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• Detection boundaries and Tukey’s “higher criticism” statistic
• A new family of statistics via phi-divergences
• Beyond normality: generalized Gaussian distributions and ...
• Donoho - Jin power heuristics
• Günther Walther’s statistic(s)
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1. Testing problems for sparse normal means

• Initial setting: multiple testing of normal means
For i = 1, . . . , n consider testing

H0,i : Xi ∼ N(0, 1)

versus

H1,i : Xi ∼ N(µi, 1) with µi > 0.
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For i = 1, . . . , n consider testing
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versus
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• Sparsity: proportion εn ≡ n−1#{i ≤ n : µi > 0} is small;
εn ∼ n−β with 0 < β < 1.

• Three questions (in increasing order of difficulty):
◦ Q1: Can we tell if at least one null hypothesis is false?
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1. Testing problems for sparse normal means

• Initial setting: multiple testing of normal means
For i = 1, . . . , n consider testing

H0,i : Xi ∼ N(0, 1)

versus

H1,i : Xi ∼ N(µi, 1) with µi > 0.

• Sparsity: proportion εn ≡ n−1#{i ≤ n : µi > 0} is small;
εn ∼ n−β with 0 < β < 1.

• Three questions (in increasing order of difficulty):
◦ Q1: Can we tell if at least one null hypothesis is false?
◦ Q2: What is the proportion of false null hypotheses?
◦ Q3: Which null hypotheses are false?

• Main focus here: Q1.
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• Previous work: Q1: is there any signal?
◦ Ingster (1997, 1999)
◦ Jin (2004)
◦ Donoho and Jin (2004)
◦ Jager and Wellner (2007)
◦ Hall and Jin (2007)
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• Previous work: Q1: is there any signal?
◦ Ingster (1997, 1999)
◦ Jin (2004)
◦ Donoho and Jin (2004)
◦ Jager and Wellner (2007)
◦ Hall and Jin (2007)

• Previous work: Q2: What is the proportion of non-null
hypotheses?
◦ Swanepoel (1999)
◦ Efron, Tibshirani, Storey, and Tusher (2001)
◦ Meinshausen and Rice (2006)
◦ Jin and Cai (2007)

• Previous work: Q3: Where is the signal and how big is it?
◦ Benjamini and Hochberg (1995)
◦ Efron, Tibshirani, Storey, and Tusher (2001)
◦ Storey, Dai, and Leek (2005)
◦ Donoho and Jin (2006)
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2. Detection boundaries and
Tukey’s “higher criticism statistic

• Change of setting: Ingster - Donoho - Jin testing problem
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2. Detection boundaries and
Tukey’s “higher criticism statistic

• Change of setting: Ingster - Donoho - Jin testing problem
• Suppose Y1, . . . , Yn i.i.d. G on R
• test H : G = N(0, 1) versus
H1 : G = (1− ε)N(0, 1) + εN(µ, 1), and, in particular, against

H(n)
1 : G = (1− εn)N(0, 1) + εnN(µn, 1).

for εn = n−β , µn =
√
2r log n

0 < β < 1, 0 < r < 1.
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2. Detection boundaries and
Tukey’s “higher criticism statistic

• Change of setting: Ingster - Donoho - Jin testing problem
• Suppose Y1, . . . , Yn i.i.d. G on R
• test H : G = N(0, 1) versus
H1 : G = (1− ε)N(0, 1) + εN(µ, 1), and, in particular, against

H(n)
1 : G = (1− εn)N(0, 1) + εnN(µn, 1).

for εn = n−β , µn =
√
2r log n

0 < β < 1, 0 < r < 1.
• Let Φ(z) ≡ P (Z ≤ z) =

∫ z
−∞(2π)−1/2 exp(−x2/2)dx,

Z ∼ N(0, 1).
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• transform to Xi ≡ 1− Φ(Yi) ∈ [0, 1] i.i.d.

F = 1−G(Φ−1(1− ·)).
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• transform to Xi ≡ 1− Φ(Yi) ∈ [0, 1] i.i.d.

F = 1−G(Φ−1(1− ·)).

• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus
H(n)

1 : F (u) = u+ εn{(1− u)− Φ(Φ−1(1− u)− µn)}
= (1− εn)u+ εn{1− Φ(Φ−1(1− u)− µn)}
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• transform to Xi ≡ 1− Φ(Yi) ∈ [0, 1] i.i.d.

F = 1−G(Φ−1(1− ·)).

• Then the testing problem becomes: test

H0 : F = F0 = U(0, 1) versus
H(n)

1 : F (u) = u+ εn{(1− u)− Φ(Φ−1(1− u)− µn)}
= (1− εn)u+ εn{1− Φ(Φ−1(1− u)− µn)}

• Test statistics: Donoho-Jin

HC∗
n ≡ sup

X(1)≤u<X([n/2])

√
n(Fn(u)− u)√

u(1− u)

≡ Tukey’s “higher criticism statistic”

where Fn(u) ≡ n−1∑n
i=1 1[0,u](Xi) = empirical distribution

function of the Xi’s.
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• Optimal detection boundary ρ∗(β) defined by:

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4

(1−
√
1− β)2, 3/4 < β < 1
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• Optimal detection boundary ρ∗(β) defined by:

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4

(1−
√
1− β)2, 3/4 < β < 1

• Theorem 1: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on HC∗

n is size and power consistent for testing H0

versus H(n)
1 .
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• Optimal detection boundary ρ∗(β) defined by:

ρ∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4

(1−
√
1− β)2, 3/4 < β < 1

• Theorem 1: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on HC∗

n is size and power consistent for testing H0

versus H(n)
1 .

• With hn(αn) =
√

2 log log(n)(1 + o(1))

PH0
(HC∗

n > hn(αn)) = αn → 0, and
PH(n)

1
(HC∗

n > hn(αn)) → 1, as n → ∞.
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Figure 1. Detection boundary: r > ρ∗(β) detectable
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Some alternative statistics:
• Berk-Jones (1979) test statistic:

Rn ≡ sup
x

log λn(x) = sup
x

K(Fn(x), F0(x)) with

K(u, v) ≡ u log
(u
v

)
+ (1− u) log

(
1− u

1− v

)
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Some alternative statistics:
• Berk-Jones (1979) test statistic:

Rn ≡ sup
x

log λn(x) = sup
x

K(Fn(x), F0(x)) with

K(u, v) ≡ u log
(u
v

)
+ (1− u) log

(
1− u

1− v

)

• Adaptation to one-sided p−value setting:

BJ+
n ≡ n sup

X(1)≤u≤1/2
K+(Fn(u), u)

where

K+(u, v) ≡






K(u, v), if 0 < v < u < 1,

0, if 0 ≤ u ≤ v ≤ 1,

+∞, otherwise.
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• Theorem 2: (Donoho - Jin, 2004). For r > ρ∗(β) the test
based on BJ+

n is size and power consistent for testing H0

versus H(n)
1 ; i.e. with hn(αn) =

√
2 log log(n)(1 + o(1))

PH0
(BJ+

n > hn(αn)) = αn → 0, and
PH(n)

1
(BJ+

n > hn(αn)) → 1, as n → ∞.
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:
• For s ∈ R, x ≥ 0 define

φs(x) =






1−s+sx−xs

s(1−s) , s += 0, 1

x log x− x+ 1, s = 1

− log x+ x− 1, s = 0 .
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:
• For s ∈ R, x ≥ 0 define

φs(x) =






1−s+sx−xs

s(1−s) , s += 0, 1

x log x− x+ 1, s = 1

− log x+ x− 1, s = 0 .

