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1. A problem from statistics: persistence

Setting:
* Data: n i.i.d. copies 74, ..., Z, of
Z =Y, X1,...,X,) = (Y, X),; write Z; = (YZ',X{,...,X;),
1=1,...,n

* Dimension of X, p = p, large, p, = n%, a > 1

* Goal: Predict Y on the basis of the covariates X,
g=1,...,p

* Predictors Y of Y of the form ¥ = > 51 B;X; = p'X with
B € B, C RP for each n.

* Natural sets B,, to consider are

Bnr={B€R?: #j: B; #0} =k} ={B8 € R”: ||Bllo = K},
Bnp =18 € RP: |[|B]l1 < b}.

where k =k, — coand b = b,, — 0. |
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* For Z = (Y,X) ~ Pon (RPF B,,1), define

2

p
Lp(B)=Ep |Y =) B;X;
j=1
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* For Z = (Y,X) ~ Pon (RPF B,,1), define
2

p
Lp(B)=Ep |Y =) B;X;
j=1

* For a given sequence of distributions { P, } of Z and
sequence of sets {B,, } with B,, C RP, define

Bn(Prn) = B, = argmingcp Lp, (5).

Thus g’ is a deterministic sequence in RP determined by P,
and B,,.
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* For Z = (Y,X) ~ Pon (RPF B,,1), define
2

p
Lp(B)=Ep |Y =) B;X;
j=1

* For a given sequence of distributions { P, } of Z and
sequence of sets {B,, } with B,, C RP, define

Bn(Pn) = B, = argming g Lp, (5).
Thus g’ is a deterministic sequence in RP determined by P,

and B,,.

* This corresponds to the unknown “ideal predictor”

Y* = 5" X which would be available to us if we knew P,,.
n |
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* Definition. (Greenshtein and Ritov, 2004).
Given a set of possible predictors B,,, a sequence of

procedures {0, } is persistent (or persistent relative to { B,,} and
{P,}) if, for every sequence P, € P,

AN

Lp,(Bn) = Lp,(Bn) —» 0.

Nemirovski’s inequality revisited — p. 6/27



2. The theorem of Greenshtein and Ritov

Theorem. If p = p,, = n® and

F(Z;) = (e X2 X, — Ep, (X;X3)]

satisfies Ep F'?(Z;) < M < oo for all n > 1, then for
b, = o((n/logn)'/*) the procedures given by

B = argmingcz . Lp, () (1)

are persistent with respect to

Bpp, ={8 € RP: ||B]l1 < bn}.
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°* Comment1. The persistent procedures B}L in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.
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°* Comment1. The persistent procedures En in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

°* comment2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” B,, , under the assumption that

k =k, = o((n/logn)'/?).
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°* Comment1. The persistent procedures En in (1) are
equivalent to Lasso estimators with a particular range of the
penalty parameters.

°* comment2. Greenshtein and Ritov (2004) also prove
related results for procedures based on the “model selection
sets” B,, , under the assumption that

k =k, = o((n/logn)'/?).

* Proof,part1: Lety = (—1,081,....8,) = (Bo, ..., 0p) € RPTL
and letY = X,. Then

Lp(8) = Ep(Y — 8 X)* =+'Spy

where Xp = (045) = (Ep(XiX;))o<ij<p-
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Proof, part 1: With 3,, = argmin seB,, Le,(B) it follows that

AN

and hence

0 < Lp,(Bn)— Lp,(8)

— LPn (Bn> — Lpn (Bn) aE LIPn (Bn) — LIP’n (ﬂ;;)

+ Lp,(6,) — Lp,(5)

< 2 sup |Lp (B)— Lp, (B)|
/BEB’nabn
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Proof, part 1, continued: Let [P, be the empirical measure of
AT/ Then

Lp,(B) =v'Zp, v =7 (Gij)y =72y

Define €/, and E = (¢7;) by

€i; = Oij — Oij, E=()=%—%p.

