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Outline

Outline:
e I: Three parameters: mean, median, mode.
e II: Problem: inference for the mode

e III: Estimation of log-concave densities
> Log-concave MLE: unconstrained

> Log-concave MLE: mode constrained

e IV: Inference for the mode via likelihood ratio tests
> Likelihood Ratio test statistics for the mode.

> Null hypothesis and
curvature r = 2 assumption.

> Alternative hypothesis (consistency).

> Less curvature r > 2 holds?
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I: Three parameters: mean, median mode

Let X be a real-valued random variable with density f,
distribution function F'.
e T hree parameters:
> Mean: u(F) 1= E¢(X) = JgxdF(z) = [gzf(z)dx.
> Median: m(F) := F~1(1/2).
> Mode: M(f) = argmaX,crf(x).
e T hree estimators:
Let X1,...,Xn beiid. F, Fp(z) =n"1 T 11x o).
> sample mean: X, = [p xdF,(x)
> sample median: m(Fy) :=F,1(1/2).

> sample mode? need to estimate f.

e Confidence intervals for u, m, or M7
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Gamma(2,1) density: mean (black), median (red), and mode (magenta)
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Fechner(3,1) density: mean (black), median (red), and mode (magenta)
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II: Problem: inference for the mode

e f = a unimodal density on R.
e Let 6 =m = M(f) =the mode of f
e Observe: X1,...,Xy i.i.d. f, empirical d.f. [y,

e Question 1: Estimate 8§ = M(f) “nonparametrically”.
> §n,hn = M(fn,hn) where

Fun @) = [k () dEuw)

Parzen (1962)
> 0, = M(fn ) where

fn = argmax epln(f) = Maximum Likelihood Estimator

for some class of unimodal densities P.

e Question 2: Find 1 — « confidence intervals for 6 = M(f).
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Selected previous / related work:

e Mode estimation via kernel density estimators.

> Parzen (1962); V(K, f) = (f(m)/[f"(m)]?) - [IK (x)]?dx
> Romano (1988a, 1988b); (bootstrap confidence intervals)
> Donoho and Liu (1991); Pfanzagl (1998; 2000)

e Lower bounds: Has'minskii (1979); Donoho and Liu (1991);
Balabdaoui, Rufibach, & W (2009)

e Weak curvature or “acuteness’ hypotheses: Ehm (1996);
Hermann and Ziegler (2004).

e Multiscale methods:
Schmidt-Hieber, Munk and Dimbgen (2013);
Dimbgen and Walther (2008).
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Our approach here: Let mg € R be fixed. Consider testing

H : M(f)=mg versus K : M(f)# mg

where f is log-concave under both H and K. This entails finding
the maximum likelihood estimator fg of a log-concave density f

subject to the constraint M(f) = mg.

Let
e fo the “true” density,
e f, the (unconstrained) log-concave MLE,

e f9 the mode-constrained MLE.

and then g = 109 f; Gn = lodfn; 30 = logf.
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The log-likelihood ratio test statistic for testing H versus K is
2100\, = 2nPylog (%) = 2nP, (@n - ¢g) .
I

Limiting distribution of 2log\;,, under H?

If we have 2log\, —;4 D, then form confidence intervals for mg =
M (fp) by inverting the tests.
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ITII: Estimation of log-concave densities

A. Log concave MLE, unconstrained MLE of f and ¢: Let C
denote the class of all concave functions ¢ : R — [—00,00). The
estimator ¢, based on Xq,..., Xy i.i.d. as fpg is the maximizer of
the "adjusted criterion function”

bn(p) = /Iogf¢an—/f¢(x)dx = /goan—/egp(m)d:c
over ¢ € C where f, = e?.

Basic properties of f,, &n:

e The (nonparametric) MLE f, exists for n > 2 (Walther,
Rufibach, Dimbgen and Rufibach).

o fn can be computed: R-package “logcondens” (Diimbgen
and Rufibach)

e o IS piecewise linear with knots (or kinks) at a subset of the
order statistics.

o Gn=—00 on R\ [X(1y, X(,;»]; SO fn =0 on R\ [X 1y, X))
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e In contrast, the (nonparametric) MLE for the class of
unimodal densities on R does not exist. Birgé (1997) and
Bickel and Fan (1996) consider alternatives to maximum
likelihood for the (large!) class of unimodal densities.

e fn is characterized by: & is the MLE of 10gfg = vg € Km if
and only if

S~ < Yn(ilj), for all x > X(l)?
Hn(m){ = Y,(z), if z is a knot.

where
Fo(o) = [ Faldy Hn@) = [ Fa(o)dy
F(@) = fio g dEn): Yn(@) = [ Fal)dy
Thus

Dn(x) = Hp(x) — Yn(z) <0 with equality at the knots.
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Estimating log-concave densities 45
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Figure 1. Distribution functions and the process D(t) for a Gumbel sample.
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Fi1G 2. The estimated log-concave density for different simulation examples. The sample sizes are
50,100 and 200 respectively for first, second and third columns. The three rows correspond to
simulations from a Normal(0,1), a double-exponential and a Gamma(3,2) density. The bold one
corvesponds to the true density and the dotted one is the estimator.

