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* Testing problems for normal means

* Detection boundaries and Tukey’s “higher criticism” statistic
* A new family of statistics via phi-divergences

* Beyond normality: generalized Gaussian distributions and ...
* Donoho - Jin power heuristics

* Gunther Walther’s statistic(s)
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1. Testing problems for sparse normal means

* Initial setting: multiple testing of normal means
Fori:=1,...,n consider testing

HO,?L 5 Xz i~ N(O, 1)
versus

Hl,i . G N(,LLZ', 1) with i > 0.
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1. Testing problems for sparse normal means

* Initial setting: multiple testing of normal means
Fori:=1,...,n consider testing

HO,?L 5 Xz ~ N(O, 1)
versus
Hl,i . G N(,LLZ', 1) with i > 0.

* Sparsity: proportion e, = n"'#{i <n: p; > 0} is small;
er, ~n P with0 < 8 < 1.
* Three questions (in increasing order of difficulty):
°© Q1: Can we tell if at least one null hypothesis is false?
© Q2: What is the proportion of false null hypotheses?
° Q8: Which null hypotheses are false?

* Main focus here: Q1. ,
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* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
o Jin (2004)
°© Donoho and Jin (2004)
° Jager and Wellner (2007)
° Hall and Jin (2007)

Testing for sparse normal means: an update — p. 5/28



* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
° Jin (2004)
°© Donoho and Jin (2004)
° Jager and Wellner (2007)
° Hall and Jin (2007)
* Previous work: Q2: What is the proportion of non-null
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* Previous work: Q1: is there any signal?
° Ingster (1997, 1999)
° Jin (2004)
°© Donoho and Jin (2004)
° Jager and Wellner (2007)
° Hall and Jin (2007)
* Previous work: Q2: What is the proportion of non-null
hypotheses?
°© Swanepoel (1999)
o Efron, Tibshirani, Storey, and Tusher (2001)
© Meinshausen and Rice (2006)
° Jin and Cai (2007)

* Previous work: Q3: Where is the signal and how big is it?
© Benjamini and Hochberg (1995)
° Efron, Tibshirani, Storey, and Tusher (2001)
o Storey, Dai, and Leek (2005)
°© Donoho and Jin (2006) .
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2. Detection boundaries and

Tukey’s “higher criticism statistic

* Change of setting: Ingster - Donoho - Jin testing problem
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Tukey’s “higher criticism statistic

* Change of setting: Ingster - Donoho - Jin testing problem
°* Suppose Yi,..., Y, i.i.d. GonR

°* test H: G= N(0,1) versus
Hi:G=(1-¢€¢)N(0,1)4+€eN(u,1), and, in particular, against

H™ . G = (1-€,)N(0,1) + €N (n, 1).

fore, =n=", u,=2rlogn
0<B8<1,0<r<l.
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2. Detection boundaries and

Tukey’s “higher criticism statistic

* Change of setting: Ingster - Donoho - Jin testing problem
°* Suppose Yi,..., Y, i.i.d. GonR

°* test H: G= N(0,1) versus
Hi:G=(1-¢€¢)N(0,1)4+€eN(u,1), and, in particular, against

H™ . G = (1-€,)N(0,1) + €N (n, 1).

fore, =n=", u,=2rlogn
0<B8<1,0<r<l.

°* letd(z)=P(Z<2) = f_zoo(27r)_1/2 exp(—x2/2)dx,
Z ~ N(0,1).
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.

F=1-G@®'1-").
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.
F=1-G@®'1-").
* Then the testing problem becomes: test

Hy: F=F=U(,1) versus
H" : F(u) = u+ e {(1 —u) — (@711 — u) — pn)}
= (1 —en)u+en{l = D(DH(1 —u) — pn)}
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* transformto X; =1 — ®(Y;) € [0, 1] i.i.d.
F=1-G@®'1-").
* Then the testing problem becomes: test
Hy: F=Fy=U(0,1) versus
H" : F(u) = u+ e {(1 —u) — (@711 — u) — pn)}
=(1—e)u+en{l = O(D (1 —u) — pn)}
* Test statistics: Donoho-Jin

e VA (u) = u)

sup
X (1) Su<X([n/2]) \/u(l - U)

= Tukey’s “higher criticism statistic”

where F,,(u) =n~' > | 19,,(X;) = empirical distribution

function of the Xj;’s. ,
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* Optimal detection boundary p*(5) defined by:

“(8) = B—1/2, 1/2 < <3/4
PYI=Y) a=yT=B)2 3/4<B8<1
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* Optimal detection boundary p*(3) defined by:

(1—-+v1-p0)% 3/4<B<1

® Theorem 1: (Donoho - Jin, 2004). For r > p*(5) the test
based on H(C? is size and power consistent for testing H

p*w):{ B-1/2 1/2 < B < 3/4

versus H\".
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* Optimal detection boundary p*(3) defined by:

e )] B—1/2, 1/2 < <3/4
pr(p) = (1—-vI—=p5)2 3/4<pB<1

® Theorem 1: (Donoho - Jin, 2004). For r > p*(5) the test
based on H(C? is size and power consistent for testing H

versus H\".

