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Int. Statist. Rev. 79, 200-220.
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1. Survey sampling: the Horvitz-Thompson

estimator

e First consider a finite population
{(z;,y;) : 1<i< N}
with y; € R, x; € RP.

e Suppose: the sampling probability w; for each individual is
known,; R; = 1 if item ¢ is sampled, R; = 0O if not, and

P(Rj=1)=mx;, i=1,...,N.

e Bernoulli (independent) sampling: the R;’'s are independent,
with P(R; =1)=n/N fori=1,...,N with 1 <n < N. Thus

N N
n 21 ) n N_Zl )
(R1 =71 N =TN) N N
for r, € {0,1}. Note that >% R; ~ Binomial(N,n/N) is

random.
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1. Survey sampling: the Horvitz-Thompson

estimator

e Sampling (n < N items) without replacement: the R;'s are
dependent (but exchangeable); P(R; = 1) = n/N for each
i=1,...,N,

—1
P(Ri=1R=1 =1 (1), 1<ij<N, i#]
1 N

T fOI’ r = (Tl,...,rn), Wlth Z’]"Z:n
(n) 1

Note that >4 R; = n is fixed (and non-random).

P(R=r)

e Goal: Estimate T = ¥ , y; (or, equivalently, uy = N~1T =
N1V ).

e An estimator based only on the y;'s: the Horvitz-Thompson
estimator of 7T is

_ 1 N R,
T= > —vi=) —¥

iiR;=1 "1 i=1 T
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1. Survey sampling: the Horvitz-Thompson

estimator

e Properties of T
75 N E(R; N
B(T) =y}, By, = 32Ny =1
Bernoulli sampllng (BS):

N N
N Var(R;) m; (1 — ;)
Var(Tpg) = Y ——2yf =Y —o-5—y7
=1 7y i=1 7%:
N
— T 1—nN
— Z 1 2 / Z yz
: 1=
N — NN -1 n—1\1 X ,
n n N —1 NZ.=1

Sampling Without Replacement (SWOR):

. N? n—1
Var(Tswor) = n'y (1 o)+ Z(yz )2
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1. Survey sampling: the Horvitz-Thompson

estimator

Something left out: Sampling n from N with replacement?
In this case R = (Rq1,...,RyN) ~ Multy(n,(1/N,...,1/N)) , so
R; € {0,1,...,n} D {0,1}. Nonetheless, with m; replaced by

E(Tswr) =T
N2 1 N

Var(Tswr) = n_> Z (vi —TN)*.
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2. Adjustments of the Horvitz-Thompson

estimator

Regression: Can we use the z;'s to help in estimating 17

e Notation:
X =(1,z),ist. Rj=1, 1<i<N), nx(p+1) matrix;
Y = (y;, tsuchthat R, =1, 1<:<N), nx1 vector
W  =diag(1l/m;, i such that R; =1, 1<i< N), nxn matrix.

e Inverse probability weighted estimate of (finite) population
Least Squares coefficients gy are

B=xTwx)xTwy.
e [ he regression estimator of T' is:
R N p. R N N
Treg = Z —Z(yz —xz;8) + Z zif =0+ Z zip.
i=1 '

i=1 T i=1
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2. Adjustments of the Horvitz-Thompson

estimator

e Improvement? Let

pJQV = variance explained by finite population regression,

ZN(yz szN)2 .

1—py =

Zjlv(yz _y)Q
e Decomposition:
-~ N R; N N R\
Treg = Y —(yi—xBN)+ D ziby + ) = (1 — —"‘> (B — Bn)
i=1 " =1 =1 4y
o~ B _ R —1/2
— Z ;(yz r;BN) + Z ;BN + Z Z; ' Op(n )
=1 "'1? —1 i=1 i
= I41II+ op(N/\F).

where

Var(l) = (1 — pJQV)Var(f)
Var(Il) = 0.
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2. Adjustments of the Horvitz-Thompson

estimator

e Calibration: Note that B is a linear function of the sampled
y;'S; I1.€e.

