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Types of shape restrictions for functions on R
• Monotone
• Unimodal, antimodal, piecewise monotone
• Convex, concave, log-concave
• k−monotone, completely monotone
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◦ normal (convolution - deconvolution)
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Types of functions to be estimated on R and Rd

• Density function f

• Regression function, r(x) = E(Y |X = x)
• Hazard function h:

h(x) =
f(x)

1 − F (x)

• Intensity function λ of a Poison process
• Distribution functions in interval censoring models
(non-regular or “inverse problem”)

• Distribution functions in direct observation models (regular
or “forward problem”)

• Spectral density function
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• Local (pointwise), or
• Global (with some global measure of deviations):

◦ Hellinger distance (densities or intensities)
◦ L1 or L2−distances
◦ supremum metrics

• Lower bounds, or
• Upper bounds.
• Estimation, or
• Testing (within a shape constrained family)
• Confidence sets?
• Assuming shape constraint, or
• Testing to see if a shape constraint is true?
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Current state of shape restricted inference

A collection of several dozen results in search of a
theory?

Main topics in my lecture:
• Maximum likelihood and least squares estimators
• Pointwise limit theory
• Local (pointwise) lower bounds
• Adaptation to “local smoothness” (or lack thereof).
• Some comparisons of maximum likelihood (and “canonical
least squares”) estimators to rearrangement type estimators
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1.1 An outline (or pattern) for pointwise limit theory

• Step 0. X ∼ Pκ, κ ∈ K, a set of shape-restricted functions
• Step 1. Optimization criterion determining estimator:

◦ Log-likelihood.
◦ Least squares contrast function.

• Step 2. Fenchel conditions characterizing the solution of the
optimization problem

• Step 3. Localization rate or tightness result
empirical process theory: Kim-Pollard type lemmas.

• Step 4. Localization of the Fenchel conditions.
• Step 5. Weak convergence of the (localized) driving process
to a limit (Gaussian) driving process
empirical process theory: CLT’s with functions dependent
on n.
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• Step 6. Preservation of (localized) Fenchel relations in the
limit.

• Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

• Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory (Le Cam, Donoho & Liu,
Groeneboom).
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1.2 Illustration of the pattern: the Grenander estimator

Step 0. X ∼ f on [0,∞) with f ↘ 0.
Step 1. Optimization criterion: log-likelihood or least squares

f̂n = argmaxf∈M1

{
n∑

i=1

log f(Xi)

}
= the MLE,

f̃n = argminf∈K1
ψn(f) = the LSE

where ψn(f) ≡ 1
2

∫ ∞
0 f2(x)dx −

∫ ∞
0 f(x)dFn(x).

In this particular case, f̂n = f̃n, i.e. LSE = MLE.
(This is not true in general.)

Some Theory for Estimation – p. 12/60



Step 2. Characterization: the Fenchel conditions

Fn(x) ≤ F̂n(x) ≡
∫ x

0
f̂n(t)dt for all x ∈ [0,∞), and

Fn(x) = F̂n(x) if and only if f̂n(x−) > f̂n(x+).

The second of these is equivalent to
∫ ∞

0
(F̂n(x) − Fn(x))df̂n(x) = 0.

The geometric interpretation of these two conditions is

f̂n(x) =

{
the left-derivative of the slope at x of the
least concave majorant F̂n of Fn

}

≡ ∂I1(Fn)
≡ Grenander estimator of f.
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1. Illustration of the pattern via the Grenander estimator of a
monotone density when:
• Case 1. f(x) = 1[0,1](x); uniform density (or degenerate
mixing distribution)
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Special feature:
Grenander and other monotone function problems.

Switching
Let

ŝn(a) ≡ argmaxs{Fn(s) − as}, a > 0.

Then for each fixed t ∈ (0,∞) and a > 0
{
f̂n(t) ≤ a

}
= {ŝn(a) ≤ t} .

