Two phase designs with data missing by design: inverse probability weighted estimators; adjustments and improvements

Jon A. Wellner

University of Washington, Seattle – visiting Heidelberg

University of Heidelberg, December 5, 2011

Biometry Seminar, Heidelberg

Based on joint work with:

- Norman Breslow
- Takumi Saegusa

and

• 2011 ISI Review paper: Lumley, Shaw, Dai

Outline

- 1: Survey sampling: the Horvitz-Thompson estimator
- 2: Adjustments of the Horvitz-Thompson estimator:
 - Regression
 - Calibration
 - Estimated weights
- 3: The "paradox"
- 4: Parametric Models & Super-populations
- 5: Limit theory, part 1
- 6: Semiparametric Models & Super-populations
- 7: Limit theory, part 2
- 8: Problems and further questions

Outline

- Part I: Sections 1-4. Based on
 Thomas Lumley, Pamela Shaw, and James Dai (2011).
 Connections between survey and calibration estimators and semiparametric models for incomplete data.

 Int. Statist. Rev. 79, 200-220.
- Part II: Sections 5-8: Based on
 - Norman Breslow and Jon A. W. (2007).Scand. J. Statist. 34, 86-102.
 - Norman Breslow and Jon A. W. (2008).Scand. J. Statist. 35, 83-103.
 - ▶ Takumi Saegusa and Jon A. W. (2011).
 Weighted likelihood estimators with calibration and estimated weights. Manuscript in progress.

First consider a finite population

$$\{(x_i, y_i): 1 \le i \le N\}$$

with $y_i \in \mathbb{R}$, $x_i \in \mathbb{R}^p$.

• Suppose: the sampling probability π_i for each individual is known; $R_i=1$ if item i is sampled, $R_i=0$ if not, and

$$P(R_i = 1) = \pi_i, \quad i = 1, ..., N.$$

• Bernoulli (independent) sampling: the R_i 's are independent, with $P(R_i = 1) = n/N$ for i = 1, ..., N with 1 < n < N. Thus

$$P(R_1 = r_1, \dots, R_N = r_N) = \left(\frac{n}{N}\right)^{\sum_{i=1}^{N} r_i} \left(1 - \frac{n}{N}\right)^{N - \sum_{i=1}^{N} r_i}$$

for $r_i \in \{0,1\}$. Note that $\sum_{1}^{N} R_i \sim \text{Binomial}(N,n/N)$ is random.

• Sampling (n < N items) without replacement: the R_i 's are dependent (but exchangeable); $P(R_i = 1) = n/N$ for each i = 1, ..., N,

$$P(R_i = 1, R_j = 1) = \frac{n}{N} \left(\frac{n-1}{N-1} \right), \quad 1 \le i, j \le N, \quad i \ne j,$$

$$P(\underline{R} = \underline{r}) = \frac{1}{\binom{N}{n}} \quad \text{for} \quad \underline{r} = (r_1, \dots, r_n), \quad \text{with} \quad \sum_{1}^{N} r_i = n.$$

Note that $\sum_{1}^{N} R_i = n$ is fixed (and non-random).

- Goal: Estimate $T \equiv \sum_{i=1}^N y_i$ (or, equivalently, $\mu_N \equiv N^{-1}T = N^{-1}\sum_{i=1}^N y_i$).
- ullet An estimator based only on the y_i 's: the Horvitz-Thompson estimator of T is

$$\widehat{T} = \sum_{i:R_i=1}^{N} \frac{1}{\pi_i} y_i = \sum_{i=1}^{N} \frac{R_i}{\pi_i} y_i.$$

• Properties of \widehat{T} :

$$\triangleright E(\widehat{T}) = \sum_{i=1}^{N} \frac{E(R_i)}{\pi_i} y_i = \sum_{i=1}^{N} y_i = T.$$

▷ Bernoulli sampling (BS):

$$Var(\widehat{T}_{BS}) = \sum_{i=1}^{N} \frac{Var(R_i)}{\pi_i^2} y_i^2 = \sum_{i=1}^{N} \frac{\pi_i (1 - \pi_i)}{\pi_i^2} y_i^2$$

$$= \sum_{i=1}^{N} \frac{1 - \pi_i}{\pi_i} y_i^2 = \frac{1 - n/N}{n/N} \sum_{i=1}^{N} y_i^2$$

$$= \frac{N - n}{n} \sum_{i=1}^{N} y_i^2 = n \frac{NN - 1}{n} \left(1 - \frac{n - 1}{N - 1}\right) \frac{1}{N} \sum_{i=1}^{N} y_i^2.$$

