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Abstract

We consider estimation in a particular semiparametric regression model for the mean of a
counting process under the assumption of “panel count” data. The basic model assumption
is that the conditional mean function of the counting process is of the form E{N(t)|Z} =
exp(θ′Z)Λ(t) where Z is a vector of covariates and Λ is the baseline mean function. The “panel
count” observation scheme involves observation of the counting process N for an individual at
a random number K of random time points; both the number and the locations of these time
points may differ across individuals.

We study maximum pseudo-likelihood and maximum likelihood estimators θ̂psn and θ̂n of the
regression parameter θ. The pseudo-likelihood estimators are fairly easy to compute, while the
full maximum likelihood estimators pose more challenges from the computational perspective.
We derive expressions for the asymptotic variances of both estimators under the proportional
mean model. Our primary aim is to understand when the pseudo-likelihood estimators have
very low efficiency relative to the full maximum likelihood estimators. The upshot is that the
pseudo-likelihood estimators can have arbitrarily small efficiency relative to the full maximum
likelihood estimators when the distribution of K, the number of observation time points per
individual, is very heavy-tailed.

1 Research supported in part by National Science Foundation grant DMS-9932039, NIAID grant 2R01 AI291968-
04, and the Stieltjes Institute

2 Research supported in part by National Science Foundation grant DMS-9532039
AMS 2000 subject classifications. Primary: 60F05, 60F17; secondary 60J65, 60J70.
Key words and phrases. asymptotic distributions, asymptotic efficiency, consistency, counting process, empirical

processes, information bounds, maximum likelihood, missing data, poisson process, pseudo-likelihood estimators,
monotone function, .

1



Outline

Section 1: Introduction: panel count data with covariates
Section 2: Two Methods of Estimation.
Section 3: Information bounds for θ under the Poisson model.
Section 4: Asymptotic normality of the two estimators of θ.
Section 5: Comparisons: maximum pseudo-likelihood versus maximum likelihood.
Section 6: Conclusions and Further Problems.
Bibliography:

2



1 Introduction

Suppose that N = {N(t) : t ≥ 0} is a univariate counting process. In many applications, it is
important to estimate the expected number of events E{N(t)|Z} which will occur by the time t,
conditionally on a covariate vector Z.

In this paper we consider the proportional mean regression model given by

Λ(t|Z) ≡ E{N(t)|Z} = eθ′ZΛ(t) , (1.1)

where the monotone increasing function Λ is the baseline mean function. The parameters of primary
interest are θ and Λ.

The observation scheme we want to study is as follows: suppose that we observe the counting
process N at a random number K of random times

0 ≡ TK,0 < TK,1 < · · · < TK,K .

We write TK ≡ (TK,1, . . . , TK,K), and we assume that (K, TK |Z) ∼ G(·|Z) is conditionally
independent of the counting process N given the covariate vector Z. We further assume that
Z ∼ H on Rd, but we will make no further assumptions about G or H (modulo mild integrability
and boundedness requirements).

The data for each individual will consist of

X = (Z, K, TK ,N(TK,1), . . . ,N(TK,K)) ≡ (Z, K, TK ,NK) . (1.2)

We will assume that the data consist of X1, . . . , Xn i.i.d. as X.
Panel count data arise in many fields including demographic studies, industrial reliability, and

clinical trials; see for example Kalbfleisch and Lawless (1985), Gaver and O’Muircheartaigh

(1987), Thall and Lachin (1988), Thall (1988), Sun and Kalbfleisch (1995), and Wellner and

Zhang (2000) where the estimation of either the intensity of event recurrence or the mean function
of a counting process with panel count data was studied. Many applications involve covariates
whose effects on the underlying counting process are of interest. While there is considerable work
on regression modeling for recurrent events based on continuous observations (see, for example
Lawless and Nadeau (1995), Cook, Lawless, and Nadeau (1996), and Lin, Wei, Yang, and

Ying (2000)), regression analysis with panel count data for counting processes has just started
recently. Sun and Wei (2000) proposed estimating equation methods, while Zhang (1998) and
Zhang (2001) proposed a pseudo-likelihood method for studying the multiplicative mean model
(1.1) with panel count data.

To derive useful estimators for this model we will often assume, in addition to (1.1), that the
counting process N, conditionally on Z, is a non-homogeneous Poisson process. But our general
perspective will be to study the estimators and other procedures when the Poisson assumption fails
to hold and we assume only that the proportional mean assumption (1.1) holds. Such a program
was carried out for estimation of Λ without any covariates for this panel count observation model
by Wellner and Zhang (2000).