Warning: Nothing similar (yet?) for other shape constraints.
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Steps 3-8 in Case 1. When f is the Uniform density on [0, 1],
Groeneboom and Pyke (1983) show that for each x0 ∈ (0, 1)

√
n(f̂n(x0) − f(x0)) →d S(x0) = ∂I1(U)(x0)

where S is the left derivative of the least concave majorant
I1(U) = C of a standard Brownian bridge process U on [0, 1].

• “Driving process” is U.
• Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C(1) ≡ S:

C(t) ≥ U(t) for all t ∈ (0, 1),

C(t) = U(t) if and only if C(1)(t−) > C(1)(t+).

• No localization in this case!
• From lower bound theory: f̂n is (locally minimax) rate
optimal; no estimator can achieve a better rate.
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Steps 3-7 in Case 2. When f satisfies f ′(x0) < 0, f(x0) > 0 and f ′

is continuous in a neighborhood of x0, then Prakasa-Rao (1970)
(see also Groeneboom (1985), Kim and Pollard (1990)) showed

n1/3(f̂n(x0) − f(x0)) →d (|f ′(x0)f(x0)|/2)1/3S(0)

where S(0) = ∂I1(Z)(0) is the slope at 0 of the least concave
majorant of Z(h) ≡ W (h) − h2 for a two-sided Brownian motion
process W .

• “Driving process” is
Za,b(h) ≡

√
f(x0)W (h) + f ′(x0)h2 ≡ aW (h) − bh2.

• Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C(1) ≡ S:

C(h) ≥ Z(h) for all h ∈ (−∞,∞),

C(h) = Z(h) if and only if C(1)(h−) > C(1)(h+).

• Localization rate is n−1/3
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• From lower bound theory: f̂n is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when f ′(x0) < 0.

• Moreover, the dependence of the limit distribution on f via
(|f ′(x0)f(x0)|/2)1/3 is also optimal.

• For all the lower bound results noted here, see
http://www.stat.washington.edu/jaw/RESEARCH/
TALKS/MonAltHyp.pdf

under the entry for
Young European Statisticians Workshop (YES-I)
on Shape Restricted Inference
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Steps 3-8 in Case 3. If f (j)(x0) = 0, j = 1, . . . , p − 1, f (p)(x0) )= 0,
then from the methods of Wright (1981) and Leurgans (1982),

np/(2p+1)(f̂n(x0) − f(x0)) →d (f(x0)pA)1/(2p+1) Sp(0);

with A = f (p)(x0)/(p + 1)!. Here Sp(0) = ∂I1(Z)(0) is the slope
at 0 of the least concave majorant of Z(h) = W (h) − |h|p+1.

• “Driving process” is

Zp(h) ≡ Zp,a,b(h) ≡
√

f(x0)W (h)−A|h|p+1 ≡ aW (h)−b|h|p+1.

• Process related to estimator maintaining Fenchel relations
in the limit is Cp ≡ I1(Zp) and its slope process
C(1)

p ≡ Sp∂I1(Zp):

Cp(h) ≥ Zp(h) for all h ∈ (−∞,∞),

Cp(h) = Zp(h) if and only if C(1)
p (h−) > C(1)

p (h+).

Some Theory for Estimation – p. 24/60



• Localization rate is n−1/(2p+1)

• From lower bound theory: f̂n is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when f(j)(x0) = 0,
j = 1, . . . , p − 1, f (p)(x0) )= 0.

• Moreover, the dependence of the limit distribution on f via
(|f (p)(x0)f(x0)p)1/(2p+1) is also optimal.
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Steps 3-8 in Case 4. If x0 ∈ (a, b) with f(x) constant on (a, b), then
Carolan and Dykstra (1999) showed that

√
n(f̂n(x0) − f(x0)) →d

f(x0)√
p

{√
1 − pZ + S

(
x0 − a

b − a

)}

where p ≡ f(x0)(b − a) = F (b) − F (a), Z ∼ N(0, 1), S is the
process of slopes of a Brownian bridge process U as in case 1,
and Z and S are independent.
This is much as in case 1, but with a twist or two.

