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A. Log-concave densities on R!

Suppose that
f(z) = fo(x) = exp(p(z)) = exp (—(—p(z)))

where ¢ is concave (and —y is convex). The class of all densities
f on R of this form is called the class of log-concave densities,

7Dlog—concafue = Po.

Properties of log-concave densities:

e A density f on R is log-concave if and only if its convolution
with any unimodal density is again unimodal (Ibragimov,
1956).

e Every log-concave density f is unimodal (but need not be
symmetric).

e Pg is closed under convolution.
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A. Log-concave densities on R!

e Many parametric families are log-concave, for example:
Normal (u,c?)
Uniform(a, db)
Gammal(r,\) forr > 1
Beta(a,b) for a,b>1

e t, densities with » > 0 are not log-concave
e Tails of log-concave densities are necessarily sub-exponential

® Plog—concave — the class of “Polya frequency functions of
order 2", PFF5, in the terminology of Schoenberg (1951)
and Karlin (1968). See Marshall and Olkin (1979), chapter
18, and Dharmadhikari and Joag-Dev (1988), page 150. for
nice introductions.
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B. Nonparametric estimation, log-concave on R

e The (nonparametric) MLE f, exists (Rufibach, Dimbgen
and Rufibach).

o fn can be computed: R-package “logcondens” (Dimbgen
and Rufibach)

e In contrast, the (nonparametric) MLE for the class of
unimodal densities on R! does not exist. Birgé (1997) and
Bickel and Fan (1996) consider alternatives to maximum
likelihood for the class of unimodal densities.

e Consistency and rates of convergence for fn:
Dimbgen and Rufibach, (2009); Pal, Woodroofe and Meyer
(2007).

e Pointwise |limit theory? Yes! Balabdaoui, Rufibach, and W
(2009).
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B. Nonparametric estimation, log-concave on R

MLE of f and ¢: Let C denote the class of all concave function
0 R — [-00,00). The estimator ¢, based on Xq,..., X, i.i.d. as
fo iIs the maximizer of the "“adjusted criterion function”

t(p) = [100fp(@)dFn(a) — [ fo(a)da
= /go(:c)dIFn(:c) — /ew(w)d:v

over ¢ € C.
Properties of f,, &n: (Diimbgen & Rufibach, 2009)

e ©p IS piecewise linear.
° S/én = —o0 On R\ [X(l)ﬁX(n)]

e The knots (or kinks) of ¢, occur at a subset of the order
statistics X (1) < X(p) <+ < X(p).

e Characterized by ...
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B. Nonparametric estimation, log-concave on R

. {pn is the MLE of logfg = ¢q if and only if

—~ < Hp(x), for all x > X (1)
H”(x){ — H,(z), if z is a knot.

where

Fa@)= [ Fady,  Ha@@) = [ Fu(y)dy,

X(1) X(1)

Ho(2) = [ Fa(y)dy.

— 0
Furthermore, for every function A such that ¢, +tA is concave
for t small enough,

[ A@dFa@) < [ A@)dFu(a).
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B. Nonparametric estimation, log-concave on R

Consistency of f, and (y:

e (Pal, Woodroofe, & Meyer, 2007):

e (Dimbgen & Rufibach, 2009):
If fo € Py and ¢g € HPL(T) for some compact T'= [A, B] C
{x: fo(x) >0}°, M < oo, and 1 <8 <2. Then

Te) 5/(25"‘1)
sup(@n(t) — wo(t)) = Op ((gn) ) , and
teT n

A B/ (28+1)
sup (o (t) — #n(t)) = Op ((IOS) )

telny

where Ty, = [A 4 (logn/n)8/(26+1) B _ (logn/n)8/(28+1)] and
B/(28+4+1) € [1/3,2/5] for 1 <3 < 2.

e T he same remains true if ¢,, o are replaced by fn fo.
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B. Nonparametric estimation, log-concave on R

o If pg € HPL(T) as above and, with ¢, = po(-—) or wh(-+),
po(z)—pp(y) > C(y—z) forsome C >0andall A<z <y < B,
then

tely

~ lo 35/(454‘2)
SUP | Fn(t) — Fu(t)| = O, ((j”) ) -

where 35/(28+4) € [1/2,3/5] = [.5,.6] for 1 < g < 2.

o If 3> 1, this implies sup;cr, |Fn(t) — Fn(t)] = op(n~1/2).
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B. Nonparametric estimation, log-concave

on R
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Fi1G 2. The estimated log-concave density for different simulation examples. The sample sizes are
50,100 and 200 respectively for first, second and third columns. The three rows correspond to
simulations from a Normal(0,1), a double-exponential and a Gamma(3,2) density. The bold one

corvesponds to the true density and the dotted one is the estimator.
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B. Nonparametric estimation, log-concave on R

50 L. Diimbgen and K. Rufibach
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Figure 3. Density functions and empirical processes for Gumbel samples of size n = 200 and
n = 2000.
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B. Nonparametric estimation, log-concave on R

Estimating log-concave densities 45
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Figure 1. Distribution functions and the process D(t) for a Gumbel sample.
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C: Limit theory at a fixed point in R

Assumptions: e fj is log-concave, fg(xg) > O.

o If ¢{(z0) # 0, then k = 2;
otherwise, k is the smallest integer such that

(])(Cbo)—o j=2,...,k—1, @ék)(xo)#o-

o gp(() ) is continuous in a neighborhood of zg.

