparametric” and “con-
vergence rate” gave 214 hits.] Rates of convergence of minimum contrast
estimators, maximum likelihood estimators, and variants of maximum like-
lihood involving sieves and penalization, mostly aimed at nonparametric
settings, were a topic of considerable research during the 1990’s, beginning
with Wong and Severini (1991), Birgé and Massart (1993), Shen and Wong
(1994), and Wong and Shen (1995). The results of these authors rely on
sharp bounds for local oscillations of empirical processes indexed by the
classes of functions involved in the maximization, and hence are closely re-
lated to the available bounds for suprema of empirical processes. See van
der Vaart and Wellner (1996) sections 3.2 and 3.4 for a recasting of those
results.

This initial progress continued with van de Geer (1996), Birgé and Mas-
sart (1998), Shen (1997), and Shen and He (1997).

The results in these works have important consequences for maximum
likelihood estimators as well as sieved and penalized maximum likelihood
estimators in semiparametric models. For example, Huang (1996) used the
methods of Birgé and Massart (1993) and Wong and Shen (1995) to obtain
rates of convergence of maximum likelihood estimators for Cox’s propor-
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tional hazards model with current status data. See van der Vaart (2002),
section 8, pages 424 - 432, for a summary of the methods and an alternative
treatment of Huang’s results. van der Vaart (2002) also gives a number of
other nice applications of empirical process theory to problems in semipara-
metric models.

2.5. Bayes methods and theory

[A search on MathSciNet in early May 2005 for “semiparametric” and
“Bayesian” gave 121 hits.] Bayes estimators and procedures have been
proposed for a wide range of semiparametric models: see Lenk (1999)
for a Bayesian approach to semiparametric regression, Müller and Roeder
(1997) for a Bayesian model for case-control studies, Vidakovic (1998) for
Bayes methods in connnection with wavelet based nonparametric estima-
tion, Newton, Czado, and Chappell (1996) for Bayes inference for semi-
parametric binary regression, and Ghosal and van der Vaart (2001) for
Bayes estimation with mixtures of normal densities. Lazar (2003) gives
an interesting Bayes approach to empirical likelihood (see below), while
Sinha, Ibrahim, and Chen (2003) give an interesting Bayesian justification
of Cox’s partial likelihood. Much of the popularity of Bayes methods is
due to the new computational tools available; see e.g. Gilks, Richardson,
and Speigelhalter (1999), Carlin and Louis (2000), and Robert and Casella
(2004). Considerable progress has been made in understanding consistency
issues and rates of convergence of Bayes procedures (see e.g. Ghosal, Ghosh,
and Samanta (1995), Ghosal, Ghosh, and van der Vaart (2000), Shen and
Wasserman (2001), and Huang (2004)), but major gaps remain in the the-
ory. For example, a suitably general Bernstein - von Mises theorem is still
lacking despite several initial efforts in this direction. Freedman (1999) gives
negative results for non-smooth functionals in the context of nonparametric
regression (which are not surprising from the perspective of semiparametric
information bounds), while Kim and Lee (2004) give more positive results
in a right censoring model with smooth functionals, and Shen (2002) gives
some preliminary general results. Kleijn and van der Vaart (2002) give a
treatment of Bayes estimators in the case of miss-specified models. From
the examples, it is clear that Bayes procedures need not even be consistent
in general and that care is needed with respect to the choice of priors. The
growing number of examples and special cases point to the need for a more
complete theoretical understanding.
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2.6. Model selection methods

[A search on MathSciNet in early May 2005 for “semiparametric” and
“model selection” gave 28 hits.] Theoretical understanding of model selec-
tion methods in nonparametric estimation problems has progressed rapidly
during the last 10 years with major contributions by Birgé and Massart
(1997), Birgé and Massart (1998), Barron, Birgé, and Massart (1999), and
Birgé and Massart (2001). Also see Massart (2000) and Massart’s forthcom-
ing St. Flour Lecture notes from 2003. These developments have begun to
have some impact on semiparametric estimation as well: Raftery, Madigan,
and Volinsky (1996) and Raftery, Madigan, Volinsky, and Kronmal (1997)
used Bayesian methods for covariate selection in Cox models. Tibshirani
(1997) introduces “lasso” methods for proportional hazards models (which
involve an L1 penalty term), while Fan and Li (2002) propose an alternative
approach based on a non-concave penalty, and extend these methods to a
class of frailty models (see below). Bunea (2004) studies the effect of covari-
ate selection methods on inference in a partly linear regression model, and
this is carried over to non-proportional hazards models in survival analysis
by Bunea and McKeague (2005). It would be of some interest to extend
these developments to the models considered by Huang (1999). We suspect
that much more remains to be done to fully understand the advantages and
disadvantages of various model-selection strategies.