• “Driving process” is Z(h) ≡ U(F (a + h)) − U(F (a)).
• Process related to estimator maintaining Fenchel relations
in the limit is Cloc ≡ I1(Z) and its slope process
C(1)

loc ≡ Sloc ≡ ∂I1(Z):

Cloc(h) ≥ Z(h) for all h ∈ [0, b − a],

Cloc(h) = Z(h) if and only if C(1)
loc(h−) > C(1)

loc(h+).
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• Localization only to the interval [a, b].
• From lower bound theory: f̂n is (locally minimax) rate
optimal in this scenario; no estimator can achieve a better
minimax pointwise rate of convergence when f is flat in a
neighborhood of x0.
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Steps 3-8 in Case 5. If f is discontinuous at x0, then Anevski and
Hössjer (2002) show that

P (f̂n(x0)−f̄(x0) ≤ x) → P (argmax{N0(h)−ρx+d/2,x−d/2(h)} ≤ 0)

where N0 is a two-sided, centered Poisson process with rates
f(x0+) and f(x0−) to the right and left of 0 respectively,

ρB,C(h) ≡
{

Bh, h ≥ 0
−Ch, h < 0.

}
,

f̄(x0) ≡ (f(x0+) + f(x0−))/2, d ≡ f(x0−) − f(x0+).
Furthermore, by switching again in the limit (Poisson) problem,

f̂n(x0) − f̄(x0) →d R(0)

where R(h) is the process of slopes (left derivatives) of the least
concave majorant of the process

M(h) ≡ N0(h) − (d/2)|h|.
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• “Driving process” is M(h) ≡ N0(h) − (d/2)|h|.
• Process related to estimator maintaining Fenchel relations
in the limit is K and its slope process K(1) ≡ R:

K(h) ≥ M(h) for all h ∈ R,

K(h) = M(h) if and only if K(1)(h−) > K(1)(h+).

• Localization rate is n−1!
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2. Illustration of the pattern:
the MLE of a convex decreasing density

Step 0. X ∼ f on [0,∞) with f ↘ 0, f convex.

f(x) =
∫ ∞

0

2
y2

(y − x)+dG(y), G a distribution function

Step 1. Optimization criterion: log-likelihood or least squares

f̂n = argmaxf∈M2

{
n∑

i=1

log f(Xi)

}
= the MLE,

f̃n = argminf∈K2
ψn(f) = the LSE

where ψn(f) ≡ 1
2

∫ ∞
0 f2(x)dx −

∫ ∞
0 f(x)dFn(x).

In this case, f̂n )= f̃n, i.e. LSE )= MLE.
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Step 2. Characterization: the Fenchel conditions for f̃n:
let

H̃n(x) ≡
∫ x

0

∫ y

0
f̃n(t)dtdy for all x ∈ [0,∞), and

Yn(x) =
∫ x

0
Fn(y)dy

Then f̃n ∈ K is the LSE if and only if

H̃n(x) ≥ Yn(x) for all x > 0,
∫ ∞

0
(H̃n(x) − Yn(x))dH̃(3)

n (x) = 0,

H̃n has convex second derivative f̃n.
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Step 3. Localization rate / tightness
Proposition. Let x0 be an interior point of the support of f . For
0 < x ≤ y, define Un(x, y) by

Un(x, y) ≡
∫

[x,y]
{z − (x + y)/2}d(Fn − F )(y).

Then there exist δ > 0 and c0 > 0 so that, for each ε > 0 and x
with |x − x0| < δ,

|Un(x, y)| ≤ ε(y − x)4 + Op(n−4/5), 0 ≤ y − x0 ≤ c0.

