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• Day 1 (Tuesday):

B Lecture 1: Introduction, history, selected examples.

B Lecture 2: Some basic inequalities and

Glivenko-Cantelli theorems.

B Lecture 3: Using the Glivenko-Cantelli theorems:

first applications.

Based on Courses given at Torgnon, Cortona,

and Delft (2003-2005). Notes available at:

http://www.stat.washington.edu/jaw/

RESEARCH/TALKS/talks.html
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• Day 2 (Wednesday):

B Donsker theorems and some inequalities

B Peeling methods and rates of convergence

B Some useful preservation theorems.
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Lecture 1: Introduction, history,

selected examples

• 1. Classical empirical processes

• 2. Modern empirical processes

• 3. Some examples
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1. Classical empirical processes. Suppose that:

• X1, . . . , Xn are i.i.d. with d.f. F on R.

• Fn(x) = n−1∑n
i=1 1[Xi≤x], the empirical distribution function.

• {Zn(x) ≡
√
n(Fn(x)− F (x)) : x ∈ R}, the empirical process.

Two classical theorems:

Theorem 1. (Glivenko-Cantelli, 1933).

‖Fn − F‖∞ ≡ sup
−∞<x<∞

|Fn(x)− F (x)| →a.s. 0.

Theorem 2. (Donsker, 1952).

Zn ⇒ Z ≡ U(F ) in D(R, ‖ · ‖∞)
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where U is a standard Brownian bridge process on [0,1]; i.e. U
is a zero-mean Gaussian process with covariance

E(U(s)U(t)) = s ∧ t− st, s, t ∈ [0,1].

This means that we have

Eg(Zn)→ Eg(Z)

for any bounded, continuous function g : D(R, ‖ · ‖∞)→ R and

g(Zn)→d g(Z)

for any continuous function g : D(R, ‖ · ‖∞) → R (ignoring

measurability issues).
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2. General empirical processes (indexed by functions)

Suppose that:

• X1, . . . , Xn are i.i.d. with probability measure P on (X ,A).

• Pn = n−1∑n
i=1 δXi, the empirical measure; here

δx(A) = 1A(x) =

{
1, x ∈ A,
0, x ∈ Ac for A ∈ A.

Hence we have

Pn(A) = n−1
n∑
i=1

1A(Xi), and Pn(f) = n−1
n∑
i=1

f(Xi).

• {Gn(f) ≡
√
n(Pn(f) − P (f)) : f ∈ F ⊂ L2(P )}, the empirical

process indexed by F
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Note that the classical case corresponds to:

• (X ,A) = (R,B).

• F = {1(−∞,t](·) : t ∈ R}.

Then

Pn(1(−∞,t]) = n−1
n∑
i=1

1(−∞,t](Xi) = Fn(t),

P (1(−∞,t]) = F (t),

Gn(1(−∞,t]) =
√
n(Pn − P )(1(−∞,t] =

√
n(Fn(t)− F (t))

G(1(−∞,t]) = U(F (t)) .
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Two central questions for the general theory:

A. For what classes of functions F does a natural generalization

of the Glivenko-Cantelli theorem hold? That is, for what classes

F do we have

‖Pn − P‖∗F →a.s. 0

If this convergence holds, then we say that F is a P−Glivenko-

Cantelli class of functions.

B. For what classes of functions F does a natural generalization

of Donsker’s theorem hold? That is, for what classes F do we

have

Gn ⇒ G in `∞(F)?

If this convergence holds, then we say that F is a P−Donsker

class of functions.
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Here G is a 0−mean P−Brownian bridge process with uniformly-

continuous sample paths with respect to the semi-metric ρP (f, g)

defined by

ρ2
P (f, g) = V arP (f(X)− g(X)),

`∞(F) is the space of all bounded, real-valued functions from F
to R:

`∞(F) =

{
x : F 7→ R

∣∣∣∣∣ ‖x‖F ≡ sup
f∈F
|x(f)| <∞

}
,

and

E{G(f)G(g)} = P (fg)− P (f)P (g).
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3. Some Examples

A commonly occurring problem in statistics: we want to prove
consistency or asymptotic normality of some statistic which is
not a sum of independent random variables, but which can be
related to some natural sum of random functions indexed by a
parameter in a suitable (metric) space.

Example 1. Suppose that X1, . . . , Xn are i.i.d. real-valued with
E|X1| <∞, and let µ = E(X1). Consider the absolute deviations
about the sample mean,

Dn = Pn|X −Xn| = n−1
n∑
i=1

|Xi −Xn|.

Since Xn →a.s. µ, we know that for any δ > 0 we have X ∈
[µ − δ, µ + δ] for all sufficiently large n almost surely. Thus we
see that if we define

Dn(t) ≡ n−1Pn|x− t| = n−1
n∑
i=1

|Xi − t|,
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then Dn = Dn(Xn) and study of Dn(t) for t ∈ [µ − δ, µ + δ] is

equivalent to study of the empirical measure Pn indexed by the

class of functions

Fδ = {x 7→ |x− t| ≡ ft(x) : t ∈ [µ− δ, µ+ δ]}.