Then

Lp, (8) = Lp,(B)] = |Y (Zp,, = Zp )| < [1Zp, — Zp, [l
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° Proof, part 1, continued: Thus for
Bup, ={B€RP: ||B]l1 < bn},

Pr ( sup |Lp, (6) — Lp (6)| > e) (2)
BEBn b,
< Pr(||Zp. —2p loo(l + b,)% > €)
< € b, +1)’E|Zp, — Zp |lco- (3)

Thus if we can show that the expectation in the last display
satisfies

logn
B|[Zp, — 2plle < O =,

then the proof is complete:
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3. First proof (part 2) — via Nemirovski’s inequality

Lemma 1. (Nemirovski’s inequality)
Let X1,..., X, be independent random vectors in R?, d > 3, with
EX; =0and E|X;||3 < oco. Then for every r € [2, ]

B> X;||2 < Cmin{r,logd} > E||X;|)?
1=1 =1

where | - ||, is the ¢, norm, ||z, = {>2%|z;|"}"/" and C'is an
absolute constant (i.e. not depending on r or d or n or the
distribution of the X;’s).
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® First proof, part 2: To apply Nemirovski’s inequality to bound
El|¥p —Yp |loo, cOnsider the matrix Xp — >p asa

(p + 1)?—dimensional vector, and write

Yp, — 2p, = z”: Vi
i=1

n

= Z ” (XoXo — E(XoXp), Xo Xt — E(X5X1), ...,
i=1

L XEXE - E(XEXD)).
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® First proof, part 2: To apply Nemirovski’s inequality to bound
El|¥p —Yp |loo, cOnsider the matrix Xp — >p asa

(p + 1)?—dimensional vector, and write

Yp, — 2p, = z”: Vi
i=1

= Z ” (XoXo — E(XoXp), Xo Xt — E(X5X1), ...,
i=1

o, XX — E(X;X;)) .
* By our hypothesis

satisfies Ep F(Z;)? < M < .
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° First proof, part 2, continued: Then by Jensen’s inequality
followed by Nemirovski’s inequality with » = oo,

n 2 n
{Ep,|Zp, — TP, llc}’ = {EPHHZV@'HOO} SEPnHZ‘/ngO

< Clog((pn + ZEP IVill%
1
/ 2c 2
< C'log(4n )ﬁ;EF(Z
- C,,logn
B n

so that

logn

Ep,||2p, — Zp,|lec < C”
n
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4. Proof (part 2) — via bracketing entropy bounds
° Let G, = /n(P, — Py).
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4. Proof (part 2) — via bracketing entropy bounds

° Let G, = /n(P, — Py).

* For a class of functions F = {f : Z — R} write
|GnllF = sup ser |Gn(f)|- For F with #(F) = d < oo, note
that |G| = |[Gn(f)]|ec Where
Gn(f) = (Gn(f1), -, Gn(fa))-
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4. Proof (part 2) — via bracketing entropy bounds

° Let G, = /n(P, — Py).

* For a class of functions F = {f : Z — R} write
|GnllF = sup ser |Gn(f)|- For F with #(F) = d < oo, note
that ||Gn |7 = [|Gn(f)llc where
Gn(f) = (Gn(f1)s-- - Gulfa))-

* For each ¢ > 0 let the bracketing number N (e, F, L2(P)) be

the minimal number of brackets of Lo(P)—size ¢ needed to
cover F.
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4. Proof (part 2) — via bracketing entropy bounds

° Let G, = /n(P, — Py).

* For a class of functions 7 = {f : Z — R} write
|GnllF = sup ser |Gn(f)|- For F with #(F) = d < oo, note
that ||Gn |7 = [|Gn(f)llc where
Gn(f) = (Gn(f1)s-- - Gulfa))-

* For each ¢ > 0 let the bracketing number N (e, F, L2(P)) be

the minimal number of brackets of Lo(P)—size ¢ needed to
cover F.

° Foro > 0, let

)
J[](d,f,LQ(P))E/O \/log(1+NH(e,f,L2(P))de.
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Lemma. (Empirical process theory bracketing entropy bound)
E*\Gallr S J(LF, La(Bo)) || F| P, 2-

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. []

* |n the current application take
F ={fir(z) =x;x5, 0 <j,k <p}, afinite list of functions of
cardinality #(F) = (p, + 1)°.
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Lemma. (Empirical process theory bracketing entropy bound)
E*\Gallr S J(LF, La(Bo)) || F| P, 2-

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. []

* |n the current application take
F ={fir(z) =x;x5, 0 <j,k <p}, afinite list of functions of

cardinality #(F) = (p, + 1)°.

* Hence Nj(¢, F, L2(P,)) < (pn + 1)* by choosing e—brackets
[ijk, ijk] given by lj)k(Z) = fj,k(z) — 6/2 and
uik(2) = fi(z) +€/2.
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Lemma. (Empirical process theory bracketing entropy bound)
E*\Gallr S J(LF, La(Bo)) || F| P, 2-

Proof. Pollard (1989); see Theorem 2.14.2, van der Vaart and
Wellner (1996), page 240. []

* |n the current application take
F ={fir(z) =x;x5, 0 <j,k <p}, afinite list of functions of

cardinality #(F) = (p, + 1)°.

