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Types of shape restrictions for functions on R

* Monotone

* Unimodal, antimodal, piecewise monotone
* Convex, concave, log-concave

* k—monotone, completely monotone

® mixtures
© normal (convolution - deconvolution)
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* Density function f
* Regression function, r(z) = FE(Y |X = x)
* Hazard function h:

W
1 — F(x)

h(x)

* Intensity function A\ of a Poison process

* Distribution functions in interval censoring models
(non-regular or “inverse problem?)

* Distribution functions in direct observation models (regular
or “forward problem?”)
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* Global (with some global measure of deviations):

© Hellinger distance (densities or intensities)
© Ly or Ly—distances
© supremum metrics

* Lower bounds, or

* Upper bounds.

* Estimation, or

* Testing (within a shape constrained family)
* Confidence sets?

* Assuming shape constraint, or

* Testing to see if a shape constraint is true?
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Current state of shape restricted inference

A collection of several dozen results in search of a
theory?

Main topics in my lecture:
* Maximum likelihood and least squares estimators
* Pointwise limit theory
* Local (pointwise) lower bounds
* Adaptation to “local smoothness” (or lack thereof).

* Some comparisons of maximum likelihood (and “canonical
least squares”) estimators to rearrangement type estimators
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1.1 An outline (or pattern) for pointwise limit theory

°* Step0. X ~ P, k € IC, a set of shape-restricted functions

* Step 1. Optimization criterion determining estimator:
° Log-likelihood.
© Least squares contrast function.

* Step 2. Fenchel conditions characterizing the solution of the
optimization problem

* Step 3. Localization rate or tightness result
empirical process theory: Kim-Pollard type lemmas.

* Step 4. Localization of the Fenchel conditions.

* Step 5. Weak convergence of the (localized) driving process
to a limit (Gaussian) driving process
empirical process theory: CLT’s with functions dependent
on n.
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Some Theory for Estimation —p. 11/60



* Step 6. Preservation of (localized) Fenchel relations in the
limit.

* Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

Some Theory for Estimation —p. 11/60



* Step 6. Preservation of (localized) Fenchel relations in the
limit.

* Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

* Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory (Le Cam, Donoho & Liu,
Groeneboom).
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1.2 lllustration of the pattern: the Grenander estimator

Step 0. X ~ f on [0,00) with f X\ 0.
Step 1. Optimization criterion: log-likelihood or least squares
/;1 — argmaxfeMl {Zlog f(XZ)} = the MLE,
1=1
fn = argmin ;.. ¥ (f) = the LSE

where ¢, (f) = 5 [° f2(z daz—fo z)dF, (z).

In this particular case, fn — fn, .e. LSE = MLE.
(This is not true in general.)

Some Theory for Estimation
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Step 2. Characterization: the Fenchel conditions

Fp(z) /fn )dt forall z € [0,00), and

F,(z) = F,(z) ifandonlyif f,(z—) > fn(z+).

The second of these is equivalent to

/O " (Bu(@) — Ful@))dfa(e) = 0

The geometric interpretation of these two conditions is

~ the left-derivative of the slope at = of the
least concave majorant F,, of F,

0Z1(Fy,)
Grenander estimator of f.

Some Theory for Estimation
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. lllustration of the pattern via the Grenander estimator of a
monotone density when:

® Casel1. f(z)= 1y j(x); uniform density (or degenerate
mixing distribution)
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Special feature:
Grenander and other monotone function problems.

Switching
Let
sn(a) = argmax {F,(s) — as}, a > 0.

Then for each fixed t € (0,00) and a > 0

Warning: Nothing similar (yet?) for other shape constraints.
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Steps 3-8 in Case 1. When f is the Uniform density on [0, 1],
Groeneboom and Pyke (1983) show that for each ¢ € (0,1)

V( fu(wo) — f(@0)) —a S(zo) = 81 (U)(x0)
where S is the left derivative of the least concave majorant
7,(U) = C of a standard Brownian bridge process U on [0, 1].
* “Driving process” is U.

* Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C) = S:

C(t) > U(t) forallt € (0,1),
C(t) = U(t) ifand only if CV(¢t—) > CM(¢4).

* No localization in this case!

* From lower bound theory: f,, is (locally minimax) rate
optimal; no estimator can achieve a better rate.
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Steps 3-7 in Case 2. When f satisfies f/(zg) < 0, f(zg) > 0 and f’
IS continuous in a neighborhood of z(, then Prakasa-Rao (1970)
(see also Groeneboom (1985), Kim and Pollard (1990)) showed

n'3(fa(@o) = f(=0)) —a (|f (o) f(20)]/2)"/*S(0)

where S(0) = 0Z,(Z)(0) is the slope at 0 of the least concave

majorant of Z(h) = W (h) — h* for a two-sided Brownian motion
process V.

