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1. Log-concave densities / distributions:

definitions

Suppose that a density f can be written as

fz) = fo(z) = exp(p(z)) = exp (—(—¢(z)))

where ¢ is concave (and —p is convex). The class of all densities
f on R, or on R?, of this form is called the class of log-concave
densities, Pjog—concave = F0-

Note that f is log-concave if and only if :

e logf(Az+(1—-XN)y) > Mogf(x)+(1-XN)logf(y) forall0 < A <1
and for all x,y.

o iff fOu+ (1 —=N)y) > f(@)* f(y'
o iff f((x+y)/2) > \/f(:c)f(y), (assuming f is measurable)
o iff f((x+1)/2)? > f(=)f(y).
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1. Log-concave densities / distributions:

definitions

Examples, R

e Example 1: standard normal
f(z) = (2m) " 2exp(~2?/2),
—log f(z) = %xz + logV/ 2,
(—logf)’(z) = 1.
e Example 2: Laplace
f(@) =27 exp(—|z|),

—logf(zx) = |z| + log2,
(—logf)’(x) =0 for all = #0.
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1. Log-concave densities / distributions:

definitions

e Example 3: Logistic

6&7

f(ZU) — (1 +€w)2,
—logf(e) = —a +2log(1 + e’),

e

(—logf)"(x) = (1+4er)2 f(x).
e Example 4: Subbotin
f(x) = Clexp(—|z"/r),  Cp=2r(1/r)rt/m1,

—logf(z) = r~tz|" + logCy,
(—logf)'(z) = (r—Daz[""2, r>1, z#0.
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1. Log-concave densities / distributions:

definitions

e Many univariate parametric families on R are log-concave,
for example:

Normal (u,o?)
Uniform(a,b)
Gamma(r,\) forr > 1
Beta(a,b) for a,b>1
Subbotin(r) with r > 1.

e t, densities with » > 0 are not log-concave

e Tails of log-concave densities are necessarily sub-exponential:
i.e. if X ~ f € PF5, then Eexp(c|X]|) < oo for some ¢ > 0.
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1. Log-concave densities / distributions:

definitions

Log-concave densities on R¢:

e A density f on R? is log-concave if f(z) = exp(p(z)) with ¢
concave.

e Examples

The density f of X ~ Ny(u,>) with X positive definite:

1 1 _
\/(zw)dmexp (—5(:16 DS G u)> ,

~10gf(2) = o (x ~ W= (@ — ) — (1/2)log(2n]x),

2
2 _
D<(—logf)(x) = (8%8%

fla) = flzip,X) =

(—logf)(x),i,j = 1,...,d> =1

If K C R%is compact and convex, then f(z) = 1x(z)/MK)
IS a log-concave density.
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1. Log-concave densities / distributions:

definitions

Log-concave measures:

Suppose that P is a probability measure on (Rd,Bd). P is a log-
concave measure if for all nonempty A, B € By and A € (0,1) we
have

P(AA 4+ (1 = A)B) > {P(A)W{P(B)}L*

e Aset AC RYis affineiftze+(1—t)yc Aforallz,y € A, t € R.

e The affine hull of a set A c RY is the smallest affine set
containing A.

Theorem. (Prékopa (1971, 1973), Rinott (1976)). Suppose
P is a probability measure on B; such that the affine hull of
supp(P) has dimension d. Then P is log-concave if and only if
there is a log-concave (density) function f on R% such that

P(B) = /Bf(a;)dx for all B e B,.
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2. Properties of log-concave densities

Properties: log-concave densities on R:

e A density f on R is log-concave if and only if its convolution
with any unimodal density is again unimodal (Ibragimov,
1956).

e Every log-concave density f is unimodal (but need not be
symmetric).

e P is closed under convolution.

e Pg is closed under weak limits
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2. Properties of log-concave densities

Properties: log-concave densities on RY:

Any log—concave f is unimodal.
The level sets of f are closed convex sets.

Log-concave densities correspond to log-concave measures.
Prékopa, Rinott.

Marginals of log-concave distributions are log-concave: if
f(z,y) is a log-concave density on R™1" then

9(@) = [ F@y)dy
is a log-concave density on R"™. Prékopa, Brascamp-Lieb.
Products of log-concave densities are log-concave.
Po is closed under convolution.

Po is closed under weak limits.
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3. Some consequences and connections

(statistics and probability)

e (a) f is log-concave if and only if det((f(mi—yj))i7j€{1,2}) >0
for all x1 < x5, y1 < y»o; i.e f is a Polya frequency density of
order 2; thus

log-concave = PF5 = strongly uni-modal

e (b) The densities py(x) = f(x — 0) for § € R have monotone
likelihood ratio (in x) if and only if f is log-concave.