▷ Sampling Without Replacement (SWOR):

$$Var(\widehat{T}_{SWOR}) = n \frac{N^2}{n^2} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{y}_N)^2.$$

Something left out: Sampling n from N with replacement? In this case $\underline{R}=(R_1,\ldots,R_N)\sim \operatorname{Mult}_N(n,(1/N,\ldots,1/N))$, so $R_i\in\{0,1,\ldots,n\}\supset\{0,1\}$. Nonetheless, with π_i replaced by $E(R_i)=n/N$:

$$E(\widehat{T}_{SWR}) = T,$$

$$Var(\widehat{T}_{SWR}) = n \frac{N^2}{n^2} \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{y}_N)^2.$$

Regression: Can we use the x_i 's to help in estimating T?

• Notation:

$$X=((1,\underline{x}_i),\ i \text{ s.t. } R_i=1,\ 1\leq i\leq N)\,,\ n\times(p+1)$$
 matrix; $Y=(y_i,\ i \text{ such that } R_i=1,\ 1\leq i\leq N)\,,\ n\times 1$ vector $W=\operatorname{diag}\left(1/\pi_i,\ i \text{ such that } R_i=1,\ 1\leq i\leq N\right),\ n\times n$ matrix.

• Inverse probability weighted estimate of (finite) population Least Squares coefficients β_N are

$$\widehat{\beta} = (X^T W X)^{-1} X^T W Y.$$

The regression estimator of T is:

$$\widehat{T}_{reg} = \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \widehat{\beta}) + \sum_{i=1}^{N} x_i \widehat{\beta} = 0 + \sum_{i=1}^{N} x_i \widehat{\beta}.$$

Improvement? Let

 $ho_N^2=$ variance explained by finite population regression, $1-\rho_N^2=\frac{\sum_1^N(y_i-x_i\beta_N)^2}{\sum_1^N(y_i-\overline{y})^2}.$

Decomposition:

$$\widehat{T}_{reg} = \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \beta_N) + \sum_{i=1}^{N} x_i \beta_N + \sum_{i=1}^{N} x_i \left(1 - \frac{R_i}{\pi_i} \right) (\widehat{\beta} - \beta_N)$$

$$= \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \beta_N) + \sum_{i=1}^{N} x_i \beta_N + \sum_{i=1}^{N} x_i \left(1 - \frac{R_i}{\pi_i} \right) O_p(n^{-1/2})$$

$$\equiv I + II + O_p(N/\sqrt{n}).$$

where

$$Var(I) = (1 - \rho_N^2)Var(\widehat{T})$$
$$Var(II) = 0.$$

• Calibration: Note that $\widehat{\beta}$ is a linear function of the sampled y_i 's; i.e.

$$\widehat{T}_{reg} = \sum_{i:R_i=1} \frac{g_i}{\pi_i} y_i = \sum_{i:R_i=1} w_i y_i$$

where g_i depends on x and π but not y: explicitly

$$g_i = 1 + (T_x - \hat{T}_x)^T (X^T W X)^{-1} x_i \sim 1$$

where $T_x = \sum_{1}^{N} x_i$, $\hat{T}_x = \sum_{1}^{N} (R_i/\pi_i)x_i$.

Conclusion: The same $1 - \rho_N^2$ reduction in variance can be achieved by adjustments of the weights:

replace
$$\frac{1}{\pi_i}$$
 by $\frac{g_i}{\pi_i}$.

Since the g_i 's do not depend on \underline{y} , they are the same if $y_i = x_i$, and for estimating T_x the regression estimator is exact, so the g_i 's satisfy the following calibration equation:

$$\sum_{i=1}^{N} x_i = \sum_{i:R_i=1}^{N} \frac{g_i}{\pi_i} x_i.$$
 (1)

Alternative definition of the g_i 's: given a "loss function" d(a,b), choose $g=(g_1,\ldots,g_N)$ to minimize

$$\sum_{i:R_i=1} d\left(\frac{g_i}{\pi_i}, \frac{1}{\pi_i}\right)$$

subject to (1).