¢ “Driving process” IS
= /f(z0)W(h) + f'(x9)h? = aW (h) — bh?.
* Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C(1) = S:
C(h) > Z(h) forall h € (—o0, 00),
C(h) = Z(h) if and only if CM(h—) > C (h+).

e Localization rate is n—1/3

Some Theory for Estimation

—p. 22/60



* From lower bound theory: f,, is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when f’(x() < 0.

* Moreover, the dependence of the limit distribution on f via
(If" (o) f(x0)]/2)Y/3 is also optimal.

* For all the lower bound results noted here, see

http://www.stat.washington.edu/jaw/RESEARCH/
TALKS/MonAltHyp.pdf

under the entry for
Young European Statisticians Workshop (YES-I)
on Shape Restricted Inference
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Steps 3-8 in Case 3. If f)(z0) =0,j=1,....,p—1, fP)(xg) #0,
then from the methods of Wright (1981) and Leurgans (1982),

P P (fa(@o) = f(w0)) —a (f(z0)" )TV 8, (0);

with A = f®)(z)/(p 4 1)!. Here S,(0) = 0Z1(Z)(0) is the slope
at 0 of the least concave majorant of Z(h) = W (h) — |h[PT.

* “Driving process” is

Zip(h) = Zp ap(h) = / f(z0)W (R)—A|R|PT = aW (h)—b|A[PT.

* Process related to estimator maintaining Fenchel relations
in the limitis C, = Z,(Z,) and its slope process

cV = 5,07 ( p>.

Cyp(h) > Z,(h) forall h € (—o0, 00),
Cp(h) = Z,(h) if and only if C{Y(h—) > CV(n+).
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* Localization rate is n—1/(2p+1)

* From lower bound theory: f, is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when ) (zq) = 0,
j=1,...,p—1, f(p)(ﬂf()) #* 0.

* Moreover, the dependence of the limit distribution on f via
(1£®) (z0) f(x0)P)Y/(?P+1) is also optimal.
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Steps 3-8 in Case 4. If o € (a,b) with f(z) constant on (a,b), then
Carolan and Dykstra (1999) showed that

Vi fu(xo) — £(x0)) —a {\/TZ LS (xo — a)}

a

where p = f(x9)(b —a) = F(b) — F(a), Z ~ N(0,1), Sis the
process of slopes of a Brownian bridge process U as in case 1,
and Z and S are independent.
This is much as in case 1, but with a twist or two.
* “Driving process” is Z(h) = U(F(a + h)) — U(F(a)).
* Process related to estimator maintaining Fenchel relations
in the limit is C;,. = Z1(Z) and its slope process

cY =, = 074(Z):

loc —
Cioc(h) > Z(h) forall h € [0,b — al,
Cioe(h) = Z(R) if and only if CV)(h—) > C!)(h+).

loc
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* Localization only to the interval |a, b].

* From lower bound theory: f,, is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when f is flatin a
neighborhood of z.
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Steps 3-8 in Case 5. If f is discontinuous at x(, then Anevski and
Hdssjer (2002) show that

P(fn(0)—F(z0) < z) — P(argmax{No(h)—=pztd/2.z—d/2(h)} <0)

where Ny is a two-sided, centered Poisson process with rates
f(zo+) and f(zo—) to the right and left of 0 respectively,

Bh h >0
h) = ’ -
pB,C( ) { —Ch, h <0 }7

f(zo) = (f(wo+) + f(20—))/2, d = f(zo—) = f(zo+).

Furthermore, by switching again in the limit (Poisson) problem,

fa(x0) — f(2z0) —a R(0)

where R(h) is the process of slopes (left derivatives) of the least
concave majorant of the process

M(h) = No(h) — (d/2)[h].
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* “Driving process” is M(h) = Ng(h) — (d/2)|h|.
* Process related to estimator maintaining Fenchel relations
in the limit is K and its slope process K(!) = R:

K(h) > M(h) forall h € R,
K(h) = M(R) if and only if KV (h—) > KW (h+).