To show that Dn →a.s. d ≡ E|X − µ|, we write

Dn − d = Pn|X −Xn| − P |X − µ| (1)

= (Pn − P )(|X −Xn|) + P |X −Xn| − P |X − µ|
≡ In + IIn. (2)

Now

|In| = |(Pn − P )(|X −Xn|)|
≤ sup

t:|t−µ|≤δ
|(Pn − P )|X − t|| = sup

f∈Fδ
|(Pn − P )(f)|

→a.s. 0 (3)

if Fδ is P−Glivenko-Cantelli.
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But convergence of the second term in (2) is easy: by the triangle

inequality

IIn = |P |X −Xn| − P |X − µ|| ≤ P |Xn − µ| = |Xn − µ|
→a.s. 0.

How to prove (3)? Consider the functions f1, . . . , fm ∈ Fδ given

by

fj(x) = |x− (µ− δ(1− j/m)|, j = 0, . . . ,2m.

For this finite set of functions we have

max
0≤j≤2m

|(Pn − P )(fj)| →a.s. 0

by the strong law of large numbers applied 2m + 1 times.

Furthermore ...
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it follows that for t ∈ [µ − δ(1 − j/m), µ − δ(1 − (j + 1)/m)] the

functions ft(x) = |x− t| satisfy (picture!)

Lj(x) ≡ fj/m(x) ∧ f(j+1)/m(x) ≤ ft(x) ≤ fj/m(x) ∨ f(j+1)/m(x) ≡ Uj(x)

where

Uj(x)− ft(x) ≤
1

m
, ft(x)− Lj(x) ≤

1

m
, Uj(x)− Lj(x) ≤

1

m
.

Thus for each m

‖Pn − P‖Fδ
≡ sup

f∈Fδ
|(Pn − P )(f)|

≤ max

{
max

0≤j≤2m
|(Pn − P )(Uj)|, max

0≤j≤2m
|(Pn − P )(Lj)|

}
+ 1/m

→a.s. 0 + 1/m

Taking m large shows that (3) holds.
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This is a bracketing argument, and generalizes easily to yield a
quite general bracketing Glivenko-Cantelli theorem.

How to prove
√
n(Dn − d)→d ? We write

√
n(Dn − d) =

√
n(Pn|X −Xn| − P |X − µ|)

=
√
n(Pn|X − µ| − P |X − µ|)
+
√
n(P |X −Xn| − P |X − µ|)

+
√
n(Pn − P )(|X −Xn|)−

√
n(Pn − P )(|X − µ|)

= Gn(|X − µ|) +
√
n(H(Xn)−H(µ))

+ Gn(|X −Xn| − |X − µ|)
= Gn(|X − µ|) +H ′(µ)(Xn − µ)

+
√
n(H(Xn)−H(µ)−H ′(µ)(Xn − µ))

+ Gn(|X −Xn| − |X − µ|)
≡ Gn(|X − µ|+H ′(µ)(X − µ)) + In + IIn

where ...
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H(t) ≡ P |X − t|,
In ≡

√
n(H(Xn)−H(µ)−H ′(µ)(Xn − µ)),

IIn ≡ Gn(|X −Xn|)− Gn(|X − µ|)
= Gn(|X −Xn| − |X − µ|)
= Gn(fXn

− fµ) .

Here In →p 0 if H(t) ≡ P |X − t| is differentiable at µ, and

IIn →p 0

if Fδ is a Donsker class of functions! This is a consequence of

asymptotic equicontinuity of Gn over the class F: for every ε > 0

lim
δ↘0

lim sup
n→∞

Pr∗( sup
f,g: ρP (f,g)≤δ

|Gn(f)− Gn(g)| > ε) = 0.
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Example 2. Copula models: the pseudo-MLE.

Let cθ(u1, . . . , up) be a copula density with θ ⊂ Θ ⊂ Rq. Suppose

that X1, . . . , Xn are i.i.d. with density

f(x1, . . . , xp) = cθ(F1(x1), . . . , Fp(xp)) · f1(x1) · · · fp(xp)

where F1, . . . , Fp are absolutely continuous d.f.’s with densities

f1, . . . , fp.

Let

Fn,j(xj) ≡ n−1
n∑
i=1

1{Xi,j ≤ xj}, j = 1, . . . , p

be the marginal empirical d.f.’s of the data. Then a natural

pseudo-likelihood function is given by

ln(θ) ≡ Pnlogcθ(Fn,1(x1), . . . ,Fn,p(xp)).
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Thus it seems reasonable to define the pseudo-likelihood esti-

mator θ̂n of θ by the q−dimensional system of equations

Ψn(θ̂n) = 0

where

Ψn(θ) ≡ Pn( ˙̀θ(θ;Fn,1(x1), . . . ,Fn,p(xp))

and where

˙̀θ(θ;u1, . . . , up) ≡ ∇θlogcθ(u1, . . . , up).