~ g;
Treg = Z _Zyz — Z WY
iR;=1T1 iiR;=1
where g; depends on xz and w but not y: explicitly
gi =1+ (To — To) (XTWX) "ty ~ 1

where T, = Z*Zlv z; Ty = Z‘]lv(Rz‘/Wz’)iUz‘-
Conclusion: The same 1 — pjz\, reduction in variance can be
achieved by adjustments of the weights:

replace L by %

T T
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2. Adjustments of the Horvitz-Thompson

estimator

Since the g;'s do not depend on y, they are the same if y; = x;,
and for estimating 7, the regression estimator is exact, so the
g;'s satisfy the following calibration equation:

N g
(2
Z T; = Z — ;. (1)
i=1 iiR;=1 T
Alternative definition of the g;'s: given a “loss function” d(a,b),
choose g = (g1,.-.,9n) tO minimize
1
iZRizl T T

subject to (1).
e greg corresponding to Tre, results from d(a,b) = (a — b)?/b.

® Graking COrresponds to d(a,b) = a(loga — logb) + (b — a); see
Deville and Sarndal (1992).
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2. Adjustments of the Horvitz-Thompson

estimator

e Estimated weights: Robins, Rotnitzky, and Zhao (1994)

Fit a logistic regression model to predict R; from zx;.
Write p;, = m; for the fitted probability.

The estimating equations for this logistic regression model
can be written as

N N N N
Z XT;,p; — Z x;R; or Z T = Z x; R;. (2)
1=1 1=1 1=1 1=1

Since 1/m; corresponds to g;/m; in calibration, we let
1/7; = h;/m; in this “estimated weights” setting, and then
rewrite (2) as

N N
7
=1 ? =1

This is similar to the calibration equations (1), but it has
the weights on the left side rather than the right side.
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2. Adjustments of the Horvitz-Thompson

estimator

e Comparison: estimated weights versus calibration

Advantages: The weights h; always exist and are non-
negative.

Disadvantages: All the x;'s are required, as opposed to
sampled xz;'s and population total for calibration.

Heidelberg: Biometry Seminar; 5 December, 2011 1.13



3. The “paradox”

Even though =; is known, adjusting the weights from 1 /x; to g;/m;
or to 1/7; gives an estimator of T with reduced variance. Using
estimated weights rather than known weights reduces variances.

One resolution: Compare the regression estimator (special case
of calibration) to a decomposition of the Horvitz Thompson
estimator:

. A R
T = Z 7_‘__( — x;60) + Z _37260 (4)
1=1 7 i=1 T
while
. N R,
Treg = Z W—(yz riBo) + Z ;50
=1 "1 1=1

N R\ -
+ > = (1—;?) (B — Bo)- (5)
1=1 ?
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3. The “paradox”

e [ he first terms in the last two displays are the same.

e The second term in (5) involves the known population total
2]1\’ x; of the z;'s, while the second term in (4) involves the
estimated total.

e The third term (smaller order) term in (5) is not present in

(4).

Conclusion: for large enough n and N, Ty, will always be at
least as efficient as 7.

e Other resolutions: via projections of influence functions
(Henmi & Eguchi 2004, RRZ 1994)

e Further examples: Lawless, Kalbfleisch, Wild (1999); Zou &
Fine (2002) .
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4. Parametric Models & Super-populations

e Suppose that P ={Py: 6 ¢c © C R%} is a parametric model.
e Suppose that for complete data W;, 1 <: < N
N
NPNy(Wy;0) = > Uy(6)

i=1
are unbiased estimating equation(s): typically 6 solving

N
> Ui(by) =0
i=1

satisfies VN(6y — 6g) —4 Ny(0,X) where ~ = A'BA.
Replacing y; by U;(6) above yields 6y satisfying

N
R; ~

Y —Ui(9) =0

i=1 T

where Zf\f:l E?'Ui(@) is the Horvitz-Thompson estimator of

Uy

SN L U(6). (Binder (1983))
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4. Parametric Models & Super-populations

e The above §N = Horvitz-Thompson estimator of 0.

e Calibration estimators of estimating functions? Yes; see:
Rao, Yung, and Hidiroglou (2002).
Sarndal, Swenson, and Wretman (2003).

e Rewrite of regression estimator:

R N p N N (g R\ -
Treg = Y, —(Wi—zB)+ Y ziB= ) {_yz + (1 - —> mzﬂ}
i=1

i=1 " i=1 LT i

Replacing y; (real-valued) by U;(8) (vector) yields

N

R; R;
Tn(0) = > {_ZUi(Q) + (1 — —Z> cbq;}

i=1 T4 T
where ¢; is a d—vector of arbitrary functions of the data that
are available for all N observations.
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4. Parametric Models & Super-populations

e Solutions 6y of Th(6x) = O gives the class of Augmented
Inverse Probability Weighted Estimators (AIPW estimators)
of Robins, Rotnitzky, and Zhao (1994).

e Superpopulation setting: {(z;,y;) : 1 <i < N} is the realiza-
tion of a random sample from a population or (hypothetical)
super-population. Thus in the simple context of estimating
a total or mean, we suppose that Yi,...,Yy are i.i.d. P on
R with = E(Y1) and o2 = Var(Y1) < co.

e We want to study the Horvitz-Thompson estimator p =
N—1T as an estimator of u = E(Y7).
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5. Limit theory, part 1

e Key decomposition: Note that:

VN —p) = \/N(MN—M)+\/_(ﬁN 5%,

— ;) Y;

= VNN —p)+— Z(——1>
— \/NY — 1) Ei R;
= In+ 1IN

where uy = N~1SN vy, = N~IT.
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5. Limit theory, part 1

o IN=+VN(YyN—pn) —40Z1 where Z; ~ N(0,1).

e In the three cases BS, SWOR, and SWR, the second term
Il can be rewritten as

N 1 X _
IIy = {/—Vn|=) RY,—Yn|.
n i=1

e Assuming n/N — X € (0,1),

[ JEAE(W?) 7y, for BS,
TN —q S \/1;>\)‘JZQ, for SWOR,
iz, for SWR

where Z> ~ N(0,1) is independent of Z;.
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5. Limit theory, part 1

e Putting the results for I and II) together yields:

N(0, 024+ (1 —NE(Y?), for BS,
vn(iy —p) —q { N(0,09), for SWOR,
N(O,(A+ 1)0?), for SWR.

o If E(Y) #= 0, then SWOR wins!
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6. Semiparametric Models & Super-populations

e Setting:
Semiparametric model, X ~ Fy , € P
parametric part: 6 ¢ © C R¢
nonparametric part: n &€ H C B, a Banach space
e Assumptions: To guarantee +/N-—consistency, suppose

there exist asymptotically Gaussian ML estimators (6, 7n) of
6 and n under i.i.d. random sampling (i.e. complete data).

1. Scores lg and lyh = By ,h, h€ H C B
in @ Donsker class F.

2. Scores Lo(Py)—continuous at 6, ng.

3. Information operator l'%ll,7 = B} Bo
continuously invertible on its range.

4. (On,ny) are consistent for (6g,no).
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6. Semiparametric Models & Super-populations

e Missing data — by design! X not observed for all items /
individuals

e X = X(X) observable part of X in phase 1

e Auxiliary U helps predict inclusion in subsample

W = (X,U) € W observable only in validation (phase 2)
sample

V = (X,U) € V observable in phase 1 (for all)

e Phase 1: {Wy,...,Wy}iid. P= Py
but observe only {V7,...,Vnx}

e Phase 2: Sampling indicators {R1,..., Ry}
observe W; (all of X)) if R, =1
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6. Semiparametric Models & Super-populations

Many choices for the (phase 2) sampling indicators R;; here:

e Bernoulli sampling
Pr(R; = 1|W;) = Pr(R; = 1|V;) = mo(V})
conditionally independent given the V;'s.

e Finite population stratified sampling
Partition V into J strata V=V U...UYVj.