Proof of (b): py(x) = f(x — 0) has MLR iff

fx—0) _ [ —0)
flx—0) = f(a'—0)
This holds if and only if
logf(z —0") +1ogf(z’ — 0) <logf(z' —0") +logf(z—6). (1)
Let t = (' —z)/(2’ — 2+ 0" — 6) and note that

forall z <z, 0 <6
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3. Some consequences and connections

(statistics and probability)

zt—0=t(z—0)+ (1 -t)(z' —0),
g —0=0—-t)(z-60)+tlx' —0)

Hence log-concavity of f implies that

logf(x —60) > tlogf(x —6") + (1 —t)logf(z" — 0),

logf(a' —6") > (1 —t)logf(z — 6) + tlogf(z' —0).
Adding these yields (1); i.e. f log-concave implies pg(x) has
MLR in x.

Now suppose that py(x) has MLR so that (1) holds. In particular
that holds if z,2/,0,0" satisfy £ — 0’ = a < b =2 —0 and t =
(2 —2)/(x/ —x+6'—0)=1/2,sothat z—0 = (a+b)/2=2"—-6".
Then (1) becomes

logf(a) 4+ logf(b) < 2logf((a+b)/2).

This together with measurability of f implies that f is log-
concave.
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3. Some consequences and connections

(statistics and probability)

Proof of (a): Suppose f is PFy. Then for z < z/, y < ¢/,
flx—y) flz—1y)
aet ( f' =) f(a =) )
= flz—y)f@ —y) - fle—y)f@@"—y) >0

if and only if
fla—y )@ —y) < flx—y)fa’ —v),
or, if and only if

flz—y") < fla" =)
flx—y) = f(@'—vy)

That is, py(xz) has MLR in z. By (b) this is equivalent to f

log-concave.
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3. Some consequences and connections

(statistics and probability)

Theorem. (Brascamp-Lieb, 1976). Suppose X ~ f = e~ ¥ with
¢ convex and D?¢p > 0, and let g € C1(R?%). Then

Var(g(X)) < E{((D?p) 1Vg(X), Vg(X)).

(Poincaré - type inequality for log-concave densities)
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3. Some consequences and connections

(statistics and probability)

Further consequences: Peakedness and majorization

Theorem 1. (Proschan, 1965) Suppose that f on R is log-

concave and symmetric about 0. Let Xq,...,X, be i.i.d. with

density f, and suppose that p,p’ € R satisfy

e p, p/ are not identical,

® p1>po> - >pn, Py 2ph > >pl,

° lej le],ké{l,...,n},

® 1193 21 PJ 1.

(That is, p’ < p.) Then le] ; is strictly more peaked than
1P X

n n
P (|Zp;X] > t) < P (lszle > t) for all t > 0.
1 1
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3. Some consequences and connections

(statistics and probability)

Example: pj = ---=p,_1 =1/(n—1), p, = 0, while

py =---=p,=1/n. Then p > p’ (since YT p; = Z?p} = 1 and
SEpi=k/(n—1) > k/n = Zlfp;-), and hence if Xq,..., X, are
i.i.d. f symmetric and log-concave,

P(|Xn|>t) < P(|X,—1]>t) < --- < P(X1|>t) forall t>O0.

Definition: A d—dimensional random variable X is said to be
more peaked than a random variable Y if both X and Y have
densities and

P(YeA) >P(XeA) forall Ae Ay,

the class of subsets of R which are compact, convex, and
symmetric about the origin.

Seminar, Institut de Mathématiques de Toulouse; 28 February 2012 1.16



3. Some consequences and connections

(statistics and probability)

Theorem 2. (Olkin and Tong, 1988) Suppose that f on R¢
is log-concave and symmetric about 0. Let X4,...,X, be i.i.d.
with density f, and suppose that a,b € R"™ satisfy

® aj>ap>---2>ap, by 2bp > > bn,

o YH¥a; <¥kb;, ke {1,...,n},

o Y la;=>7b;.

(That is, a < b.)

Then 37 a;X; is more peaked than 377 b;X;:

n n
P(El:anjEA) ZP(Zl:bJX]EA> for all A e Ay

In particular,

n n
P (H ZCL]X]H > t) < P (H Zb]X]H > t) for all ¢t > 0.
1 1
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3. Some consequences and connections

(statistics and probability)

Corollary: If g is non-decreasing on RT with ¢g(0) = 0, then
n n
Eg|I>_ajX;ll | < Eg (1D b;X;ll |
1 1

Another peakedness result:
Suppose that Y = (Y1,...,Ys) where Y, ~ N(u;,0°) are
independent and u; < ... < up; i.e. p € Kn where Ky = {z €
R™: x1 <---<uzp}. Let

g, = NY|Kn),
the least squares projection of Y onto K,,. It is well-known that

. > Y
= [minmax =2=""1 i =1.....n).
s>i r<i s—r—+1

=)
3
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3. Some consequences and connections