Proposition. Let x0 and f satisfy f ′′(x0) > 0 and f ′′ continuous at
x0. Let ξn → x0, and let

τ−n ≡ max{t ≤ ξn : f̃ (1)
n discontinuous at t} τ+n ≡ min{t > ξn : f̃ (1)

n disco

Then τ+n − τ−n = Op(n−1/5).
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Proposition. Suppose f ′(x0) < 0, f ′′(x0) > 0 and f ′′ continuous in
a nbhd. of x0. Then

sup
|t|≤M

|f̃(x0 + n−1/5t) − f0(x0) − n−1/5tf ′(x0)| = Op(n−2/5),

and
sup
|t|≤M

|f̃ ′(x0 + n−1/5t) − f ′(x0)| = Op(n−1/5).

Step 4. Localize the Fenchel relations: define

Yloc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

{Fn(v) − Fn(x0)

+
∫ v

x0

(f(x0) + (u − x0)f(x0)du

}
dv,

Some Theory for Estimation – p. 33/60



H̃ loc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

∫ v

x0

{f̃n(u) − f(x0) − (u − x0)f ′(x0)}dudv

+ Ãnt + B̃n.

Then
H̃ loc

n (t) ≥ Yloc
n (t)

with equality if and only if x0 + n−1/5t is a jump point of H̃(3)
n .

Note that

(H̃ loc
n )(2)(t) = n2/5(f̃n(x0 + n−1/5t) − f(x0) − n−1/5tf ′(x0)),

(H̃ loc
n )(3)(t) = n1/5(f̃ ′

n(x0 + n−1/5t) − f ′(x0)).
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Step 5. Weak convergence of the (localized) driving process Yn

to a limit (Gaussian) driving process

Yloc
n (t)

d= n3/10
∫ x0+n−1/5t

x0

{Un(F0(v)) − Un(F (x0))}dv +
1
24

f ′′(x0)t4 + o(1)

⇒
√

f(x0)
∫ t

0
W (s)ds +

1
24

f ′′(x0)t4

by KMT or theorems 2.11.22 or 2.11.23, VdV & W (1996)

= a

∫ t

0
W (s)ds + σt4

≡ Y(t) ≡ Ya,σ(t)

where Un(t) ≡
√

n(Gn(t) − t) is the empirical process of
ξ1, . . . , ξn i.i.d. Uniform(0, 1), a ≡

√
f(x0, σ ≡ f ′′(x0)/24.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.

• Any limit process H for a subsequence {H̃ loc
n′ } must satisfy
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.

• Any limit process H for a subsequence {H̃ loc
n′ } must satisfy

◦ H(x) ≥ Y(x) for all x.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.

• Any limit process H for a subsequence {H̃ loc
n′ } must satisfy

◦ H(x) ≥ Y(x) for all x.
◦ ∫ ∞

−∞(H(x) − Y(x))dH(3)(x) = 0.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.

• Any limit process H for a subsequence {H̃ loc
n′ } must satisfy

◦ H(x) ≥ Y(x) for all x.
◦ ∫ ∞

−∞(H(x) − Y(x))dH(3)(x) = 0.
◦ H(2) is convex.
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Step 6. Preservation of (localized) Fenchel relations in the limit.
• {(H̃ loc

n , H̃ loc,(1)
n , H̃ loc,(2)

n , H̃ loc,(3)
n )}n≥1 is tight.

• Yloc
n ⇒ Y

• Fenchel relations satisfied:
◦ H̃ loc

n (x) ≥ Yloc
n (x) for all x

◦ ∫ ∞
−∞(H̃ loc

n (x) − Yloc
n (x))dH̃ loc,(3)

n (x) = 0.

• Any limit process H for a subsequence {H̃ loc
n′ } must satisfy

◦ H(x) ≥ Y(x) for all x.
◦ ∫ ∞

−∞(H(x) − Y(x))dH(3)(x) = 0.
◦ H(2) is convex.