- g_{reg} corresponding to \widehat{T}_{reg} results from $d(a,b)=(a-b)^2/b$.
- g_{raking} corresponds to $d(a,b) = a(\log a \log b) + (b-a)$; see Deville and Särndal (1992).

- Estimated weights: Robins, Rotnitzky, and Zhao (1994)
 - \triangleright Fit a logistic regression model to predict R_i from x_i .
 - \triangleright Write $p_i = \hat{\pi}_i$ for the fitted probability.
 - The estimating equations for this logistic regression model can be written as

$$\sum_{i=1}^{N} x_i p_i = \sum_{i=1}^{N} x_i R_i \quad \text{or} \quad \sum_{i=1}^{N} x_i \hat{\pi}_i = \sum_{i=1}^{N} x_i R_i.$$
 (2)

Since $1/\pi_i$ corresponds to g_i/π_i in calibration, we let $1/\widehat{\pi}_i = h_i/\pi_i$ in this "estimated weights" setting, and then rewrite (2) as

$$\sum_{i=1}^{N} x_i \frac{\pi_i}{h_i} = \sum_{i=1}^{N} R_i x_i.$$
 (3)

This is similar to the calibration equations (1), but it has the weights on the left side rather than the right side.

- Comparison: estimated weights versus calibration
 - \triangleright Advantages: The weights h_i always exist and are non-negative.
 - \triangleright Disadvantages: All the x_i 's are required, as opposed to sampled x_i 's and population total for calibration.

3. The "paradox"

Even though π_i is known, adjusting the weights from $1/\pi_i$ to g_i/π_i or to $1/\hat{\pi}_i$ gives an estimator of T with reduced variance. Using estimated weights rather than known weights reduces variances.

One resolution: Compare the regression estimator (special case of calibration) to a decomposition of the Horvitz Thompson estimator:

$$\widehat{T} = \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \beta_0) + \sum_{i=1}^{N} \frac{R_i}{\pi_i} x_i \beta_0$$
 (4)

while

$$\widehat{T}_{reg} = \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \beta_0) + \sum_{i=1}^{N} x_i \beta_0 + \sum_{i=1}^{N} x_i \left(1 - \frac{R_i}{\pi_i}\right) (\widehat{\beta} - \beta_0).$$
 (5)

3. The "paradox"

- The first terms in the last two displays are the same.
- The second term in (5) involves the known population total $\sum_{1}^{N} x_{i}$ of the x_{i} 's, while the second term in (4) involves the estimated total.
- The third term (smaller order) term in (5) is not present in (4).

Conclusion: for large enough n and N, \widehat{T}_{reg} will always be at least as efficient as \widehat{T} .

- Other resolutions: via projections of influence functions (Henmi & Eguchi 2004, RRZ 1994)
- Further examples: Lawless, Kalbfleisch, Wild (1999); Zou & Fine (2002).

- Suppose that $\mathcal{P} = \{P_{\theta}: \theta \in \Theta \subset \mathbb{R}^d\}$ is a parametric model.
- Suppose that for complete data W_i , $1 \le i \le N$

$$N\mathbb{P}_N\psi(W_i;\theta) = \sum_{i=1}^N U_i(\theta)$$

are unbiased estimating equation(s): typically θ_N solving

$$\sum_{i=1}^{N} U_i(\theta_N) = 0$$

satisfies $\sqrt{N}(\theta_N - \theta_0) \rightarrow_d N_d(0, \Sigma)$ where $\Sigma = A^T B A$. Replacing y_i by $U_i(\theta)$ above yields $\widehat{\theta}_N$ satisfying

$$\sum_{i=1}^{N} \frac{R_i}{\pi_i} U_i(\widehat{\theta}) = 0$$

where $\sum_{i=1}^{N} \frac{R_i}{\pi_i} U_i(\theta)$ is the Horvitz-Thompson estimator of $\sum_{i=1}^{N} U_i(\theta)$. (Binder (1983))

- The above $\widehat{\theta}_N = \text{Horvitz-Thompson estimator of } \theta_N.$
- Calibration estimators of estimating functions? Yes; see:

 - ▷ Särndal, Swenson, and Wretman (2003).
- Rewrite of regression estimator:

$$\widehat{T}_{reg} = \sum_{i=1}^{N} \frac{R_i}{\pi_i} (y_i - x_i \widehat{\beta}) + \sum_{i=1}^{N} x_i \widehat{\beta} = \sum_{i=1}^{N} \left\{ \frac{R_i}{\pi_i} y_i + \left(1 - \frac{R_i}{\pi_i} \right) x_i \widehat{\beta} \right\}$$

Replacing y_i (real-valued) by $U_i(\theta)$ (vector) yields

$$T_N(\theta) = \sum_{i=1}^N \left\{ \frac{R_i}{\pi_i} U_i(\theta) + \left(1 - \frac{R_i}{\pi_i} \right) \phi_i \right\}$$

where ϕ_i is a d-vector of arbitrary functions of the data that are available for all N observations.

- Solutions $\widehat{\theta}_N$ of $T_N(\widehat{\theta}_N)=0$ gives the class of Augmented Inverse Probability Weighted Estimators (AIPW estimators) of Robins, Rotnitzky, and Zhao (1994).
- Superpopulation setting: $\{(x_i,y_i):1\leq i\leq N\}$ is the realization of a random sample from a population or (hypothetical) super-population. Thus in the simple context of estimating a total or mean, we suppose that Y_1,\ldots,Y_N are i.i.d. P on \mathbb{R} with $\mu=E(Y_1)$ and $\sigma_Y^2=Var(Y_1)<\infty$.
- We want to study the Horvitz-Thompson estimator $\widehat{\mu} = N^{-1}\widehat{T}$ as an estimator of $\mu = E(Y_1)$.

Key decomposition: Note that:

$$\begin{split} \sqrt{N}(\widehat{\mu}-\mu) &= \sqrt{N}(\mu_N-\mu) + \sqrt{N}(\widehat{\mu}_N-\mu_N) \\ &= \sqrt{N}(\overline{Y}_N-\mu) + \frac{1}{\sqrt{N}} \sum_{i=1}^N \left(\frac{R_i}{\pi_i}-1\right) Y_i \\ &= \sqrt{N}(\overline{Y}_N-\mu) + \frac{N}{n} \frac{1}{\sqrt{N}} \sum_{i=1}^N \left(R_i-\pi_i\right) Y_i \\ &= I_N + II_N \end{split}$$
 where $\mu_N = N^{-1} \sum_{i=1}^N Y_i = N^{-1}T$.

- $I_N = \sqrt{N}(\overline{Y}_N \mu) \rightarrow_d \sigma Z_1$ where $Z_1 \sim N(0, 1)$.
- ullet In the three cases BS, SWOR, and SWR, the second term II_N can be rewritten as

$$II_N = \sqrt{\frac{N}{n}} \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^N R_i Y_i - \overline{Y}_N \right).$$

• Assuming $n/N \to \lambda \in (0,1)$,

$$II_N
ightarrow_d \left\{ egin{array}{ll} \sqrt{rac{1-\lambda}{\lambda}} \sqrt{E(Y^2)} Z_2, & {
m for} & BS, \\ \sqrt{rac{1-\lambda}{\lambda}} \sigma Z_2, & {
m for} & SWOR, \\ \sqrt{rac{1}{\lambda}} \sigma Z_2, & {
m for} & SWR \end{array}
ight.$$

where $Z_2 \sim N(0,1)$ is independent of Z_1 .

ullet Putting the results for I_N and II_N together yields:

$$\sqrt{n}(\hat{\mu}_N - \mu) \rightarrow_d \begin{cases} N(0, \lambda \sigma^2 + (1 - \lambda)E(Y^2), & \text{for } BS, \\ N(0, \sigma^2), & \text{for } SWOR, \\ N(0, (\lambda + 1)\sigma^2), & \text{for } SWR. \end{cases}$$

• If $E(Y) \neq 0$, then SWOR wins!