* With i, (an) = v/2loglog(n)(1+ o(1))

P, (HC, > hyp(an)) = ap — 0, and

Py (HC > hp(aqn)) — 1, as n — oo.
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Figure 1. Detection boundary: r > p*(3) detectable
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Some alternative statistics:
* Berk-Jones (1979) test statistic:

R, = suplog A\, () = sup K (Fy,(z), Fo(x)) with

u

K(u,v) = ulog (_) (1 — o) ke (1 —u>

v 1 — v
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Some alternative statistics:
* Berk-Jones (1979) test statistic:

R, = suplog A\, () = sup K (Fy,(z), Fo(x)) with

u

K(u,v) = ulog (;) (1 — o) ke (1 —u)

1 —w
* Adaptation to one-sided p—value setting:

BJf=n sup K (F,(u),u)
X1y <u<1/2

where

2

K(u,v), if0<v<u<l,
Kt (u,v) =< 0, If0<u<ov<1,
+00, otherwise.

\
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® Theorem 2: (Donoho - Jin, 2004). For r > p*(5) the test
based on B.J. is size and power consistent for testing Hy

versus Hf ") i.e. with ha (o) = v/2loglog(n)(1 + o(1))

Py (BJ > hy(ag)) = oy — 0, and

P (BJF > hp(an)) — 1, as n — oo.
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:

* Fors € R, x > 0 define

( 1—5(—55_:13833337 S # O, 1

¢s(x) =< zlogz—xz+1, s=1
—logx+2x2—1, s=0.

\
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3. A new family of statistics via phi-divergences

A family of test statistics connecting “Higher criticism” and Berk-Jones:

* Fors € R, x > 0 define

( 1—5(—55_:13833337 S # O, 1

¢s(x) =< zlogz—xz+1, s=1
—logx+2x2—1, s=0.

\

* Then define

Ks(u,v) = vos(u/v) + (1 = 0)ds((1 —u)/(1 = v)).
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* Special cases:

Ki(u,v) = K(u,v)

= ulog(u/v) + (1 — u)log((1 — u)/(1 —v))
Ko(u,v) = K(v,u)

1 (u—w)?
) = 20(1 —v)
K_l(u,v) = KQ(U,U) — %rgt(bl__vzb)

Ky ja(u,0) = 2{(vil — v0)2 + (VI —u — VI —0)?)
— 41 — Vv — /T = w)(1 = v)}.




i s=-1.0
3]
} s=-0.5
I
I
2.5 s= 0.0
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* The new family of statistics:

S, (s) =4 "Puer Ks(Fn(2), Fo(z)), s>1
SUPze[X (1),X(n)) KS(]F'”(:C)? FO(CC)), s <1,
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* The new family of statistics:

S, (s) = sup,er Ks(Frn(x), Fo(z)), s> 1
Supa}E[X(l) X(n)) KS(]Fn(:C) FO(:C))7 s < 1 )

* Thus, with Fy(z) = =z,

~

Sp(1) = Rn, S»(0) = “reversed” Berk-Jones = R,

su(2) = g up CH =0
Sp(—1) = L sup (Fn(z) — 2)°

2 2e[X ), Xom) Fn(@)(1 — Fp(z))
Sn(1/2)
=4 sup {1 - /Fu(x)z — /(1 - Fu(2))(1 - z)}

€[ X(1),X(n))
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* Version of the statistics for one-sided p—value setting:

Sy =n_ sup KT (Fn(u)u)
X(l)SUSI/Q

where

2

Kq(u,v), 1f0<v<u<l,
K;L(u,v)z< 0, ifo<u<wov<l1,
+00, otherwise.

\
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* Version of the statistics for one-sided p—value setting:

St=n sup K (F,(u),u)

n

X(1)§u§1/2
where
[ Ki(u,v), fO0<v<u<l,
K;L(u,v)z 0, ifo<u<wov<l1,
+00, otherwise.

\

® Theorem: (Jager - Wellner, 2007). For » > p*(5) the tests
based on S;f(s) with —1 < s < 2 are size and power
consistent for testing Hy versus H\"; i.e. With
sn(an) = loglog(n)(1 + o(1))

Py, (St > su(an)) = ay — 0, and
Pmn)(S;{ > Sp(ay)) — 1, as n — oo.

Testing for sparse normal means: an update — p. 16/28



Reversed Berk-Jones General family, s =.2
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Figure 2. Separation plots: n = 5 x 10°, » = .15, 8 = 1/2
Smoothed histograms of reps = 200 of the statistics under the
null hypothesis and the the alternative hypothesis
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4. Beyond normality:
generalized Gaussian distributions, ...

* Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin

distributions: X ~ GN, (1) has density function

1 e Y B
Fru(z) = 7 exp (—’ 2 ) , G, =20(1/y)y
Y Y
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. Beyond normality:

generalized Gaussian distributions, ...