We also define Ψ(θ) by

Ψ(θ) ≡ P0( ˙̀θ(θ, F1(x1), . . . , Fp(xp)).
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Then we expect that

0 = Ψn(θ̂n) = Ψn(θ0)−
{
−Ψ̇n(θ∗n)

}
(θ̂n − θ0) (4)

where

Ψn(θ0) = Pn ˙̀θ(θ0,Fn,1(x1), . . . ,Fn,p(xp)),

and

− Ψ̇n(θ∗n) = −Pn῭θ,θ(θ
∗
n,Fn,1(x1), . . . ,Fn,p(xp))

→p −P0(῭θ,θ(θ0, F1(x1), . . . , Fp(xp)) (5)

≡ B ≡ Iθθ, (6)

a q × q matrix. On the other hand . . .
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√
nΨn(θ0) =

√
nPn ˙̀θ(θ0,Fn,1(x1), . . . ,Fn,p(xp))

where

˙̀θ(θ0,Fn,1(x1), . . . ,Fn,p(xp))

= ˙̀θ(θ0, F1(x1), . . . , Fp(xp))

+
p∑

j=1

῭θ,j(θ0, u
∗
1, . . . , u

∗
p) · (Fn,j(xj)− Fj(xj)),

῭θ,j(θ0, u1, . . . , up) ≡
∂

∂uj
˙̀θ(θ0, u1, . . . , up),

and where |u∗j(xj) − Fj(xj)| ≤ |Fn,j(xj) − Fj(xj)| for j = 1, . . . , p.

Thus we expect that
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√
nΨn(θ0)

=
√
nPn( ˙̀θ(θ0,Fn,1(x1), . . . ,Fn,p(xp))

=̇ Gn
(

˙̀θ(θ0, F1(x1), . . . , Fp(xp))
)

+ Pn

 p∑
j=1

῭θ,j(θ0, u
∗
1, . . . , u

∗
p) ·
√
n(Fn,j(xj)− Fj(xj))


= Gn

(
˙̀θ(θ0, F1(x1), . . . , Fp(xp))

)
+ P0

 p∑
j=1

῭θ,j(θ0, u
∗
1, . . . , u

∗
p) ·
√
n(Fn,j(xj)− Fj(xj))


+ (Pn − P0)

 p∑
j=1

῭θ,j(θ0, u
∗
1, . . . , u

∗
p) ·
√
n(Fn,j(xj)− Fj(xj))

 .
In this last display the third term will be negligible (via asymptotic

equicontinuity!) and the second term can be rewritten as
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P0

 p∑
j=1

῭θ,j(θ0, u
∗
1, . . . , u

∗
p) ·
√
n(Fn,j(xj)− Fj(xj))


=

p∑
j=1

P0῭θ,j(θ0, u
∗
1(x1), . . . , u∗p(xp)) ·

√
n(Fn,j(xj)− Fj(xj))

=̇ Gn

 p∑
j=1

∫
Rp

῭θ,j(θ0, F1(x1), . . . , Fp(xp))

·
(
1{Xj ≤ xj} − Fj(xj)

)
dCθ(F1(x1), . . . , Fp(xp))

)
= Gn

 p∑
j=1

∫
[0,1]p

῭θ,j(θ0, u1, . . . , up)

·
(
1{Fj(Xj) ≤ uj} − uj

)
dCθ(u1, . . . , up)

)
= Gn

 p∑
j=1

Wj(Xj)


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Example 3. Kendall’s function.
Suppose that (X1, Y1), . . . , (Xn, Yn), . . . are i.i.d. F0 on R2, and
let Fn denote their (classical) empirical distribution function

Fn(x, y) =
1

n

n∑
i=1

1(−∞,x]×(−∞,y](Xi, Yi).

Consider the empirical distribution function of the random
variables Fn(Xi, Yi), i = 1, . . . , n:

Kn(t) =
1

n

n∑
i=1

1[Fn(Xi,Yi)≤t], t ∈ [0,1].

As in example 1, the random variables {Fn(Xi, Yi)}ni=1 are
dependent, and we are already studying a stochastic process
indexed by t ∈ [0,1]. The empirical process method leads to
study of the process Kn indexed by both t ∈ [0,1] and F ∈ F2,
the class of all distribution functions F on R2:

Kn(t, F ) ≡
1

n

n∑
i=1

1[F (Xi,Yi)≤t] = Pn1[F (X,Y )≤t]
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with t ∈ [0,1] and F ∈ F2 ... or the smaller set

F2,δ = {F ∈ F2 : ‖F − F0‖∞ ≤ δ}.
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Example 4. Completely monotone densities.

Consider the class P of completely monotone densities pG given

by

pG(x) =
∫ ∞

0
zexp(−zx)dG(z)

where G is an arbitrary distribution function on R+. Consider

the maximum likelihood estimator p̂ of p ∈ P: i.e.

p̂ ≡ argmaxp∈PPnlog(p).

Question: Is p̂ Hellinger consistent? That is, do we have

h(p̂n, p0)→a.s. 0?
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Lecture 2: Some basic inequalities and

Glivenko-Cantelli theorems

• 1. Tools for consistency: a first inequality for convex P.

• 2. Tools for consistency: two more basic inequalities.

• 3. More basic inequalities:

least squares estimators; penalized ML.

• 4. Glivenko-Cantelli theorems.
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1. Tools for consistency: a first inequality. Suppose that:

• P is a class of densities with respect to a fixed σ−finite

measure µ on a measurable space (X ,A).

• Suppose that X1, . . . , Xn are i.i.d. P0 with density p0 ∈ P.

• Let

p̂n ≡ argmaxp∈P Pnlog(p) .