• Setting:

- ightharpoonup Semiparametric model, $X \sim P_{\theta,\eta} \in \mathcal{P}$
 - parametric part: $\theta \in \Theta \subset \mathbb{R}^d$
 - o nonparametric part: $\eta \in H \subset \mathcal{B}$, a Banach space
- **Assumptions:** To guarantee \sqrt{N} -consistency, suppose there exist asymptotically Gaussian ML estimators $(\hat{\theta}_n, \hat{\eta}_n)$ of θ and η under i.i.d. random sampling (i.e. complete data).
 - \triangleright **1.** Scores l_{θ} and $l_{\eta}h = B_{\theta,\eta}h$, $h \in \mathcal{H} \subset \mathcal{B}$ in a Donsker class \mathcal{F} .
 - \triangleright **2.** Scores $L_2(P_0)$ —continuous at θ_0 , η_0 .
 - \triangleright 3. Information operator $i_{\eta}^T i_{\eta} = B_0^* B_0$ continuously invertible on its range.
 - \triangleright **4.** $(\hat{\theta}_N, \hat{\eta}_N)$ are consistent for (θ_0, η_0) .

- ullet Missing data by design! X not observed for all items / individuals
- $\widetilde{X} = \widetilde{X}(X)$ observable part of X in phase 1
- ullet Auxiliary U helps predict inclusion in subsample
 - $\triangleright W = (X, U) \in \mathcal{W}$ observable only in validation (phase 2) sample
 - $\triangleright V = (\widetilde{X}, U) \in \mathcal{V}$ observable in phase 1 (for all)
- Phase 1: $\{W_1, ..., W_N\}$ i.i.d. $P = P_W$
 - \triangleright but observe only $\{V_1,\ldots,V_N\}$
- Phase 2: Sampling indicators $\{R_1, \dots, R_N\}$
 - \triangleright observe W_i (all of X_i) if $R_i = 1$

Many choices for the (phase 2) sampling indicators R_i ; here:

Bernoulli sampling

$$Pr(R_i = 1|W_i) = Pr(R_i = 1|V_i) = \pi_0(V_i)$$

conditionally independent given the V_i 's.

- Finite population stratified sampling
 - \triangleright Partition \mathcal{V} into J strata $\mathcal{V} = \mathcal{V}_1 \cup \ldots \cup \mathcal{V}_J$.
 - \rhd Phase 1: Observe $N_j = \sum_{j=1}^N \mathbf{1}\{V_i \in \mathcal{V}_j\}$ subjects in stratum j
 - \triangleright Phase 2: Sample n_j of N_j without replacement:
 - ho Result: sampling indicators $R_{j,i}$ for subject i in stratum j
 - $ho (R_{j,1}, \ldots, R_{j,N_j})$ exchangeable with

$$Pr(R_{ji} = 1 | V_1, \dots, V_N) = n_j / N_j.$$

ightharpoonup The vectors $(R_{j,1},\ldots,\xi_{j,N_j})$, $j=1,\ldots,J$ are independent.

Define inverse probability weighted (IPW) empirical measure:

$$\mathbb{P}_N^{\pi} = \frac{1}{N} \sum_{i=1}^{N} \frac{R_i}{\pi_i} \delta_{X_i}, \qquad \delta_x = \text{ Dirac measure at } x$$

$$\pi_i = \left\{ \begin{array}{ll} \pi_0(V_i) & \text{if Bernoulli sampling} \\ \frac{n_j}{N_j} \mathbf{1}\{V_i \in \mathcal{V}_j\} & \text{if finite pop'ln stratified sampling} \end{array} \right.$$

• Jointly solve the finite - (for θ) and infinite (for η) dimensional equations

• MLE for complete data solves same equations with \mathbb{P}_N instead of \mathbb{P}_N^π .

• Result 1: $\widehat{\theta}_N$ solving the IPW estimating equations is asymptotically linear in that:

$$\sqrt{N}(\widehat{\theta}_N - \theta_0) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \frac{R_i}{\pi_i} \widetilde{l}_{\theta_0}(X_i) + o_p(1) = \mathbb{G}_N^{\pi}(\widetilde{l}_{\theta_0}) + o_p(1)$$

 $\widetilde{l}_{\theta}(x)$ is the semparametric efficient influence function for θ (complete data)

$$\mathbb{G}_N^{\pi} = \sqrt{N}(\mathbb{P}_N^{\pi} - P_0).$$

- Notation:
 - \triangleright Finite sampling empirical measure for stratum $j \in \{1, ..., J\}$:

$$\mathbb{P}_{j,N_{j}}^{R} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} R_{ji} \delta_{X_{ji}}$$