* Donoho and Jin (2004) also computed detection boundaries
for sparse mixtures of “Generalized Gaussian” or Subbotin
distributions: X ~ GN, (1) has density function

1 e Y B
Fru(z) = 7 exp (—’ 2 ) , G, =20(1/y)y
Y Y

* Suppose Yi,...,Y, i.i.d. GonR.
° Test Hy : G = GN,(0) versus
H™ : G = (1-€,)GN,(0) + e,GN(11n) Where

en=n"" pyn=(yrlogn),

where 1/2 < <1, 0<r<1.
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* Detection boundary for 1 < v < 2:

o @YY —1pTl(g—1/2), 1/2<pB<1-—277/07D
Pv(ﬁ) o (1 _ (1 _ 5)1/’V)’Y7 1 — 2—/(v—1) < B <.
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* Detection boundary for 1 < ~v < 2:

o @YY —1pTl(g—1/2), 1/2<pB<1-—277/07D
Pv(ﬁ) _ (1 — (1 _ 5)1/7)77 1 — 2—/(v—1) < B <.

* Detection boundary for 0 < v < 1:
PL(B)=2(8-1/2), 1/2<B<1.

Note: The detection boundary is the same for all for
0 <y <1l
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Figure 3. Detection boundaries for GN testing problem,
v € {1,1.5,2,3}.

Testing for sparse normal means: an update — p. 20/28



* Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values p; = P(GN,(0) > Y;),
i = 1,...,n. Then the detection boundary pgc ., for this
procedure is the same as the efficient detection boundary:

pHCH(B) = py(B),  1/2<B<1.
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* Theorem: (Donoho - Jin, 2004). For the higher criticism test
statistic applied to the p-values p; = P(GN,(0) > Y;),
i = 1,...,n. Then the detection boundary pgc ., for this
procedure is the same as the efficient detection boundary:

pHCH(B) = py(B),  1/2<B<1.

* Similar theorem for y2 mixtures.
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5. Donoho - Jin Power heuristics

What part of the sample contributes to the power?

* When g € [3/4,1), the strongest evidence against Hj is
found near the maximum of the observations: i.e. at the
smallest p—values.
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5. Donoho - Jin Power heuristics

What part of the sample contributes to the power?

* When g € [3/4,1), the strongest evidence against Hj is
found near the maximum of the observations: i.e. at the
smallest p—values.

* When g € (1/2,3/4] other p—values beyond the smallest
contribute to the power.

* Since the higher criticism statistic HC gives more weight to
the smaller p—values, we expect it to have higher power for
alternatives with 5 € [3/4,1)

* Since the Berk-Jones (supremum of pointwise likelihood
ratios) statistic B.J gives less weight to the very smallest
p—Vvalues, we expect that it might have higher power for

8 e (1/2,3/4].
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6. Walther’s weighted likelihood ratio statistic

Let
log LR (t) _ n{]Fn(t) log FHT(t) + (1 - Fn(t)) log %7 ifO<t< Fn(t)
. : otherwise.
Thus
BJf = max log LR, ;
1<i<n/2
where
log LR,; = log LR, (pg))
. i 1—1i/n
~ zlog( )"‘ n —1)lo ( )}1 o <i/n}.
{ np(i) ( ) log 1 — pe) e < i/n}
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Start with a uniform prior on 5 € [1/2,1). Since the smallest
p—value has most of the information for 5 € [3/4, 1), collapse the
weight for this interval to weight 1/2 on the interval (0, p,)]. For

B € (1/2,3/4), the most promising interval to detect alternatives
with r close to the detection boundary p*(5) = 8 — 1/2 is the
interval (0,n=%"]. Thus given such a 3 we will use the LR test on

the interval (0,t] with ¢t = n=P=1/2) If 3 ~ U(1/2,3/4), then
t = n~4#~1/2) has density proportional to 1/t on (1/n,1].
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Approximation of the resulting posterior integral with the
corresponding weighted sum of the LR at the p(;y’s, normalized

by
n/2
Z i1~ log(n/3)

=

yields the Average Likelihood Ratio Statistic

n/2

1 1
ALRn — LRn 1+ 5 Z LRnZ

ilog(n/3) ’

where

/

4 ! 1—i/n et
LRn,i — (np(i) ) (1—p(i) ) ) if D) < Z/’n
1, if otherwise.

\
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Proposition. (Walther) ALR,, attains the optimal detection
boundary for the sparse normal means problem.
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7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary
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7. Further problems and challenges
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* Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

Testing for sparse normal means: an update — p. 27/28



7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary

* Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

* Limiting null distribution of Walther’s Average Likelihood
Ratio Statistic

Testing for sparse normal means: an update — p. 27/28



7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary

* Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

* Limiting null distribution of Walther’s Average Likelihood
Ratio Statistic

* Average versions of the Jager-Wellner divergence family
statistics?

Testing for sparse normal means: an update — p. 27/28



7. Further problems and challenges

* Exact contiguity results for HC,, and the phi-diverence
statistics under (some refinement of ) the exact optimal
boundary

* Do all the phi-divergence statistics achieve the optimal
detection regions for the Generalized Gaussian (Subbotin)
sparse mixture model?

* Limiting null distribution of Walther’s Average Likelihood
Ratio Statistic

* Average versions of the Jager-Wellner divergence family
statistics?

* More systematic study of power properties of all these tests.
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Vielen Dank!
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