• For 0 < α ≤ 1, let ϕα(t) = (tα − 1)/(tα + 1) for t ≥ 0,

ϕ(t) = −1 for t < 0. Thus ϕα is bounded and continuous for

each α ∈ (0,1].
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For 0 < β < 1 define

h2
β(p, q) ≡ 1−

∫
pβq1−βdµ .

Note that

h2
1/2(p, q) ≡ h2(p, q) =

1

2

∫
{√p−√q}2dµ

yields the Hellinger distance between p and q. By Hölder’s

inequality, hβ(p, q) ≥ 0 with equality if and only if p = q a.e.

µ.

Proposition 1.1. Suppose that P is convex. Then

h2
1−α/2(p̂n, p0) ≤ (Pn − P0)

(
ϕα

(
p̂n

p0

))
.
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In particular, when α = 1 we have, with ϕ ≡ ϕ1,

h2(p̂n, p0) = h2
1/2(p̂n, p0) ≤ (Pn − P0)

(
ϕ

(
p̂n

p0

))

= (Pn − P0)

(
2p̂n

p̂n + p0

)
.

Proof. Since P is convex and p̂n maximizes Pnlogp over P, it

follows that

Pnlog
p̂n

(1− t)p̂n + tp1
≥ 0

for all 0 ≤ t ≤ 1 and every p1 ∈ P; this holds in particular for

p1 = p0. Note that equality holds if t = 0. Differentiation of the

left side with respect to t at t = 0 yields

Pn
p1

p̂n
≤ 1 for every p1 ∈ P .

If L : (0,∞) 7→ R is increasing and t 7→ L(1/t) is convex, then
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Jensen’s inequality yields

PnL
(
p̂n

p1

)
≥ L

(
1

Pn(p1/p̂n)

)
≥ L(1) = PnL

(
p1

p1

)
.

Choosing L = ϕα and p1 = p0 in this last inequality and noting

that L(1) = 0, it follows that

0 ≤ Pnϕα(p̂n/p0)

= (Pn − P0)ϕα(p̂n/p0) + P0ϕα(p̂n/p0) ; (7)

see van der Vaart and Wellner (1996) page 330, and Pfanzagl

(1988), pages 141 - 143. Now we show that

P0ϕα(p/p0) =
∫
pα − pα0
pα + pα0

dP0 ≤ −
(

1−
∫
p
β
0p

1−βdµ
)

(8)

for β = 1− α/2. Note that this holds if and only if

−1 + 2
∫

pα

pα0 + pα
p0dµ ≤ −1 +

∫
p
β
0p

1−βdµ ,
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or ∫
p
β
0p

1−βdµ ≥ 2
∫

pα

pα0 + pα
p0dµ .

But his holds if

p
β
0p

1−β ≥ 2
pαp0

pα0 + pα
.

With β = 1− α/2, this becomes

1

2
(pα0 + pα) ≥ pα/2

0 pα/2 =
√
pα0p

α ,

and this holds by the arithmetic mean - geometric mean

inequality. Thus (8) holds. Combining (8) with (7) yields the

claim of the proposition. The corollary follows by noting that

ϕ(t) = (t− 1)/(t+ 1) = 2t/(t+ 1)− 1. �
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The bound given in Proposition 1.1 is one of a family of results
of this type. Here two further inequalities which do not require
that the family P be convex.

Proposition 1.2.— (Van de Geer). Suppose that p̂n maximizes
Pnlog(p) over P. then

h2(p̂n, p0) ≤ (Pn − P0)

(√
p̂n

p0
− 1

)
1{p0 > 0} .

Proposition 1.3. (Birgé and Massart). If p̂n maxmizes Pnlog(p)
over P, then

h2((p̂n + p0)/2, p0)

≤ (Pn − P0)

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)
,

and

h2(p̂n, p0) ≤ 24h2
(
p̂n + p0

2
, p0

)
.
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Proof, proposition 1.2: Since p̂n maximizes Pnlogp,

0 ≤
1

2

∫
[p0>0]

log

(
p̂n

p0

)
dPn

≤
∫

[p0>0]

(√
p̂n

p0
− 1

)
dPn

since log(1 + x) ≤ x

=
∫

[p0>0]

(√
p̂n

p0
− 1

)
d(Pn − P0)

+ P0

(√
p̂n

p0
− 1

)
1{p0 > 0}

=
∫

[p0>0]

(√
p̂n

p0
− 1

)
d(Pn − P0)− h2(p̂n, p0)

where the last equality follows by direct calculation and the

definition of the Hellinger metric h. �
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Proof, Proposition 1.3: By concavity of log,

log

(
p̂n + p0

2p0

)
1[p0>0] ≥

1

2
log

(
p̂n

p0

)
1[p0>0] .

Thus

0 ≤ Pn
(

1

4
log

(
p̂n

p0

)
1[p0>0]

)
≤ Pn

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)

= (Pn − P0)

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)

+ P0

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)

= (Pn − P0)

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)
−

1

2
K(P0, (P̂n + P0)/2)

≤ (Pn − P0)

(
1

2
log

(
p̂n + p0

2p0

)
1[p0>0]

)
− h2(P0, (P̂n + P0)/2) .

where we used Exercise 1.2 at the last step. The second claim
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follows from Exercise 1.4. �

Exercise 1.4:

2h2(P, (P +Q)/2) ≤ h2(P,Q) ≤ 12h2(P, (P +Q)/2).