> Finite sampling empirical process

$$\mathbb{G}_{j,N_j}^R = \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^R - \frac{n_j}{N_j} \mathbb{P}_{j,N_j} \right),$$

- More notation: $\nu_j \equiv P_0(\mathcal{V}_j)$, for $j \in \{1, \dots, J\}$.
- Assume: $n_j/N_j \rightarrow_p \lambda_j \in (0,1)$, for $j \in \{1,\ldots,J\}$.
- Key decomposition:

$$\mathbb{G}_N^{\pi} = \mathbb{G}_N + \sum_{j=1}^J \frac{N_j}{N} \left(\frac{N_j}{n_j}\right) \mathbb{G}_{j,N_j}^R;$$

that is

$$\sqrt{N}(\mathbb{P}_N^{\pi} - P_0) = \sqrt{N}(\mathbb{P}_N - P_0)
+ \sum_{j=1}^J \frac{N_j}{N} \left(\frac{N_j}{n_j}\right) \sqrt{N_j} \left(\mathbb{P}_{j,N_j}^R - \frac{n_j}{N_j} \mathbb{P}_{j,N_j}\right).$$

$$\sqrt{N}(\mathbb{P}_{N}^{\pi} - P_{0}) = \sqrt{N}(\mathbb{P}_{N} - P_{0})
+ \sum_{j=1}^{J} \sqrt{\frac{N_{j}}{N}} \left(\frac{N_{j}}{n_{j}}\right) \sqrt{N_{j}} \left(\mathbb{P}_{j,N_{j}}^{R} - \frac{n_{j}}{N_{j}}\mathbb{P}_{j,N_{j}}\right)
\Rightarrow \mathbb{G} + \sum_{j=1}^{J} \sqrt{\nu_{j}} \sqrt{\frac{1 - \lambda_{j}}{\lambda_{j}}} \mathbb{G}_{j}$$

where:

• $(\mathbb{G}, \mathbb{G}_1, \dots, \mathbb{G}_J)$ are all independent, \mathbb{G} is a P_0 -Brownian bridge process (indexed by \mathcal{F}), \mathbb{G}_j is a $P_j = P_0(\cdot|\mathcal{V}_j)$ -Brownian bridge process indexed by \mathcal{F} , and

$$(\mathbb{G}_N, \mathbb{G}_{1,N_1}^R, \dots, \mathbb{G}_{J,N_J}^R) \rightsquigarrow (\mathbb{G}, \sqrt{\lambda_1(1-\lambda_1)}\mathbb{G}_1, \dots, \sqrt{\lambda_J(1-\lambda_J)}\mathbb{G}_J).$$

Upshot, raw weighted likelihood (Horvitz-Thompson):

$$\sqrt{N}(\widehat{\theta}_N - \theta_0) = \mathbb{G}_N^R(\widetilde{\ell}_{\theta_0, \eta_0}) + o_p(1) \to_d N(0, \Sigma)$$

where $\tilde{l}_0 \equiv \tilde{\ell}_{\theta_0,\eta_0}$ is the efficient influence function for θ with complete data, and

$$\Sigma = \begin{cases} I_0^{-1} + \sum_{j=1}^J \nu_j \frac{1-\lambda_j}{\lambda_j} E_j(\tilde{\ell}_0^{\otimes 2}), & \text{Bernoulli sampling} \\ I_0^{-1} + \sum_{j=1}^J \nu_j \frac{1-\lambda_j}{\lambda_j} Var_j(\tilde{\ell}_0), & \text{SWOR} \\ I_0^{-1} + \sum_{j=1}^J \nu_j \frac{1}{\lambda_j} Var_j(\tilde{\ell}_0), & \text{SWR.} \end{cases}$$

- Gain from stratified sampling is centering of efficient scores
 - □ Can reduce variance via finite popl'n sampling.
 - ightharpoonup Select strata via covariates so that $\tilde{\ell}_0$ has small conditional variances on the strata
 - Going further: Improve via calibration or estimated weights!