* | ocalization rate is n—!!
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. lllustration of the pattern:

the MLE of a convex decreasing density

Step 0. X ~ f on |0,00) with f X\, 0, f convex.

f(x) :/ %(y — x)4+dG(y), G adistribution function
0

Step 1. Optimization criterion: log-likelihood or least squares

fr = argmax .. {Zlog f(Xi)} — the MLE.
=1
fn = argmin . ¥ (f) = the LSE

where ¢, (f) = 4 0 A (x)de — [y f(z)dF, ().
In this case, fn + fn, l.e. LSE # MLE.
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Step 2. Characterization: the Fenchel conditions for f}b:
let

Then f, € K is the LSE if and only if

H,(z) > Y, (z) for all z > 0,
Y, («))dHY (z) = 0,

\

» has convex second derivative fn
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Step 3. Localization rate / tightness

Proposition. Let x( be an interior point of the support of f. For
0 <z <y, define U,(x,y) by

Then there exist § > 0 and ¢y > 0 so that, for each ¢ > 0 and =
with |z — x| < 4,

Un(z,y)| < e(y — 2)* + Op(n= %), 0<y—x0 < co.

Proposition. Let zp and f satisfy f”(x¢) > 0 and f” continuous at
xg. Let &, — g, and let
7 = max{t <&, : ffbl)discontinuous attl 7+ =min{t > &, : f{Vdisco

n

Then 7+ — 7- = O, (n"1/%). |
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Proposition. Suppose f'(zg) < 0, f"(x9) > 0 and f” continuous in
a nbhd. of xy5. Then

sup |f(zo +n~2t) — fo(xo) — n~Y0tf! (z)| = Op(n2/%),
<M
and

sup |f'(wo +n""5) — f'(0)| = Op(n~ /7).
t|<M

Step 4. Localize the Fenchel relations: define

To+n—1/5¢
Yioo() = 3 / {Fu(0) — Fu(z0)

- L:(f(:co) + (u - fco)f(xo)du} 4
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N ro+n= 15t v

floe(r) = / / 1) — ) — (oo — ) o)t
+ A t+ B,

Then

HIP“(t) = Yi(t)
with equality if and only if 2o + n~1/5t is a jump point of HS”.
Note that

(B2 (1) = n*(Fulwo +n%0) — flao) —n 4 f (x0),
() (1) = n5(fy (w0 + 0 50) = [' (o))
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Step 5. Weak convergence of the (localized) driving process Y,
to a limit (Gaussian) driving process

Yie(t)

ey T U ©) = Ua(F (o)) o + =" (@)t + (1)

= VTG [ Wisds + o ot

by KMT or theorems 2.11.22 or 2.11.23, VdV & W (1996)
— a/t W (s)ds + ot
= Y(L?) = Yo,0(t)

where U, (t) = +/n(G,(t) — t) is the empirical process of
1, .., & 1id. Uniform(0,1), a = /f(zo, o = f(z0)/24.
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Step 6. Preservation of (localized) Fenchel relations in the limit.

~ {(HZOC loc( ), }NITZLOC,(Q), Hloc )}n>1 is tlght
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Step 6. Preservation of (localized) Fenchel relations in the limit.

~ {(HZOC loc( ), }NITZLOC,(Q), Hloc )}n>1 is tlght

o Ylo¢ =y
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Step 6. Preservation of (localized) Fenchel relations in the limit.

o {(Hloc lOC( ),["_jTlloc,(Q)7Hloc )}n>1 is tlght
° Yo=Y

* Fenchel relations satisfied:
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Step 6. Preservation of (localized) Fenchel relations in the limit.

o {(Hloc lOC( ),[A_jTlLOCa@),HlOC )}n>1 is tlght
° Yo=Y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z
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Step 6. Preservation of (localized) Fenchel relations in the limit.

o {(Hloc lOC( ),[A_jTlLOCa@),HlOC )}n>1 is tlght
° Yo=Y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

o [ (Hle(z) — Yoo (z))dHY P (z) = 0.
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Step 6. Preservation of (localized) Fenchel relations in the limit.

o {(Hloc lOC( ),[A_jTlLOCa@),HlOC )}n>1 is tlght
° Yo=Y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

o [ (Hle(z) — Yoo (z))dHY P (z) = 0.

* Any limit process H for a subsequence {f[ﬁ?c} must satisfy

Some Theory for Estimation — p. 36/60



Step 6. Preservation of (localized) Fenchel relations in the limit.
o {(Hloc glooW) gloe®) gloe®hyy | s tight,
o Ylo¢ =y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

o [ (Hle(z) — Yoo (z))dHY P (z) = 0.

* Any limit process H for a subsequence {ﬁqlﬁc} must satisfy
° H(z) > Y(x) for all z.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
o {(Hloc glooW) gloe®) gloe®hyy | s tight,
o Ylo¢ =y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

o [ (H () — Yo(2))dHW P (z) = 0.

* Any limit process H for a subsequence {ﬁqlﬁc} must satisfy
° H(x) > Y(z) for all z.
° [ (H(z)— Y(z))dH® (z) = 0.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
o {(Hloc glooW) gloe®) gloe®hyy | s tight,
o Ylo¢ =y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

o [ (H () — Yo(2))dHW P (z) = 0.