Corollary 1.1. Suppose that {ϕ(p/p0) : p ∈ P} is a P0−Glivenko-

Cantelli class. Then for each 0 < α ≤ 1, h1−α/2(p̂n, p0) →a.s. 0.

Corollary 1.2. (Hellinger consistency of MLE). Suppose that

either {(
√
p/p0 − 1)1{p0 > 0} : p ∈ P} or {1

2log
(
p+p0
2p0

)
1[p0>0] :

p ∈ P} is a P0−Glivenko-Cantelli class. Then h(p̂n, p0)→a.s. 0.

Short Course, Louvain-la-Neuve; 29-30 May 2012 1.34



3. More basic inequalities: penalized ML & LS

Penalized ML:

• Suppose that P is a collection of densities described by a
“penalty functional” I(p):

P = {p : R→ [0,∞) :
∫
p(x)dx = 1, I2(p) <∞}

For example, I2(p) =
∫

(p′′(x))2dx.

• Suppose that

p̂n = argmaxp∈P
(
Pnlog(p)− λ2

nI
2(p)

)
;

here λn is a smoothing parameter.

Basic inequality: (van de Geer, 2000, page 175): For p0 ∈ P

h2(p̂n, p0) + 4λ2
nI

2(p̂n) ≤ 16(Pn − P0)
1

2
log

(
p̂n + p0

2p0

)
+ 4λ2

nI
2(p0).
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Least squares:

• Suppose that Yi = g0(zi)+Wi, where EWi = 0, V ar(Wi) ≤ σ2
0.

• Qn = n−1∑n
i=1 δzi, ‖g‖

2
n ≡ n−1∑n

i=1 g(zi)
2.

• ‖y − g‖2n = n−1∑n
1(Yi − g(zi))2.

• 〈w, g〉n = n−1∑n
1Wig(zi).

• ĝn ≡ argming∈G‖y − g‖2n.

Basic inequality: (van de Geer, 2000, page 55).

‖ĝn − g0‖2n ≤ 2〈w, ĝn − g0〉n

= 2n−1
n∑
i=1

Wi (ĝn(zi)− g0(zi)) .
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4. Glivenko-Cantelli Theorems:

Bracketing:

Given two functions l and u on X , the bracket [l, u] is the set

of all functions f ∈ F with l ≤ f ≤ u. The functions l and u

need not belong to F, but are assumed to have finite norms. An

ε−bracket is a bracket [l, u] with ‖u − l‖ ≤ ε. The bracketing

number N[ ](ε,F , ‖ · ‖) is the minimum number of ε−brackets

needed to cover F. The entropy with bracketing is the logarithm

of the bracketing number.

Theorem 1. Let F be a class of measurable functions such that

N[ ](ε,F , L1(P )) < ∞ for every ε > 0. Then F is P−Glivenko-

Cantelli; that is

‖Pn − P‖∗F =

(
sup
f∈F
|Pnf − Pf |

)∗
→a.s. 0 .
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Proof. Fix ε > 0. Choose finitely many ε−brackets [li, ui], i =

1, . . . ,m = N(ε,F , L1(P )), whose union contains F and such that

P (ui − li) < ε for all 1 ≤ i ≤ m. Thus, for every f ∈ F there is a

bracket [li, ui] such that

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε .

Similarly,

(P − Pn)f ≤ (P − Pn)li + P (f − li) ≤ (P − Pn)li + ε .

�

It is not hard to see that bracketing condition of Theorem 1 is

sufficient but not necessary.

In contrast, our second Glivenko-Cantelli theorem gives condi-

tions which are both necessary and sufficient.
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A simple setting in which this theorem applies involves a

collection of functions f = f(·, t) indexed or parametrized by

t ∈ T , a compact subset of a metric space (D, d). Here is the

basic lemma; it goes back to Wald (1949) and Le Cam (1953).

Lemma 1. Suppose that F = {f(·, t) : t ∈ T} where the

functions f : X × T 7→ R, are continuous in t for P− almost

all x ∈ X . Suppose that T is compact and that the envelope

function F defined by F (x) = supt∈T |f(x, t)| satisfies P ∗F < ∞.

Then

N[ ](ε,F , L1(P )) <∞

for every ε > 0, and hence F is P−Glivenko-Cantelli.
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The qualitative statement of the preceding lemma can be

quantified as follows:

Lemma 2. Suppose that {f(·, t) : t ∈ T} is a class of functions

satisfying

|f(x, t)− f(x, s)| ≤ d(s, t)F (x)

for all s, t ∈ T , x ∈ X for some metric d on the index set, and a

function F on the sample space X . Then, for any norm ‖ · ‖,

N[ ](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d) .
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For our second Glivenko-Cantelli theorem, we need:

• An envelope function F for a class of functions F is any

function satisfying

|f(x)| ≤ F (x) for all x ∈ X and for all f ∈ F .