* Hence Njj(e, F, La(Py)) < (pn + 1)* by choosing e—brackets
ik, ujk] given by [ x(2) = fjx(2) —€/2 and
uik(2) = fi(z) +€/2.

® Thus the bound in the lemma becomes

E|Gullr S v1+1log[(pn +12|IF|p, 2 S Viogn,
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* Or, equivalently

E|Zp, — Zp,lloc = EllPn — Pallr S vn~logn,

iIn agreement with the bound given by Nemirovski’s
inequality. []
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5. Proof of Nemirovski’s inequality

Proof: For given r € [2,00) consider the map V,. from RY to R
defined by

Vi (@) = [lzl7.

Then V. is continuously differentiable with Lipschitz continuous
derivative VV,.. Furthermore

Vi(z+y) < Vi(z) +y'VVi(z) + CrVi(y) (4)

for an absolute constant C'. Thus, writing
SPELX =37 X + X, 1, it follows from (4) that

n+1

ZX ) < Vil ZX )+ X! 1 VVi( ZX ) + CrVi(Xng1).
1=1
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Taking expectations across this inequality and using
independence of X,,; and >, X; together with E(X,,+1) =0
yields

n+1 n n
/
1=1 =1 =1
+ CTE%(Xn_|_1)

1=1
By recursion this yields
n+1 n—+1
EV, (Z Xi> <Cr) EV.(X) (5)
1=1 1=1

and hence the desired result with r rather than min{r, log d}.
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To show that we can replace r by min{r, logd} up to an absolute
constant, first note that this follows immediately for

r < r(d) = 2logd with C replaced by 2C. Now suppose

r > r(d) = 2log d. Recall that for 1 <’ < r we have

- < |zl < a1z,

for all z € R¢ (by Hélder’s inequality).
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Thus with ' = r(d) < r

E|Y X7 < EBIY Xl
1=1 1=1

Cr(d) Y E|Xi|Z4 by (5)
1=1

VAN

VAN

S T L 12
0r<d>;E{d<> X112}

VAN

Cr(d)d*" Dy Bl X
1=1

= 2Celogd Y E|X|?.
1=1

Thus Nemirovski’s inequality is proved for r € |2, co) with
constant C given by 2¢C and C the constant of (4).
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6. Extensions and comparisons

Nemirovski’s inequality yields bounds of order comparable to
those achieved by bracketing methods from empirical process
theory. Since the proofs are very different, it may be worthwhile
to explore the exact constants achieved by the two methods Iin

more detail.
* |n fact Nemirovski’s basic deterministic inequality

Vi@ +y) < Vi(x) +y'VVi(z) + CrVi(y) (6)
holds in the following more precise form:

Vi(z +y) < Vi(z) +y'VVi(z) + (r — D)V (y) (7)

where V,.(z) = [|z]|2.
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* Thus Nemirovski’s inequality for sums of independent X;’s
holds in the form

E|IY x| < o(r,d) Yy E|X;)2 (®)
1=1 1=1

where C(r,d) = min{r — 1,e(2log(d) — 1)}. In particular,
when r = oo,

B X||2, < e(2log(d) - 1)) Bl X%
=1 1=1

Nemirovski’s inequality revisited — p. 23/27



Two alternative methods for deriving similar bounds:

* By “type and co-type” theory together with symmetrization,
(8) holds with

8(F((r+1)/2))’ 1< < 60

C(r,d) :{ m

27’(’63, T = Q.

where ¢ = F max;<;<q ZJ2 < 2log(d) for d > 3.
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Two alternative methods for deriving similar bounds:

* By “type and co-type” theory together with symmetrization,
(8) holds with

s

g (T+D/2)) 5
C’(r,d):{ ( )’ =T <0

27’(’63, T = Q.

where ¢ = F max;<;<q ZJ2 < 2log(d) for d > 3.

* By truncation and Bernstein’s inequality (8) holds with

C(0o,d) = {1 + 3.46+/log(2d)}*.
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120

Figure 1: Comparison of C (oo, d) obtained via the
three proof methods: Blue (bottom) = Nemirovski;
Red and Black (middle) = type-inequalities / prob-
ability in Banach spaces; Green (top) = truncation

E - ;
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