 Upshot: weighted likelihood with calibration or estimated weights: (and SWOR)

$$\sqrt{N}(\widehat{\theta}_N - \theta_0) \rightarrow_d Z \sim N(0, \Sigma),$$
 $\sqrt{N}(\widehat{\theta}_{N,c} - \theta_0) \rightarrow_d Z_c \sim N(0, \Sigma_c),$
 $\sqrt{N}(\widehat{\theta}_{N,e} - \theta_0) \rightarrow_d Z_e \sim N(0, \Sigma_e),$

where

$$\Sigma = I_0^{-1} + \sum_{j=1}^{J} \nu_j \frac{1 - \lambda_j}{\lambda_j} Var_j(\tilde{\ell}_0),$$

$$\Sigma_c = I_0^{-1} + \sum_{j=1}^{J} \nu_j \frac{1 - \lambda_j}{\lambda_j} Var_j((I - Q_c)\tilde{\ell}_0),$$

$$\Sigma_e = I_0^{-1} + \sum_{j=1}^{J} \nu_j \frac{1 - \lambda_j}{\lambda_j} Var_j((I - Q_e)\tilde{\ell}_0),$$

and, with Z = g(V), g known,

$$Q_c f \equiv P_0[(\pi_0^{-1}(V) - 1)fZ^T] \{ P_0(\pi_0^{-1}(V) - 1)Z^{\otimes 2} \}^{-1} Z,$$

$$Q_e f \equiv P_0[\pi_0^{-1}(V)fZ^T] S_0^{-1} (1 - \pi_0(V)) \dot{G}_e(Z^T \alpha_0) Z.$$

8. Problems and further questions

- Give a unified treatment of weighed likelihood estimation with calibration and estimated weights for semiparametric models as above.
- Extend to semiparametric models where there is no \sqrt{n} —consistent estimator of η .
- Both of the above are treated in Saegusa and W (2011).
- Extend to more complex sampling designs; e.g. cluster sampling?
- Estimators of variance; e.g. via bootstrap? (Saegusa, 2012).
- Behavior of all these estimators under model miss-specification?
- Incorporate model selection methods for choosing covariates in calibration and estimated weights improvements.

9. Selected references

- Lumley, T., Shaw, P., and Dai, J. (2011).
 Connections between survey and calibration estimators and semiparametric models for incomplete data.
 Int. Statist. Rev. 79, 200-220.
- Breslow, N. and Wellner, J. A. (2007).
 Weighted likelihood for semiparametric models and two-phase stratified samples with application to Cox regression.
 Scand. J. Statist. 34, 86-102.
- Breslow, N. and Wellner, J. (2008).
 A Z-theorem with estimated nuisance parameters. Scand. J. Statist. 35, 83-103.
- Saegusa, T. and Wellner, J. A. (2011).
 Weighted likelihood estimators with calibration and estimated weights. *Manuscript in progress*.

9. Selected references

- Robins, J., Rotnitzky, A., and Zhao, L.-P. (1994). Estimation of regression coefficients when some regressors are not always observed. *J. Amer. Statist. Assoc.* **89**, 846-866.
- Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in survey sampling. *J. Amer. Statist. Assoc.* 87, 376-382.
- Särndal, C.-E. (2007). The calibration approach in survey theory and practice. *Survey Methodology* **33**, 99-119.
- Henmi, M. and Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating equations.
 Biometrika 91, 929-941.
- Lumley, T. (2010). *Complex Surveys: A Guide to Analysis Using R*. Wiley, Hoboken.

9. Selected references

- Breslow, N.E., Lumley, T., Ballantyne, C. M., Chambless, L.E., & Kulich, M. (2009a). Improving Horvitz-Thompson estimation ... Stat. Biosc. 1, 32-49.
- Breslow, N.E., Lumley, T., Ballantyne, C. M., Chambless, L.E., & Kulich, M. (2009a). Using the whole cohort in the analysis of case-cohort data. *Amer. J. Epidemiology* 169, 1398-1405.
- Breslow, N.E. (2009). Lecture notes, *Two Phase Stratified Designs and Analyses for Epidemiology*. (Statistics Alps) http://faculty.washington.edu/norm/software.html .
- van der Vaart, A. W. & Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.
- van der Vaart, A. W. (1998). Asymptotic Statistics.
 Cambridge University Press, Cambridge.

Vielen Dank!