• A class of functions F is L1(P ) bounded if supf∈F P |f | <∞.
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Theorem 2.. (Vapnik and Chervonenkis (1981), Pollard (1981),

Giné and Zinn (1984)). Let F be a P−measurable class

of measurable functions that is L1(P )−bounded. Then F is

P−Glivenko-Cantelli if and only if both

(i) P ∗F <∞.

(ii)

lim
n→∞

E∗logN(ε,FM , L2(Pn))

n
= 0

for all M < ∞ and ε > 0 where FM is the class of functions

{f1{F ≤M} : f ∈ F}.
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For n points x1, . . . , xn in X and a class of C of subsets of X , set

∆Cn(x1, . . . , xn) ≡# {C ∩ {x1, . . . , xn} : C ∈ C} .

Corollary. (Vapnik-Chervonenkis-Steele GC theorem) If C is a

P−measurable class of sets, then the following are equivalent:

(i) ‖Pn − P‖∗C →a.s. 0

(ii) n−1Elog∆C(X1, . . . , Xn)→ 0; where,

The second hypothesis is often verified by applying the theory of

VC (or Vapnik-Chervonenkis) classes of sets and functions. Let

mC(n) ≡ max
x1,...,xn

∆Cn(x1, . . . , xn),

and let

V (C) ≡ inf{n : mC(n) < 2n},
S(C) ≡ sup{n : mC(n) = 2n}.
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Examples:

(1) X = R, C = {(−∞, t] : t ∈ R}: S(C) = 1.

(2) X = R, C = {(s, t] : s < t, s, t ∈ R}: S(C) = 2.

(3) X = Rd, C = {(s, t] : s < t, s, t ∈ Rd}: S(C) = 2d.

(4) X = Rd, Hu,c ≡ {x ∈ Rd : 〈x, u〉 ≤ c},
C = {Hu,c : u ∈ Rd, c ∈ R}: S(C) = d+ 1.

(5) X = Rd, Bu,r ≡ {x ∈ Rd : ‖x− u‖ ≤ r};
C = {Bu,r : u ∈ Rd, r ∈ R+}: S(C) = d+ 1.

Definition. The subgraph of f : X → R is the subset of X × R
given by {(x, t) ∈ X × R : t < f(x)}. A collection of functions

F from X to R is called a VC-subgraph class if the collection of

subgraphs in X × R is a VC - class of sets. For a VC-subgraph

class F, let V (F) ≡ V (subgraph(F)).
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Theorem. For a VC-subgraph class with envelope function F
and r ≥ 1, and for any probability measure Q with ‖F‖Lr(Q) > 0,

N(2ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)
(

16e

εr

)S(F)
.

Here is a specific result for monotone functions on R:

Theorem. Let F be the class of all monotone functions f : R→
[0,1]. Then:
(i) (Birman and Solomojak (1967), van de Geer (1991)):

logN[ ](ε,F , Lr(Q)) ≤
K

ε
for every probability measure Q, every r ≥ 1, and a constant K
depending on r only.
(ii) (via convex hull theory):

sup
Q

logN(ε,F , L2(Q)) ≤
K

ε
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Lecture 3: Using the Glivenko-Cantelli

theorems: first applications

• 1. Preservation of Glivenko-Cantelli theorems.

B Preservation under continuous functions.

B Preservation under partitions of the sample space.

• 2. First applications

B Example 1: current status data

B Example 2: Mixed case interval censoring

B Example 3: Completely monotone densities.
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1. Preservation of Glivenko-Cantelli theorems.

Theorem 1. (van der Vaart & W, 2001). Suppose that

F1, . . . ,Fk are P− Glivenko-Cantelli classes of functions, and

that ϕ : Rk → R is continuous. Then H ≡ ϕ(F1, . . . ,Fk) is

P− Glivenko-Cantelli provided that it has an integrable envelope

function.

Corollary 1. (Dudley, 1998). Suppose that F is a Glivenko-

Cantelli class for P with PF < ∞, and g is a fixed bounded

function (‖g‖∞ <∞). Then the class of functions g · F ≡ {g · f :

f ∈ F} is a Glivenko-Cantelli class for P .

Corollary 2. (Giné and Zinn, 1984). Suppose that F is

a uniformly bounded strong Glivenko-Cantelli class for P , and

g ∈ L1(P ) is a fixed function. Then the class of functions g · F ≡
{g · f : f ∈ F} is a strong Glivenko-Cantelli class for P .
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Theorem 2. (Partitioning of the sample space). Suppose that

F is a class of functions on (X ,A, P ), and {Xi} is a partition of

X : ∪∞i=1Xi = X , Xi ∩Xj = ∅ for i 6= j. Suppose that Fj ≡ {f1Xj :

f ∈ F} is P−Glivenko-Cantelli for each j, and F has an integrable

envelope function F . Then F is itself P−Glivenko-Cantelli.
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First Applications:

Example 2.1. (Interval censoring, case I). Suppose that Y ∼
F on R+ and T ∼ G. Here Y is the time of some event of
interest, and T is an “observation time”. Unfortunately, we do
not observe (Y, T ); instead what is observed is X = (1{Y ≤
T}, T ) ≡ (∆, T ). Our goal is to estimate F , the distribution of
Y . Let P0 be the distribution corresponding to F0, and suppose
that (∆1, T1), . . . , (∆n, Tn) are i.i.d. as (∆, T ). Note that the
conditional distribution of ∆ given T is simply Bernoulli(F (T )),
and hence the density of (∆, T ) with respect to the dominating
measure #×G (here # denotes counting measure on {0,1}) is
given by

pF (δ, t) = F (t)δ(1− F (t))1−δ .