6th IMS-China, Nanning, 28 June to 1 July, 2017

1.14



50 L. Diimbgen and K. Rufibach
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Figure 3. Density functions and empirical processes for Gumbel samples of size n = 200 and
n = 2000.
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e The MLE's are Hellinger and L1— consistent:
Pal, Woodroofe, & Meyer (2007).

o H(fn,fo) = Op(n=2/3) for d=1: Doss & W (2016).
e The log-concave MLE'’s f, o satisfy

[ 17 0(@) = fo(@)lde —a.s. O

for a < ag where fo(z) < exp(—agl|z| + bg):
Cule, Samworth, and Stewart (2010)

e Pointwise distribution theory for f:
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Pointwise distribution theory for f,:

Assumptions: e fj is log-concave, fp(zg) > O.

o Ifgo (:po)#o then k = 2;
otherW|se k is the smallest inte er such that

(fl?o)_O i=2, k=1, oy )(20) # 0.
o go(() ) is continuous in a neighborhood of zg.
Example: fo(z) = Cexp(—z*) with C = 2 (3/4)/n: k = 4.

Driving process: Y (t) = [ W (s)ds—tFT2, W standard 2-sided
Brownian motion.

Invelope process: H; determined by limit Fenchel relations:
o H (t) <Yy(t) forallteR
3
o Jo(Hy(t) — Yi(£))dH D (t) = 0.

° H,EQ) IS concave.
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Theorem. (Balabdaoui, Rufibach, & W, 2009)

e Pointwise limit theorem for f,(zo):

( nk/ kA1 (20) — fo(z0)) >%d<ckﬂéz)<o>>

n(E=1)/Ch+1) (7 (20) — fh(20)) dpH(0)
where
k+1y, (k) 1/(2k+1)
L fo(z0)" T ey (x0)
k= (k+ 2)! ’
1/(2k4+1)
o _ [ fo@o)*2lel” (z0)|? /
" [(k 4+ 2)1]3
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Mode estimation, log-concave density on R

Let mg = M(fg) be the mode of the log-concave density fo,
recalling that P C Punimodal- LOWer bound calculations using
Jongbloed’s perturbation ¢ of ¢g yields:

Proposition. If fo € Py satisfies fo(mg) > 0, fi(mg) < 0, and fj
is continuous in a neighborhood of zg, and 1} is any estimator
of the mode mg = M(fg), then f, = exp(pe,) With €, = yn—1/5

and v = 2 (x0)?/(5f0(x0)),

lim inf nt/3inf max {En|Tn — M(fn)|, Eo|Tn — M (fo)|}

Th
- 1(5/2 2 [ fo(mo) )1/5
— 4 \10e fo(mg)? '

Does the MLE M(f,) achieve this?
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Proposition. (Balabdaoui, Rufibach, & W, 2009)
Suppose that fg € Pg satisfies:

. . I
e 9§ (m) =0, j=2,....k—1; 9§ (mg) # 0.
e gpék) IS continuous in a neighborhood of xg.

Then M, = M(f,) = min{u : fn(u) = sup; fn(t)}, satisfies

(k + 2)!)2fo(mo)) HERD

J"(gk)(’n”bo)2

where M(H,EQ)) = argmax(H,EQ)) and H}gz) is the LSE of t —
—(k42)(k+1)|t|* in the canonical Gaussian or white-noise model
on R. From Han and W (2016), the rate and dependence of the
constant on fg(mg) and f(gk)(mo) are optimal.

nt/ CETD (M, — M (fo)) =4 <( M(H;EQ))
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B. Log concave MLE, mode constrained

Let P ={feP:. M(f)=m}.
The mode constrained Maximum Likelihood Estimator is

f,? = argmaxfepm/Rlogfd]Fn,

Basic properties of f0, #9:

e The mode constrained (nonparametric) MLE fg exists and
is unique for each m € [X(1)>X(n)]3 Doss (2013).

o f,,g can be computed: Doss (2013); active set algorithm

e 30 = logfQ is piecewise linear with knots (or kinks) at a
subset of the order statistics together with m.

o 39 = —oo on R\ [X(1),X(]; 0 f2 =0 on R\ [X(1), X(,] if
m & [X(1)7X(n)]
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e fn is characterized by: @9 is the MLE of logfg = ¢g € K if
and only if

Hp (z) <Y, (z) forall X3y <z <m,
and
fl\g,R(x) <Y, gr(x) forallm<az< X(n)»

with equality at the knot points where

~ R X n
EO (@) = [, Wy, FYp(a) = [z ™ JR(y)dy,

—~ ~ —~ X ~
Fo 0 (@) = f(x0)0] Fn(®)s  For(@) = Jiux,, ) Fny),
Voo 1.(2) = JZoo B )y, Yo r(2) = Jip x,0) Fr R0y
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IV. Inference for the mode of a log-concave

density

From Balabdaoui, Rufibach, and W (2009): suppose that
° fo IS Iog concave,
0= f is continuous in a neighborhood of mg = M (fy);

o f(g )(mo) < 0. Then M, = M(f,) satisfies

1/ (412 fo(mo) HE (2)
5,75 . m
o) ( 2 (mo)? ) HeE

Key difficulties:
(1) to get (Wald-type) confidence intervals for M (fg) = mg,

need to estimate féQ)(mO) or fo(mo)/f(gQ)(mo)Q?!