2.7. Empirical likelihood

[A search on MathSciNet in early May 2005 for “semiparametric” and “em-
pirical likelihood” gave 18 hits; searching for “empirical likelihood” alone
gave 192 hits.] Owen (1988) and Owen (1990) introduced the notion of em-
pirical likelihood and showed how a reasonable facsimile of the standard
theorem for the likelihood ratio statistic in regular parametric models con-
tinues to hold for finite-dimensional smooth functionals ν(P ), ν : P → R

d.
The basic notion in Owen’s theory involves estimation of P in the restricted
model P0 = {P ∈ M : ν(P ) = t0} where t0 ∈ R

d is fixed. The resulting
model can be viewed as a semiparametric model with a tangent space having
finite co-dimension in L0

2(P ), one of the topics treated in BKRW (see section
6.2, pages 222- 229) and much earlier by Koshevnik and Levit (1976). This
led to a considerable development of “empirical likelihood” based meth-
ods in connection with estimating equation approaches to a wide variety of
semiparametric models: see e.g. Owen (1991), Qin (1993), Qin and Lawless
(1994), Qin and Lawless (1995), and Lazar and Mykland (1999). Qin (1998)
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and Zhou, Fine, and Yandell (2002) give applications to mixture models.

2.8. Transformation and frailty models

[A search on MathSciNet in early May 2005 for “semiparametric” and
“frailty” gave 28 hits searching for “semiparametric” and “transformation”
gave 35 hits.] Cox (1972) introduced the proportional hazards model, re-
sulting in one of the most cited papers in statistics ever. The Cox pro-
portional hazards model for survival data is a transformation model with
the baseline cumulative hazard function as unknown transformation. It is
one of the prime examples of a semiparametric model in BKRW. Clayton
and Cuzick (1985) generalized the Cox model by introducing frailty as an
unobservable random factor in the hazard function. The results of Clay-
ton and Cuzick inspired the key theoretical development in Bickel (1986);
also see Klaassen (2005) for further discussion of the differential equations
determining the efficient score functions in transformation models. These
developments started a stream of papers that propose pragmatic methods
in ever more complicated frailty models incorporating e.g. cluster-frailty,
censoring etc. Efficiency of the proposed inference procedures is not neces-
sarily a goal here; e.g. Li and Ryan (2002). Murphy (1995) provided key
asymptotic theory for maximum likelihood estimation methods in a basic
gamma-frailty model, and her methods were extended to more complicated
frailty models by Parner (1998).

Another fundamental paper is Bickel and Ritov (1997) which discusses
the issue of loss of efficiency when going from core to transformation model.
The methods advocated by Bickel and Ritov have been implemented in the
case of the binormal ROC model by Zou and Hall (2000), Zou and Hall
(2002); see Hsieh and Turnbull (1996) for background material concerning
ROC curve estimation. Cai and Moskowitz (2004) give a profile likelihood
approach to estimation in ROC models that deserves further study and
evaluation.

Copula models for joint distributions have started receiving increas-
ing interest in econometrics, finance, and other application areas. Klaassen
and Wellner (1997) identified normal location-scale families as the least
favorable sub-models for the class of bivariate normal copula models and
constructed efficient estimators. Progress on efficient estimation for other
copula models remains as a challenging open problem (with potential recent
progress by Chen, Fan, and Tsyrennikov (2004)).

A study of transformation and other semiparametric models with a focus
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on applications in econometrics is given in Horowitz (1998). A Bayesian
approach is presented by Mallick and Walker (2003).

2.9. Semiparametric regression models

[A search on MathSciNet in early May 2005 for “semiparametric” and “re-
gression” gave 652 hits.] A motivating class of models for BKRW were the
“partially linear semiparametric regression models” studied in section 4.3,
pages 107 - 112, BKRW (1993). It was already shown in Ritov and Bickel
(1990) that efficient estimators cannot be constructed in these semipara-
metric models without smoothness assumptions on the class of functions
allowed (also see section 2.11 below). On the other hand, Schick (1993) gave
a treatment of information bounds and construction of efficient estimators
for the parametric component for a general class of models encompassing
those treated in BKRW that improved on the results of Cuzick (1992). His
approach was via estimation of the efficient influence function.

In the meantime information bounds and efficient estimators have now
been constructed for many generalizations and variants of these models.
For example, Sasieni (1992a) and Sasieni (1992b) calculated information
bounds for a partially linear version of the Cox proportional hazards model.
Estimates achieving the bounds were constructed by Huang (1999). Efficient
estimation in a different but related class of models was studied by Nielsen,
Linton, and Bickel (1998).

Interesting classes of semilinear semiparametric regression models for
applications to micro-array data have recently been introduced by Fan,
Peng, and Huang (2005) and Huang, Wang, and Zhang (2005). There seem
to be a large number of open questions connected with these models and
their applications.

For a Bayesian approach to semiparametric regression models, see Seifu,
Severini, and Tanner (1999).

2.10. Extensions to non-i.i.d. data

[A search on MathSciNet in early May 2005 for “semiparametric” and “time
series” gave 139 hits.] Semiparametric theory for times series models was al-
ready well underway by the time BKRW was published in (1993). For exam-
ple, Kreiss (1987) had considered adaptive estimation (in the sense of Stein
(1956) and BKRW) for stationary (causal) ARMA processes, while Gassiat
(1990), (1993) showed that adaptation is not possible in the case of non-
causal ARMA models. Drost, Klaassen, and Werker (1997) and Drost and
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Klaassen (1997) generalized the results of Kreiss and others (notably Koul
and Schick (1997)) to classes of non-linear time series models. Koul and
Schick (1996) considered an interesting random coefficient autoregressive
model. The current state of the art is summarized in Greenwood, Müller,
and Wefelmeyer (2004).