Example: fo(z) = Cexp(—z*) with C = V2 (3/4)/x: k = 4.

Driving process: Y (t) = [{W(s)ds—tFT2, W standard 2-sided
Brownian motion.

Invelope process: H; determined by limit Fenchel relations:
e H.(t) <Y, (t) forall teR
3
o Jo(Hy(t) — Y (£))dH D (t) = 0.

° H,SQ) IS concave.
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C: Limit theory at a fixed point in R

Theorem. (Balabdaoui, Rufibach, & W, 2009)

e Pointwise limit theorem for f,(zo):

( nk/ kA1 (20) — fo(z0)) >%d<ckH£2><o>>

n(k=1)/(k+1) (7 (20) — f4(20)) dpH(0)
where
1/(2k+1)
_(folao) e oy
k= (k+ 2)! ’
1/(2k+1)
o _ [ fo@o)*2lel” (z0)|? /
b [(k+2)1]3
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C: Limit theory at a fixed point in R

e Pointwise limit theorem for @, (xg):

( nk/ 1) (5, () — o (w0)) )%d CppH, > (0)
n(k=1/ Q1 (& (20) — ¢h(20)) DkH,g3)(O)

where

Y

fo(zo)k(k + 2)!

k
Dy = ( 05" (20) 2

1/(2k+1)
C_( 6" (20) )
k:

fo(zo)k—1[(k + 2)1]3

e Proof: Use the same perturbation as for convex - decreasing
density proof with perturbation version of characterization:

)1/(2k—|—1)
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C: Limit theory at a fixed point in R
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D: Mode estimation, log-concave density on R

Let zg = M(fp) be the mode of the log-concave density fo,
recalling that Pg C Punimodal- LOWEr bound calculations using
Jongbloed’s perturbation ¢ of ¢g yields:

Proposition. If fg € Py satisfies fo(xzo) > 0, f5(xz0) < 0, and fj
is continuous in a neighborhood of xg, and 1} is any estimator
of the mode zg = M(fg), then f, = exp(pe,) With ¢, = yn—1/5

and v = 2f7(x0)?/(5f0(x0)),

liminf n/%inf max {En|Th — M (f2)l, Eo|Tn — M (fo)|}

N—00 T,
- 1(5/2 M folao) \ 1P
— 4\ 10e f(’)’(:co)Q '

Does the MLE M(f,) achieve this?
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D: Mode estimation, log-concave density on R
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D: Mode estimation, log-concave density on R

Proposition. (Balabdaoui, Rufibach, & W, 2009)
Suppose that fg € Pg satisfies:

o gpéj)(aco) =0,7=2,...,k—1,
o gpék)(a:o) # 0, and

o go(()k) IS continuous in a neighborhood of xg.

Then M, = M(f,) = min{u : fn(u) = sup; fn(¢)}, satisfies

N2 1/(2k+1)
nt/CHHD (M, — M(fo0)) — (“k ey fZ(wO)> M(H?)
fo (z0)
where M(H,gz)) = argmax(H,gQ)).
Note that when k£ = 2 this agrees with the lower bound

calculation, at least up to absolute constants.
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D: Mode estimation, log-concave density on R

14 —

12 —

Northwestern University, November 5, 2010 1.21



D: Mode estimation, log-concave density on R

When fg = ¢, the standard normal density, M(fp) = 0, fo(0) =
(2m)~1/2, fU(0) = —(27)~1/2, and hence

(@20 """ (242@77)1/2
82 ()2 — T ent

1/5
) = 4.28452...
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E: Generalizations of log-concave to R and RY:

T hree generalizations:

e log—concave densities on R¢
(Cule, Samworth, and Stewart, 2010)

e s—concave and h— transformed convex densities on RY
(Seregin, 2010)

e Hyperbolically k—monotone and completely monotone
densities on R; (Bondesson, 1981, 1992)
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E: Generalizations of log-concave to R and RY:

Log-concave densities on R¢:

e A density f on R? is log-concave if f(z) = exp(p(z)) with ¢
concave.

e Some properties:

Any log—concave f is unimodal
The level sets of f are closed convex sets
Convolutions of log-concave distributions are log-concave.