* Any limit process H for a subsequence {ﬁqlﬁc} must satisfy
° H(x) > Y(z) for all z.
° [ (H(z)— Y(z))dH® (z) = 0.

o H(®) is convex.

Some Theory for Estimation — p. 36/60



Step 6. Preservation of (localized) Fenchel relations in the limit.
o {(Hloc glooW) gloe®) gloe®hyy | s tight,
o Ylo¢ =y

* Fenchel relations satisfied:
o Hlc(z) > Yloo(z) for all z

° [ (HIe(w) — Yieo(w))dHy P (@) = 0.
* Any limit process H for a subsequence {ﬁé‘?c} must satisfy
° H(z) > Y(x) for all z.
o [% (H(z) — Y(z))dH®) (z) = 0.
o H® is convex.
* |s there a unique such process H = H,,? If so, done!
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Step 7. Unique (Gaussian world) estimator resulting from limit
Fenchel relations! (Proof: suppose there are two such
processes, H; and H,. Then GJW (2001) showed

H1 == H2 — H)

Upshot: after rescaling to universal (a = 1, 0 = 1) limit:

Theorem. If f € C, f(xo) > 0, f"(z¢) > 0, and f” continuous in a
neighborhood of zg, then

( n?/5(Fu(x0) — f(x0)) ) . ( er(FYH®(0)
n'/5(fl(z0) — f'(z0)) H

(f) = (f?(aco;if"(xo))”{ o) = (f(m)f”(a:o)?’)”?
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Step 8 (or 0'). Cross-check/compare limiting result with local
pointwise lower bound theory.

Use Groeneboom’s lower bound lemma (relative of results of
Donoho & Liu, Le Cam).

Define f. by renormalizing (or linearly correcting) f. defined by

) [ fzo — ecd) + (. — zo + ec) f'(xo — €ce), x € (zo — €ce, To — €)
fe(x) =< fxo+e)+ (x—x20—¢€)f (20 + €), r € (xg — €,20 + €)
- f(2), otherwise

where ¢, is chosen so that f. is continuous at z, — €. Let P, be
defined by f. = f,,,-1/s Where

2f”(:C0)2
5f(wo)

vV
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Proposition. If f(z¢) > 0, f”(z¢) > 0, and f” is continuous in a
neighborhood of x, for any estimators 7;, of f(xq) and any

estimators 7}, of f'(x),

n2/5 i%lf max {En,pn]Tn — fe, (x0)], En,P’Tn — f(zo)|}

> i ((9\%)1/5'01(&

nlt/® i%lf max {En,Pn’Tn - fén (x())’) En,P‘fn - f,(5’30>’}

1/5
> 1 (22) e

€
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y

* the derivative process H!), and the process Y1)
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y
* the derivative process H!), and the process Y1)

* the concave (limit world estimator of 12¢2) process H (%
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y
* the derivative process H(!), and the process Y (1)
* the concave (limit world estimator of 12¢2) process H (%

* the piecewise (limit world estimator of 24t) process H®®)
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3. Some Comparisons: MLE / LSE

versus Rearrangements

Monotone

* Monotone rearrangement, continuous case:
fmon—rearr — R(f) Whel’e

Zp(s) =Mz flx) 2s},  R(f)(z)=Z;"(2).
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3. Some Comparisons: MLE / LSE

versus Rearrangements

Monotone

* Monotone rearrangement, continuous case:
fmon—rearr — R(f) Whel’e

Zp(s) =Mz flx) 2s},  R(f)(z)=Z;"(2).

* Monotone rearrangement, discrete case: f" """ = R(f)
where

Ze(s)=#{i € Z": f(i)>s},  R(f)(E) = Z;'(i).
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* Monotone Least Squares, continuous case: (Mammen)

FISE = 1S(f) = o1, ( /0 | fdu)

where 7; = Least Concave Majorant operator.

Some Theory for Estimation — p. 46/60



* Monotone Least Squares, continuous case: (Mammen)

FISE = 1S(f) = o1, ( /0 | fdu)

where 7; = Least Concave Majorant operator.
* Empirical (or canonical Least Squares, continuous case:

fLSE—empirical _ fMLE _ (91.1 (F)
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* Monotone Least Squares, continuous case: (Mammen)

FISE = 1S(f) = o1, ( /0 | fdu)

where 7; = Least Concave Majorant operator.
* Empirical (or canonical Least Squares, continuous case:

fLSE—empim'cal _ fMLE _ (91.1 (F)

* Monotone Least Squares, discrete case:

fior = o1, (Z fi) -
0
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Skiing toward the Nisqually Glacier
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