Consideration of information bounds and efficient estimation more gen-
erally for a wide variety of Markov chains and other Markov processes
finally emerged in the mid- and late 1990’s: see e.g. Greenwood and We-
felmeyer (1995), Schick and Wefelmeyer (1999), and Kessler, Schick, and
Wefelmeyer (2001). Bickel and Kwon (2001) (following up on Bickel (1993))
reformulated much of this work and provided considerable unification. Also
see the discussion piece by Greenwood, Schick, and Wefelmeyer following
Bickel and Kwon (2001).

Another interesting direction of generalization concerns relaxing from
“structural” (or i.i.d.) modeling to “functional” (non - i.i.d.) modeling. For
an interesting study of the classical normal theory “errors in variables”
model under “functional” or “incidental nuisance parameters”, see Murphy
and van der Vaart (1996). McNeney and Wellner (2000) give a review of
information bounds for functional models.

2.11. Critiques and possible alternative theories

In two key papers Bickel and Ritov (1988) and Ritov and Bickel (1990)
pointed out that attainment of information bounds in semiparametric and
nonparametric situations requires additional assumptions on the dimen-
sionality of the parameter space. They gave several explicit examples of
differentiable functionals, for which the information bounds are finite and
yet are not attained in general by any estimator. One of these examples is
the functional ν(P ) =

∫ 1

0
p2(x)dx for probability measures P on [0, 1] with

density p with respect to Lebesgue measure. Another example involves es-
timation of θ in the partly linear regression model Y = θT Z + r(X) + ε

based on observation of (Y, Z, X). In both examples, the standard semi-
parametric bounds are attained when the parameters p and r are assumed
to be smooth enough. However, for other smoothness classes, one can show
that the (attained) minimax rate is much slower than n−1/2. Moreover, in
general, there is not even a consistent estimator. Thus there exists a “gap”
between the semiparametric information bounds based on Hellinger differ-
entiability, and the “real” information bounds that consider the amount of
smoothness assumed. Birgé and Massart (1995) develop theory for other
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nonlinear functionals of the form ν(P ) =
∫ 1

0 φ(p(x), p′(x), . . . , p(k)(x))dx

for densities p of smoothness s, and for s ≥ 2k + 1/4 they construct esti-
mators converging at rate n−1/2. Moreover they show that ν(P ) cannot be
estimated faster than n−γ with γ = 4(s − k)/(4s + 1) when s < 2k + 1/4.

These examples and others have been developed further by Robins and
Ritov (1997) who make some steps toward development of a “Curse of Di-
mensionality Appropriate” (or CODA) asymptotic theory of semiparamet-
ric models. Robins and Ritov argue via a class of models involving miss-
ing data that the existing theory is inadequate and should be altered to
incorporate more uniformity in convergence to the limiting distributions.
Bickel and Ritov (2000) make a somewhat different suggestion involving
regularization of parameters. These ideas deserve further exploration and
development.
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36. Wang, Q., Linton, O., and Härdle, W. (2004). Semiparametric regression
analysis with missing response at random. J. Amer. Statist. Assoc. 99, 334
- 345.

Section 2.2: Testing and profile likelihood theory.
37. Banerjee, M. (2005). Likelihood ratio tests under local alternatives in regular

semiparametric models. Statist. Sinica 15, 635 - 644.



September 20, 2005 8:10 WSPC/Trim Size: 9in x 6in for Review Volume bickfs-krw-f14

Review of Progress since BKRW (1993) 15

38. Bickel, P. J., Ritov, Y., and Stoker, T. M. (2005a). Tailor-made tests for
goodness-of-fit to semiparametric hypotheses. Ann. Statist., to appear.

39. Bickel, P. J., Ritov, Y., and Stoker, T. M. (2005b). Nonparametric testing
of an index model. Identification and Inference for Econometric Models: A
Festschrift in Honor of Thomas J. Rothenberg, ed. by D. W. K. Andrews
and J. H. Stock. Cambridge University Press, Cambridge (2005b).

40. Choi, S., Hall, W. J., and Schick, A. (1996). Asymptotically uniformly most
powerful tests in parametric and semiparametric models. Ann. Statist. 24,
841 - 861.
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151. Birgé, L. and Massart, P. (1995). Estimation of integral functionals of a
density. Ann. Statist. 23, 11 - 29.

152. Ritov, Y. and Bickel, P. J. (1990). Achieving information bounds in non and
semiparametric models. Ann. Statist. 18, 925 - 938.

153. Robins, J.M. and Ritov, Y. (1997). Toward a curse of dimensionality appro-
priate (CODA) asymptotic theory for semi-parametric models. Statistics in
Medicine 16, 285 - 319.