Note that the sample space in this case is

X = {(δ, t) : δ ∈ {0,1}, t ∈ R+} = {(1, t) : t ∈ R+} ∪ {(0, t) : t ∈ R+}
:= X1 ∪ X2.
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Now the class of functions {pF : F a d.f. on R+} is a universal
Glivenko-Cantelli class by an application of GC-preservation
Theorem 2, since on X1, pF (1, t) = F (t), while on X2, pF (0, t) =
1 − F (t) where F is a distribution F (and hence bounded and
monotone nondecreasing). Furthermore the class of functions
{pF/pF0

: F a d.f. on R+} is P0−Glivenko by an application of
GC-preservation Theorem 1: Take

F1 = {pF : F a d.f. on R+}, F2 = {1/pF0
},

and ϕ(u, v) = uv. Then both F1 and F2 are P0−Glivenko-
Cantelli classes, ϕ is continuous, and H = ϕ(F1,F2) has
P0−integrable envelope 1/pF0

. Finally, by a further application
of GC-preservation Theorem 2 with ϕ(u) = (t − 1)/(t + 1)
shows that the hypothesis of Corollary 2.1.1 holds: {ϕ(pF/pF0

) :
F a d.f. on R+} is P0−Glivenko-Cantelli. Hence the conclusion
of the corollary holds: we conclude that

h2(p
F̂n
, pF0

)→a.s. 0 as n→∞ .
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Now note that h2(p, p0) ≥ d2
TV (p, p0)/2 and we compute

dTV (p
F̂n
, pF0

) =
∫
|F̂n(t)− F0(t)|dG(t)

+
∫
|1− F̂n(t)− (1− F0(t))|dG(t)

= 2
∫
|F̂n(t)− F0(t)|dG(t) ,

so we conclude that∫
|F̂n(t)− F0(t)|dG(t)→a.s. 0

as n → ∞. Since F̂n and F0 are bounded (by one), we can also

conclude that ∫
|F̂n(t)− F0(t)|rdG(t)→a.s. 0

for each r ≥ 1, in particular for r = 2.
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Example 2. (Mixed case interval censoring)

Suppose that:

• Y ∼ F on R+ = [0,∞).

• Observe:

B TK = (TK,1, . . . , TK,K) where K, the number of times is

itself random.

B The interval (TK,j−1, TK,j] into which Y falls (with TK,0 ≡
0, TK,K+1 ≡ ∞).

B Here K ∈ {1,2, . . .} , and T =
{
Tk,j, j = 1, . . . , k, k = 1,2, . . .

}
,

B Y and (K,T ) are independent.

• X ≡ (∆K, TK,K), with a possible value x = (δk, tk, k),

where ∆k = (∆k,1, . . . ,∆k,k) with ∆k,j = 1(Tk,j−1,Tk,j]
(Y ),

j = 1,2, . . . , k + 1.
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• Suppose we observe n i.i.d. copies of X; X1, X2, . . . , Xn,

where Xi = (∆(i)
K(i), T

(i)
K(i),K

(i)), i = 1,2, . . . , n. Here

(Y (i), T (i),K(i)), i = 1,2, . . . are the underlying i.i.d. copies

of (Y, T ,K).

note that conditionally on K and TK, the vector ∆K has a

multinomial distribution:

(∆K|K,TK) ∼MultinomialK+1(1,∆FK)

where

∆FK ≡ (F (TK,1), F (TK,2)− F (TK,1), . . . ,1− F (TK,K)) .
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Suppose for the moment that the distribution Gk of (TK|K = k)
has density gk and pk ≡ P (K = k). Then a density of X is given
by

pF (x) ≡ pF (δ, tk, k)

=
k+1∏
j=1

(F (tk,j)− F (tk,j−1))δk,jgk(t)pk

where tk,0 ≡ 0, tk,k+1 ≡ ∞. In general,

pF (x) ≡ pF (δ, tk, k)

=
k+1∏
j=1

(F (tk,j)− F (tk,j−1))δk,j

=
k+1∑
j=1

δk,j(F (tk,j)− F (tk,j−1)) (9)

is a density of X with respect to the dominating measure ν where
ν is determined by the joint distribution of (K,T ), and it is this
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version of the density of X with which we will work throughout

the rest of the example. Thus the log-likelihood function for F

of X1, . . . , Xn is given by

1

n
ln(F |X) =

1

n

n∑
i=1

K(i)+1∑
j=1

∆(i)
K,jlog

(
F (T (i)

K(i),j
)− F (T (i)

K(i),j−1
)
)

= PnmF

where

mF (X) =
K+1∑
j=1

∆K,jlog
(
F (TK,j)− F (TK,j−1)

)

≡
K+1∑
j=1

∆K,jlog
(
∆FK,j

)
and where we have ignored the terms not involving F . We also
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note that

PmF (X) = P

K+1∑
j=1

∆F0,K,jlog
(
∆FK,j

) .
The (Nonparametric) Maximum Likelihood Estimator (MLE)

F̂n = argmaxFPn`n(F ).