• Then define

Ks(u, v) = vφs(u/v) + (1− v)φs((1− u)/(1− v)) .
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• Special cases:

K1(u, v) = K(u, v)

= u log(u/v) + (1− u) log((1− u)/(1− v))

K0(u, v) = K(v, u)

K2(u, v) =
1

2

(u− v)2

v(1− v)

K−1(u, v) = K2(v, u) =
1

2

(u− v)2

u(1− u)

K1/2(u, v) = 2{(
√
u−

√
v)2 + (

√
1− u−

√
1− v)2}

= 4{1−
√
uv −

√
(1− u)(1− v)}.
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• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1

supx∈[X(1),X(n))Ks(Fn(x), F0(x)), s < 1 ,
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• The new family of statistics:

Sn(s) =

{
supx∈R Ks(Fn(x), F0(x)), s ≥ 1

supx∈[X(1),X(n))Ks(Fn(x), F0(x)), s < 1 ,

• Thus, with F0(x) = x,

Sn(1) = Rn, Sn(0) = “reversed” Berk-Jones ≡ R̃n

Sn(2) =
1

2
sup
x∈R

(Fn(x)− x)2

x(1− x)
,

Sn(−1) =
1

2
sup

x∈[X(1),X(n))

(Fn(x)− x)2

Fn(x)(1− Fn(x))

Sn(1/2)

= 4 sup
x∈[X(1),X(n))

{1−
√
Fn(x)x−

√
(1− Fn(x))(1− x)}
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• Version of the statistics for one-sided p−value setting:

S+
n ≡ n sup

X(1)≤u≤1/2
K+

s (Fn(u), u)

where

K+
s (u, v) ≡






Ks(u, v), if 0 < v < u < 1,

0, if 0 ≤ u ≤ v ≤ 1,

+∞, otherwise.
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• Version of the statistics for one-sided p−value setting:

S+
n ≡ n sup

X(1)≤u≤1/2
K+

s (Fn(u), u)

where

K+
s (u, v) ≡






Ks(u, v), if 0 < v < u < 1,

0, if 0 ≤ u ≤ v ≤ 1,

+∞, otherwise.

• Theorem: (Jager - Wellner, 2007). For r > ρ∗(β) the tests
based on S+

n (s) with −1 ≤ s ≤ 2 are size and power
consistent for testing H0 versus H(n)

1 ; i.e. With
sn(αn) = log log(n)(1 + o(1))

PH0
(S+

n > sn(αn)) = αn → 0, and
PH(n)

1
(S+

n > sn(αn)) → 1, as n → ∞.
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Figure 2. Separation plots: n = 5× 105, r = .15, β = 1/2
Smoothed histograms of reps = 200 of the statistics under the
null hypothesis and the the alternative hypothesis
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4. Beyond normality:
generalized Gaussian distributions, ...

• Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ∼ GNγ(µ) has density function

fγ,µ(x) =
1

Cγ
exp

(
−|x− µ|γ

γ

)
, Cγ = 2Γ(1/γ)γ1/γ−1.
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4. Beyond normality:
generalized Gaussian distributions, ...

• Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ∼ GNγ(µ) has density function

fγ,µ(x) =
1

Cγ
exp

(
−|x− µ|γ

γ

)
, Cγ = 2Γ(1/γ)γ1/γ−1.

• Suppose Y1, . . . , Yn i.i.d. G on R.
• Test H0 : G = GNγ(0) versus
H(n)

1 : G = (1− εn)GNγ(0) + εnGNγ(µn) where

εn = n−β , µγ,n = (γr log n)1/γ ,

where 1/2 < β < 1, 0 < r < 1.
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• Detection boundary for 1 < γ ≤ 2:

ρ∗γ(β) =

{
(21/(γ−1) − 1)γ−1(β − 1/2), 1/2 < β ≤ 1− 2−γ/(γ−1),

(1− (1− β)1/γ)γ , 1− 2−γ/(γ−1) ≤ β < 1.
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• Detection boundary for 1 < γ ≤ 2:

ρ∗γ(β) =

{
(21/(γ−1) − 1)γ−1(β − 1/2), 1/2 < β ≤ 1− 2−γ/(γ−1),

(1− (1− β)1/γ)γ , 1− 2−γ/(γ−1) ≤ β < 1.

• Detection boundary for 0 < γ ≤ 1:

ρ∗γ(β) = 2(β − 1/2), 1/2 < β < 1.