Marginals of log-concave distributions are log-concave.
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E: Generalizations of log-concave to R and RY:

MLE of f € Py(R%): (Cule, Samworth, Stewart, 2010)

e MLE f, = argmax ;. gayPnlogf exists and is unique if
n>d-+ 1.

e T he estimator ¢, of g is a “taut tent” stretched over “tent
poles’ of certain heights at a subset of the observations.

e Computable via non-differentiable convex optimization meth-
ods: Shor’'s (1985) r—algorithm: R—package LogConcDEAD
(Cule, Samworth, Stewart , 2008).
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E: Generalizations of log-concave to R and RY:

Log-concave density estimation 3

(a) Density (b) Log-density

Fig. 3. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a
standard bivariate normal distribution.
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E: Generalizations of log-concave to R and RY:

o If fo is any density on R? with [ ||z| fo(z)dz < oo,
Jga fo(@)logfo(z)dr < oo, and {z € R : fo(x) > 0}° =
int(supp(fy)) # 0, then f, satisfies:

[ o 1Fn(@) = F*@)lde ~>a.5. 0

where, for the Kullback-Leibler divergence

K(fo, £) = [ folog(fo/ fdn,

f*=argmin ;. p rayK(fo, )

is the “pseudo-true’” density in Po(Rd) corresponding to fp.
In fact:

/Rd 6a||x”|fn(90) — ff(x)|dr —q.5. O

for any a < ag where f*(z) < exp(—agl|z|| + bg)-
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E: Generalizations of log-concave to R and RY:

r—concave and h— transformed convex densities on RY:
(Seregin, 2010; Seregin &, 2010)

Generalization to s—concave densities: A density f on R? is
r—concave on C C RY if

fQOx+ (1= Ny) > Mp(f(z), f(y): N)
for all xz,y € C' and 0 < A < 1 where
(1 =Xa"+ ")V, r#0,a,b> 0,

My(a,b; A\) = < O, r<0,ab=0
al=*vp?, r = 0.
Let P, denote the class of all r—concave densities on C. For

r < 0 it suffices to consider C = RY and it is almost immediate
from the definitions that if f € P for some r» < 0, then

f(x) = { giﬁl_/;’(x)) :i% } for g convex.
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E: Generalizations of log-concave to R and RY:

e Long history: Avriel (1972), Prékopa (1973), Borell (1975),
Rinott (1976), Brascamp and Lieb (1976)

e Nice connections to t—concave measures: (Borell, 1975)

e Known now in math-analysis as the Borell, Brascamp, Lieb
inequality

e One way to get heavier tails than log-concave!
Example: Multivariate t—density with p—degrees of freedom:
it
r((d+p)/2) 1
x) = f(x;p,d) =

p

then f e P_y/, for s € (d,d+p); i.e. fePr(RY) for —1/(d+
p) <r<-—1/d.
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E: Generalizations of log-concave to R and RY:

A measure p on (R, B) is called t—concave if for all A, B € B and
0<A<1

p(AA + (1 = X)B) > Mi(n(A), u(B), A).

Theorem. (Borell, 1975) If f € P, with —1/d < r < oo, then
the measure P = P, defined by P(A) = [4 f(z)dx for Borel
subsets A of R? is t—concave with

#, |f—1/d<T<OO,
t =4 —oo, ifr=-1/d,
1/d, if r= oo,

and conversely.
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E: Generalizations of log-concave to R and RY:

h— convex densities: Seregin (2010), Seregin & W (2010))
f(z) = h(p(z)) (1)

where ¢ : RY — R is convex, h : R — R7T is decreasing and
continuous; e.g. hs(u) = (1 + u/s)~% with s > d.

This motivates the following definition:

Definition. Say that h : R — R7T is a decreasing transformation
if, with yg =sup{y : h(y) > 0}, yoo = inf{y : h(y) < oo} ,

e h(y) = o(y~%) for some o > d as y — oo.

o If yoo > —o0, then h(y) < (v — yso) P for some B > d as
Y\ Yoo

e If yoo = —o0, then A(y)"h(—Cy) = o(1) as y — —oo for some
v, C' > 0.

e h is continuously differentiable on (Yoo, yg)-.
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E: Generalizations of log-concave to R and RY:
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E: Generalizations of log-concave to R and RY:

Let P;, denote the collection of all densities on R? of the form
f = hoo for a fixed decreasing transformation A and ¢ convex,
and let

fn = argmaxsep, Pnlogf, the MLE.
Theorem. f, € P;, exists if n > [ny] where

ng = d4+dyl{yco = —o0} + pd-
d YdL1Yoo a(B — d)
d—+ 1, if h(y) =e Y,
- {d(ﬁ), if h(y) =vy~%, s> d.

1{yoo > —o00}

Theorem. If h is a decreasing transformation as defined above,
and fg € Py, then

H(fm fo) —a.s. O.
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E:

Generalizations of log-concave to R and RY:

Questions:

Rates of convergence?

MLE (rate-) inefficient for d > 47 How to penalize to get
efficient rates?

Multivariate classes with nice preservation/closure properties
and smoother than log-concave?

Can we treat f, € P, with miss-specification: fo & P},7?

Algorithms for computing fn e Py
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