• Is there a unique such process H = Ha,σ? If so, done!
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Step 7. Unique (Gaussian world) estimator resulting from limit
Fenchel relations! (Proof: suppose there are two such
processes, H1 and H2. Then GJW (2001) showed
H1 = H2 ≡ H.)
Upshot: after rescaling to universal (a = 1, σ = 1) limit:
Theorem. If f ∈ C, f(x0) > 0, f ′′(x0) > 0, and f ′′ continuous in a
neighborhood of x0, then

(
n2/5(f̃n(x0) − f(x0))
n1/5(f̃ ′

n(x0) − f ′(x0))

)
→d

(
c1(f)H(2)(0)
c2(f)H(3)(0)

)

where

c1(f) ≡
(

f2(x0)f ′′(x0)
24

)1/5

, c2(f) ≡
(

f(x0)f ′′(x0)3

243

)1/5

.
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Step 8 (or 0′). Cross-check/compare limiting result with local
pointwise lower bound theory.
Use Groeneboom’s lower bound lemma (relative of results of
Donoho & Liu, Le Cam).

Define fε by renormalizing (or linearly correcting) f̃ε defined by

f̃ε(x) =






f(x0 − εcε) + (x − x0 + εcε)f ′(x0 − εcε), x ∈ (x0 − εcε, x0 − ε)
f(x0 + ε) + (x − x0 − ε)f ′(x0 + ε), x ∈ (x0 − ε, x0 + ε)
f(x), otherwise

where cε is chosen so that f̃ε is continuous at x0 − ε. Let Pn be
defined by fεn

≡ fνn−1/5 where

ν ≡ 2f ′′(x0)2

5f(x0)
.
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Proposition. If f(x0) > 0, f ′′(x0) > 0, and f ′′ is continuous in a
neighborhood of x0, for any estimators Tn of f(x0) and any
estimators T̃n of f ′(x0),

n2/5 inf
Tn

max {En,Pn
|Tn − fεn(x0)|, En,P |Tn − f(x0)|}

≥ 1
4

(
3

e
√

2

)1/5

· c1(f),

n1/5 inf
Tn

max
{

En,Pn
|T̃n − f ′

εn
(x0)|, En,P |T̃n − f ′(x0)|

}

≥ 1
4

(
6 · 242

e

)1/5

· c2(f)
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y

• the derivative process H(1), and the process Y (1)
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y

• the derivative process H(1), and the process Y (1)

• the concave (limit world estimator of 12t2) process H(2)
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y

• the derivative process H(1), and the process Y (1)

• the concave (limit world estimator of 12t2) process H(2)

• the piecewise (limit world estimator of 24t) process H(3)
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3. Some Comparisons: MLE / LSE
versus Rearrangements

Monotone
• Monotone rearrangement, continuous case:

fmon−rearr ≡ R(f) where

Zf (s) = λ{x : f(x) ≥ s}, R(f)(x) = Z−1
f (x).
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3. Some Comparisons: MLE / LSE
versus Rearrangements

Monotone
• Monotone rearrangement, continuous case:

fmon−rearr ≡ R(f) where

Zf (s) = λ{x : f(x) ≥ s}, R(f)(x) = Z−1
f (x).

• Monotone rearrangement, discrete case: fmon−rearr ≡ R(f)
where

Zf (s) = #{i ∈ Z+ : f(i) ≥ s}, R(f)(i) = Z−1
f (i).
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• Monotone Least Squares, continuous case: (Mammen)

fLSE ≡ LS(f) = ∂I1

(∫ ·

0
fdu

)

where I1 = Least Concave Majorant operator.
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• Monotone Least Squares, continuous case: (Mammen)

fLSE ≡ LS(f) = ∂I1

(∫ ·

0
fdu

)

where I1 = Least Concave Majorant operator.
• Empirical (or canonical Least Squares, continuous case:

fLSE−empirical = fMLE = ∂I1(F ).
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• Monotone Least Squares, continuous case: (Mammen)

fLSE ≡ LS(f) = ∂I1

(∫ ·

0
fdu

)

where I1 = Least Concave Majorant operator.
• Empirical (or canonical Least Squares, continuous case:

fLSE−empirical = fMLE = ∂I1(F ).

• Monotone Least Squares, discrete case:

fLSE = ∂I1

( ·∑

0

fi

)
.
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