Note: The detection boundary is the same for all for
0 < γ ≤ 1!
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Figure 3. Detection boundaries for GN testing problem,
γ ∈ {1, 1.5, 2, 3}.
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• Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values pi ≡ P (GNγ(0) > Yi),
i = 1, . . . , n. Then the detection boundary ρHC,γ for this
procedure is the same as the efficient detection boundary:

ρHC,γ(β) = ρ∗γ(β), 1/2 < β < 1.
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• Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values pi ≡ P (GNγ(0) > Yi),
i = 1, . . . , n. Then the detection boundary ρHC,γ for this
procedure is the same as the efficient detection boundary:

ρHC,γ(β) = ρ∗γ(β), 1/2 < β < 1.

• Similar theorem for χ2ν mixtures.
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5. Donoho - Jin Power heuristics

What part of the sample contributes to the power?

• When β ∈ [3/4, 1), the strongest evidence against H0 is
found near the maximum of the observations; i.e. at the
smallest p−values.
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• When β ∈ [3/4, 1), the strongest evidence against H0 is
found near the maximum of the observations; i.e. at the
smallest p−values.

• When β ∈ (1/2, 3/4] other p−values beyond the smallest
contribute to the power.
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What part of the sample contributes to the power?

• When β ∈ [3/4, 1), the strongest evidence against H0 is
found near the maximum of the observations; i.e. at the
smallest p−values.

• When β ∈ (1/2, 3/4] other p−values beyond the smallest
contribute to the power.

• Since the higher criticism statistic HC∗
n gives more weight to

the smaller p−values, we expect it to have higher power for
alternatives with β ∈ [3/4, 1)
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5. Donoho - Jin Power heuristics

What part of the sample contributes to the power?

• When β ∈ [3/4, 1), the strongest evidence against H0 is
found near the maximum of the observations; i.e. at the
smallest p−values.

• When β ∈ (1/2, 3/4] other p−values beyond the smallest
contribute to the power.

• Since the higher criticism statistic HC∗
n gives more weight to

the smaller p−values, we expect it to have higher power for
alternatives with β ∈ [3/4, 1)

• Since the Berk-Jones (supremum of pointwise likelihood
ratios) statistic BJ+

n gives less weight to the very smallest
p−values, we expect that it might have higher power for
β ∈ (1/2, 3/4].
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6. Walther’s weighted likelihood ratio statistic

Let

logLRn(t) =

{
n{Fn(t) log

Fn(t)
t + (1− Fn(t)) log

1−Fn(t)
1−t , if 0 < t < Fn(t)

0, otherwise.

Thus
BJ+

n = max
1≤i≤n/2

logLRn,i

where

logLRn,i ≡ logLRn(p(i))

=

{
i log

(
i

np(i)

)
+ (n− i) log

(
1− i/n

1− p(i)

)}
1{p(i) < i/n}.
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Start with a uniform prior on β ∈ [1/2, 1). Since the smallest
p−value has most of the information for β ∈ [3/4, 1), collapse the
weight for this interval to weight 1/2 on the interval (0, p(1)]. For
β ∈ (1/2, 3/4), the most promising interval to detect alternatives
with r close to the detection boundary ρ∗(β) = β − 1/2 is the
interval (0, n−4r]. Thus given such a β we will use the LR test on
the interval (0, t] with t = n−4(β−1/2). If β ∼ U(1/2, 3/4), then
t = n−4(β−1/2) has density proportional to 1/t on (1/n, 1].
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Approximation of the resulting posterior integral with the
corresponding weighted sum of the LR at the p(i)’s, normalized
by

n/2∑

i=2

i−1 ≈ log(n/3)

yields the Average Likelihood Ratio Statistic

ALRn =
1

2
LRn,1 +

1

2

n/2∑

i=2

1

i log(n/3)
LRn,i

where

LRn,i =






(
i

np(i)

)i ( 1−i/n
1−p(i)

)n−i
, if p(i) < i/n,

1, if otherwise.
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Proposition. (Walther) ALRn attains the optimal detection
boundary for the sparse normal means problem.
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7. Further problems and challenges

• Exact contiguity results for HCn and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary
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7. Further problems and challenges

• Exact contiguity results for HCn and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary

• Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

• Limiting null distribution of Walther’s Average Likelihood
Ratio Statistic

• Average versions of the Jager-Wellner divergence family
statistics?

• More systematic study of power properties of all these tests.
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Vielen Dank!
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