F̂n can be calculated via the iterative convex minorant algorithm

proposed in Groeneboom and Wellner (1992) for case 2 interval

censored data.
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By Proposition 1 with α = 1 and ϕ ≡ ϕ1 as before, it follows

that

h2(p
F̂n
, pF0

) ≤ (Pn − P0)
(
ϕ(p

F̂n
/pF0

)
)

where ϕ is bounded and continuous from R to R. Now the

collection of functions

G ≡ {pF : F ∈ F}

is easily seen to be a Glivenko-Cantelli class of functions: this can

be seen by first applying the GC-preservation theorem Theorem

1 to the collections Gk, k = 1,2, . . . obtained from G by restricting

to the sets K = k. Then for fixed k, the collections Gk =

{pF (δ, tk, k) : F ∈ F} are P0−Glivenko-Cantelli classes since F is

a uniform Glivenko-Cantelli class, and since the functions pF are

continuous transformations of the classes of functions x → δk,j
and x→ F (tk,j) for j = 1, . . . , k + 1, and hence G is P−Glivenko-

Cantelli by van de Geer’s bracketing entropy bound for monotone
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functions. Note that single function pF0
is trivially P0− Glivenko-

Cantelli since it is uniformly bounded, and the single function
(1/pF0

) is also P0− GC since P0(1/pF0
) < ∞. Thus by the

Glivenko-Cantelli preservation Theorem 1 with g = (1/pF0
) and

F = G = {pF : F ∈ F}, it follows that G′ ≡ {pF/pF0
: F ∈ F}. Is

P0−Glivenko-Cantelli. Finally another application of preservation
of the Glivenko-Cantelli property by continuous maps shows that
the collection

H ≡ {ϕ(pF/pF0
) : F ∈ F}

is also P0-Glivenko-Cantelli. When combined with Corollary 1.1,
we find:

Theorem. The NPMLE F̂n satisfies

h(p
F̂n
, pF0

)→a.s. 0 .

To relate this result to a result of Schick and Yu (2000), it
remains only to understand the relationship between their L1(µ)
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and the Hellinger metric h between pF and pF0
. Let B denote

the collection of Borel sets in R. On B we define measures µ

and µ̃, as follows: For B ∈ B,

µ(B) =
∞∑
k=1

P (K = k)
k∑

j=1

P (Tk,j ∈ B|K = k) , (10)

and

µ̃(B) =
∞∑
k=1

P (K = k)
1

k

k∑
j=1

P (Tk,j ∈ B|K = k) . (11)

Let d be the L1(µ) metric on the class F; thus for F1, F2 ∈ F,

d(F1, F2) =
∫
|F1(t)− F2(t)|dµ(t) .

The measure µ was introduced by Schick and Yu (2000); note

that µ is a finite measure if E(K) <∞. Note that d(F1, F2) can
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also be written in terms of an expectation as:

d(F1, F2) = E(K,T )

K+1∑
j=1

∣∣∣F1(TK,j)− F2(TK,j)
∣∣∣
 . (12)

As Schick and Yu (2000) observed, consistency of the NPMLE

F̂n in L1(µ) holds under virtually no further hypotheses.

Theorem. (Schick and Yu). Suppose that E(K) < ∞. Then

d(F̂n, F0)→a.s. 0.

Proof. We have shown that this follows from the Hellinger

consistency proved above and the following lemma; see van der

Vaart and Wellner (2000).

Lemma.

1

2

{∫
|F̂n − F0|dµ̃

}2
≤ h2(p

F̂n
, pF0

) .
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Example 3. (Completely monotone densities:)

Suppose that P = {PG : G a d.f. on R} where the measures

PG are scale mixtures of exponential distributions with mixing

distribution G:

pG(x) =
∫ ∞

0
ye−yxdG(y) .

We first show that the map G 7→ pG(x) is continuous with respect

to the topology of vague convergence for distributions G. This

follows easily since kernels for our mixing family are bounded,

continuous, and satisfy ye−xy → 0 as y → ∞ for every x > 0.

Since vague convergence of distribution functions implies that

integrals of bounded continuous functions vanishing at infinity

converge, it follows that p(x;G) is continuous with respect to

the vague topology for every x > 0.

This implies, moreover, that the family F = {pG/(pG + p0) :

G is a d.f. on R} is pointwise, for a.e. x, continuous in G
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with respect to the vague topology. Since the family of sub-

distribution functions G on R is compact for (a metric for) the

vague topology (see e.g. Bauer (1972), page 241), and the

family of functions F is uniformly bounded by 1, we conclude

from the basic bracketing lemma (Wald and LeCam) that

N[ ](ε,F , L1(P )) < ∞ for every ε > 0. Thus it follows from

Corollary 1.1 that the MLE Ĝn of G0 satisfies

h(p
Ĝn
, pG0

)→a.s. 0 .

By uniqueness of Laplace transforms, this implies that Ĝn

converges weakly to G0 with probability 1. This method of proof

is due to Pfanzagl (1988); in this case we recover a result of

Jewell (1982). See also Van de Geer (1999), Example 4.2.4,

page 54.
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