(statistics and probability)

Theorem 3. (Kelly) If Y ~ Np(p,02I) and p € Ky, then [y, — uy
is more peaked than Y, — u; for each k € {1,...,n}; that is

P(lpg —prl <t) > P>V, — il <t) forall t>0, ke{l,...,n}

Question: Does Kelly's theorem continue to hold if the normal
distribution is replaced by an arbitrary log-concave joint density
symmetric about p7?
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4. Strong log-concavity: definitions

Definition 1. A density f on R is strongly log-concave if

f(x) = h(x)cp(cx) for some ¢ >0

where h is log-concave and ¢(z) = (27)~ 1/ 2exp(—z2/2).
Sufficient condition: logf € C2(R) with (—=logf)”(z) > ¢? > 0 for
all x.

Definition 2. A density f on RY is strongly log-concave if
f(x) = h(x)cy(cx) for some ¢ >0

where h is log-concave and « is the N,4(0,cl;) density.
Sufficient condition: logf € C2(R%) with D2(—logf)(z) > ¢2I, for
some ¢ > 0 for all z € RY.

These agree with strong convexity as defined by Rockafellar &
Wets (1998), p. 565.
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5. Examples & conterexamples

Examples

Example 1. f(x) = h(x)¢(x)/ [ h¢dr where h is the logistic
density, h(z) = e*/(1 + €%)2.

Example 2. f(z) = h(x)¢p(x)/ [ hodr where h is the Gumbel
density. h(x) = exp(x — e¥).

Example 3. f(x) = h(z)h(—x)/ [ h(y)h(—y)dy where h is the
Gumbel density.

Counterexamples

Counterexample 1. f logistic: f(z) = e%/(1 + e%)?;

(—logf)"(z) = f(x).
Counterexample 2. f Subbotin, r € [1,2) U (2,00);

f(z) = Cytexp(—|z["/r); (—logf)"(z) = (r — 2)|z|"~>.
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3
Ex. 1: Logistic (red) perturbation of N(0,1) (green): f (blue)
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Ex. 1: (=logf)”, Logistic perturbation of N(0,1)
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Ex. 2: Gumbel (red) perturbation of N(0,1) (green): f (blue)
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Ex. 2: (—=logf)”, Gumbel perturbation of N(0,1)
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Ex. 3: Gumbel (-) x Gumbel(—-) (purple); N(0,V;) (blue)
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Ex. 3: —logGumbel(-) x Gumbel(—-) (purple); —logN (0, Vy) (blue)
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_2 -1 0 1 2
Ex. 3: D?(—logGumbel(-) x Gumbel(—-)) (purple); D?(—logN(0,V})) (blue)
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_4 —2 2 4
Subbotin fr r =1 (blue), r = 1.5 (red), r = 2 (green), r = 3 (purple)
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—log fr: r =1 (blue), r = 1.5 (red), »r = 2 (green), r = 3 (purple)
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(—log f)": r =1 (blue), r = 1.5 (red), » =2 (green), »r = 3 (purple)
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6. Some consequences, strong log-concavity

First consequence

Theorem. (Hargé, 2004). Suppose X ~ Np(u,2) with density
~ and Y has density h -~ with h log-concave, and let g : R — R
be convex. Then

Eg(Y — E(Y)) < Eg(X — EX)).

Equivalently, with 4y = EX, v = EY = E(Xh(X))/Eh(X), and
g=g(+p
E{§(X — v+ p)h(X)} < EG(X) - ER(X).
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6. Some consequences, strong log-concavity

More consequences
Corollary. (Brascamp-Lieb, 1976). Suppose X ~ f = exp(—p)
with D2p > XI5, A > 0, and let g € C1(R?). Then
_ 1
Varp(9(X)) < B{(D?p)™*Vg(X), Vg(X)) < SE|Vg(X)|.

(Poincaré inequality for strongly log-concave densities; improve-
ments by Hargé (2008))

Theorem. (Caffarelli, 2002). Suppose X ~ N,(0, I) with density
v4 and Y has density eV . v, with v convex. Let T'= Vg be the

unique gradient of a convex map ¢ such that Vo (X) 2y, Then
0< D?%p < Iy
(cf. Villani (2003), pages 290-291)
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7. Questions & problems

e Does strong log-concavity occur naturally? Are there natural
examples?

e Are there large classes of strongly log-concave densities in
connection with other known classes such as PFy, (Podlya
frequency functions of order infinity) or L. Bondesson's class
HM~, of completely hyperbolically monotone densities?

e Does Kelly's peakedness result for projection onto the
ordered cone K, continue to hold with Gaussian replaced
by log-concave (or symmetric log concave)?
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