Phase 1: Observe N; = Y31, 1{V; € V;} subjects in
stratum y

Phase 2: Sample m; of Nj without replacement:
Result: sampling indicators Rjﬂ- for subject ¢ in stratum j

(Rj1,-- .,Rj,Nj) exchangeable with
PT(RJ'Z' — 1|V1, ceey VN) — n]/N]
The vectors (Rj,la---afj,Nj)i 73 =1,...,J are independent.
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6. Semiparametric Models & Super-populations

e Define inverse probability weighted (IPW) empirical measure:

T 1 al R; .
Py = ~ > —0x; 6z = Dirac measure at x
i=1 "1
mo(V;) if Bernoulli sampling
T = ]T\L,—?l{\/; € V;} if finite pop'In stratified sampling
e Jointly solve the finite - (for #) and infinite (for n) dimensional
equations
Mg = 0 in RY
Nl = 0 for all h € H.

e MLE for complete data solves same equations with Py
instead of PY;.
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7. Limit theory, part 2

e Result 1: §N solving the IPW estimating equations is
asymptotically linear in that:

\/N(éN — 6o) lQO(X ) + Op(l) — 7](](790) + op(1)

wE
lo(z) is the semparametric efficient influence function for 6
(complete data)

= VN(Py — P).
e Notation:
Finite sampling empirical measure for stratum j € {1,...,J}:
]z—

Finite sampling empirical process

In. [ R "y
GJ N; — N;j (Pj,Nj - EPJ,NJ') )

Heidelberg: Biometry Seminar; 5 December, 2011 1.26



7. Limit theory, part 2

e More notation: v; = Py(V;), for j € {1,...,J}.
o Assume: n;/N; —p Aj € (0,1), for j € {1,...,J}.

e Key decomposition:

J
N: [ N.
- R .
N =Gy + Z Wj <n—3> G
1=1 J
that is
VNP, — Py) = VN(Py — Pp)

J
N; (N; n;
| N (25 NG (PR~ .
j; N (%) N <P‘7’Nj NjP‘?’Nj)
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7. Limit theory, part 2

VNPy —F) = v (PN Po)
R O C
J J

J 1— ),

J
7 G_I_ Z \/Vj X\ G]
j=1 J
where:
e (G,Gq,...,Gy) are all independent, G is a Py—Brownian

bridge process (indexed by F), G; is a P; = Py(-|V;)-Brownian
bridge process indexed by F, and

(Gn,GT iy -G ,) ~ (G, \/>\1(1 —A1)Gy, .., \/AJ(l —A0)Gy).
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7. Limit theory, part 2

e Upshot, raw weighted likelihood (Horvitz-Thompson):
VN Oy — 00) = G (lgy o) + 0p(1) —4 N(0, %)

where Ig = £y, is the efficient influence function for ¢ with
complete data, and

_1+23 v )\ JE (Z%%),  Bernoulli sampling
> ={ 1,1+ Z] LV jl)\ JVarJ(EO) SWOR
| —1 ‘|‘Z] 1Vi% Varj(éo) SWR.

e Gain from stratified sampling is centering of efficient scores
Can reduce variance via finite popl’'n sampling.

Select strata via covariates so that /g has small conditional
variances on the strata

Going further: Improve via calibration or estimated
weights!
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7. Limit theory, part 2

e Upshot: weighted likelihood with calibration or estimated

weights: (and SWOR)

VN(Oy —6y) —4 Z~N(0,X),
VN@Oy,.—00) —q Ze~ N(0,Z¢),
VN(One—00) —q Ze~ N(O,Ze),

where
J
_ 1— X ~
> = I 1 + Z I/jTJVC”“j(BO)y
j=1 J
IPERCA. B _
2. = IO + Z VjA—V&Tj((I_QC)EO)a
j=1 J
IPECA. RO _
2. = Iy~ + Z VijaTj(([—Qe)go),
j=1 J
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7. Limit theory, part 2

and, with Z = ¢g(V'), g known,

Qcf
Qef

Pol(mg ' (V) — 1) f 2 { Po(mg t(V) — 1) 2%2} 12,
Polrg t(V) 2118511 — mo(V))Ge(ZT ) 2.
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8. Problems and further questions

e Give a unified treatment of weighed likelihood estimation
with calibration and estimated weights for semiparametric
models as above.

e Extend to semiparametric models where there is no /n—consistent
estimator of 7.

e Both of the above are treated in Saegusa and W (2011).

e Extend to more complex sampling designs; e.g. cluster
sampling?

Key issue: no general theory for ‘sampling empirical
processes’ .

e Estimators of variance; e.g. via bootstrap? (Saegusa, 2012).
e Behavior of all these estimators under model miss-specification?

e Incorporate model selection methods for choosing covariates
in calibration and estimated weights improvements.
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Vielen Dank!
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