(2) The intervals rely on the assumption f(gz)(mo) < 0.
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For example, if fo(z) = caexp(—|z|*/4), then k = 4, the rate of
convergence is nl/9 and the limit distribution becomes

1/9
(61)2 (2)
(fo(mo)lsog4)(mo)|2> MU

Can we avoid estimation of fc()Q)(mo) or go(()k)(mo) via

likelihood ratio methods?
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Let mg € R be fixed. Consider testing

H : M(f)=mg versus K : M(f)# mg

where f is log-concave under both H and K. This entails finding
the maximum likelihood estimator fg of a log-concave density f

subject to the constraint M(f) = mg.
Let
e fo the “true” density,
e f, the (unconstrained) log-concave MLE,

e f9 the mode-constrained MLE.

and then g = 109 f; Gn = lodfn; 30 = logf.
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The log-likelihood ratio test statistic for testing H versus K is

2nlPplog <%>

n

= 2nlPp (@n - 952)
= 2nPy (60— #9) = [ (fa(w) = 2(w)) du

A

— 2on / GndFy — GOdFD
[(X(1):X ()] ( " n>

_ (eanw) _ 8@2) du
[(X(1),X ()]

2log\p,

Limiting distribution of 2log)\, under H?

If we have 2log\, —4 D, then form confidence intervals for mg =
M (fo) by inverting the tests.
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Theorem. A. (At xg &= mg) If gagz)(a:o) < 0 and fo(xzg) > 0, then

( n2/5(@n(x0) — po(zo)) ) Ny ( \% )
n2/5(9(xg) — po(z0)) v

1/5
where V = C(x0,90) HS?(0), C(o, 0) = (I¢§7 (w0)/ (4 fo(0)))
Consequently

n?/® (@n(z0) — 952(900)) —=p 0.

B. (In n~1/5—neighborhoods of mg) Ifgp )(mO) < 0and fo(mg) >
O, then the processes

Xn(t) = n?/%(@n(mo + n~1/5t) — po(mg)),

X9(t) = n?/2(85(mo + n~1/5t) — o (mo)),
converge finite-dimensionally in distribution (jointly) to the
finite dimensional distributions of the processes (X(t),X9(t)) =

(@(t/72), 3°(t/72))/(7173) where v1 = (a3/5/58/5), 4o = (0/a)2/5,
and o = 1/\/m, a = |SOO )(mo)|/4!
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2log Ay,
= N/Dn fo(mo) {(@n(u) — 0(mo))* — (n(u) - soo(mo))z} du
+ Rn.

op(1l) under H.

Consequently, under H and the assumption go(gz)(mo) < 0,

210gAn —>y /R{@(UF ~¢°(v)?} dv=D

which is free of the parameters gogz)(mg) and fo(mgp).
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What's the difficulty?
Different limits for different curvature at mg!?

Suppose that for some r > 1

fo(z) = fo(mg) — (C +o(1))|x —mg|" as x — mg,

For example,

fo(x) = crexp <—|i|r> = Subbotin(r)
fo@) = er(1— 211 41(z) =Bump(r)
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Subbotin(r), re€ {1,2,3,4,5,6,8}
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This suggests that
210gAn —>g /R [6r(v)2 — @0(v)?} dv = D,

where r > 1 is unknown.

Two possible approaches:

Approach 1: Find an (upper bound) estimator 7 of r. (This
seems a bit like “tail index estimation” in extreme value theory;
we might call it “modal index estimation”.) Carry out the test
as ‘“reject H if 2logAn > d, 7" where dq, satisfies P(Dr > da,r) =
a € (0,1).

Approach 2: The plots on the previous page suggest that the
distributions of {D, : r > 1} are tight and may have a limit D.
(This might correspond to the limit white noise model dX (t) =
— foo(B)dt +dW (t) where foo(t) = 0O- 1[_171](t) + oo - 1(1700)(‘?5‘).) If
this holds we could carry out our test conservatively as “reject H
if 2109\, > da,o0’’ Where dy oo satisfies P(Dyr > da,00) = a € (0, 1).
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Problems

e Limit theory relevant for approaches 1 and 27

e Does the limit theory for log-concave densities extend to

s—concave densities with s € (—1,0).

e Extend the likelihood ratio approach to inference for modes

in RY with d > 27
> If f = e % with Hess(p)(m) > 0, do we have

nl/ G+ (N1, — m) -, something?
> Likelihood ratio for testing M(f) = mg? Does

2log\p, -4 Ssomething universal?
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Mercli beaucoup!
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