The outline of the rest of paper is as follows: In section 2, we describe two methods of
estimation, namely maximum pseudo-likelihood estimators and maximum likelihood estimators of
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θ and Λ. The basic picture is that the pseudo-likelihood estimators are computationally relatively
straightforward and easy to implement, while the (full, semiparametric) maximum likelihood
estimators are considerably more difficult, requiring an iterative algorithm in the computation
of the profile likelihood.

In section 3 we present information calculations for the semiparametric model described by
the proportional mean function assumption (1.1) together with the non-homogeneous Poisson
process assumption on N. This provides a baseline for comparisons of variances with the best
possible asymptotic variance under the Poisson and proportional mean model assumptions. In
section 4 we describe asymptotic normality results for the pseudo-likelihood and full maximum
likelihood estimators θ̂ps

n and θ̂n of θ assuming only the proportional mean structure (1.1), but
not assuming that N is a Poisson process. Proofs of these results will be presented in detail in
Liu, Wellner, and Zhang (2002). Finally, in section 4 we compare the pseudo-likelihood and full
likelihood estimators of θ under three different scenarios with the goal of determining situations
under which the pseudo-likelihood estimators will lose considerable efficiency relative to the full
maximum likelihood estimators.

As will be seen, the rough upshot of the calculations here is that the efficiency of the pseudo-
likelihood estimators relative to the full maximum likelihood estimators can be low when the
distribution of K, the number of observation times per subject, is heavy-tailed.

2 Two Methods of Estimation

Maximum Pseudo-likelihood Estimation: The natural pseudo-likelihood estimators for this
model use the marginal distributions of N, conditional on Z,

P (N(t) = k|Z) =
Λ(t|Z)k

k!
exp(−Λ(t|Z))

and ignore dependence between N(t1), N(t2) to obtain the pseudo-likelihood:

lps
n (θ, Λ) =

n∑
i=1

Ki∑
j=1

{
N(i)(T (i)

Ki,j
) log Λ(T (i)

Ki,j
) + N(i)(T (i)

Ki,j
)θ′Zi − eθ′ZiΛ(T (i)

Ki,j
)
}

.

Then the maximum pseudo-likelihood estimator (θ̂ps
n , Λ̂ps

n ) of (θ, Λ) is given by

(θ̂ps
n , Λ̂ps

n ) ≡ argmaxθ,Λ lps
n (θ, Λ) .

This can be implemented in two steps via the usual (pseudo-) profile likelihood. For each fixed
value of θ we set

Λ̂ps
n (·, θ) ≡ argmaxΛ lps

n (θ, Λ) , (2.3)

and define
lps,profile
n (θ) ≡ lps

n (θ, Λ̂ps
n (·, θ)) .

Then
θ̂ps
n = argmaxθ lps,profile

n (θ) , and Λ̂ps
n = Λ̂ps

n (·, θ̂ps
n ) .
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In fact, the optimization problem in (2.3) is easily solved as follows: Let t1 < . . . < tm denote
the ordered distinct observation time points in the collection of all observations times, {T (i)

Ki,j
, j =

1, . . . , Ki, i = 1, . . . , n}, let N(i)
Ki,j
≡ N(i)(T (i)

Ki,j
), and set

wl =
n∑

i=1

Ki∑
j=1

1
[T

(i)
Ki,j

=tl]
, N l =

1
wl

n∑
i=1

Ki∑
j=1

N(i)
Ki,j

1
[T

(i)
Ki,j

=tl]
,

Al(θ) =
1
wl

n∑
i=1

Ki∑
j=1

exp(θ′Z(i)) 1
[T

(i)
Ki,j

=tl]
.

Then it is easily shown that

Λ̂ps
n (·, θ) = left-derivative of Greatest Convex Minorant of

{(
∑
l≤i

wlAl(θ),
∑
l≤i

wlN l)}mi=1

= max
i≤l

min
j≥l

∑
i≤p ≤ wpNp∑

i≤p ≤ wpAp(θ)
at tl ,

which is straightforward to compute.

Maximum Likelihood Estimation: Under the assumption that N is (conditionally, given
Z) a non-homogeneous Poisson process, the likelihood can be calculated using the (conditional)
independence of the increments of N, ∆N(s, t] ≡ N(t)−N(s), and the Poisson distribution of these
increments:

P (∆N(s, t] = k|Z) =
[∆Λ((s, t]|Z)]k

k!
exp(−∆Λ((s, t]|Z))

to obtain the log-likelihood:

ln(θ, Λ) =
n∑

i=1

Ki∑
j=1

{
∆N(i)

Ki,j
· log ∆ΛKi,j + ∆N(i)

Ki,j
θ′Zi − eθ′Zi∆ΛKi,j

}
where

∆NKj ≡ N(TK,j)− N(TK,j−1), j = 1, . . . , K ,

∆ΛKj ≡ Λ(TK,j)− Λ(TK,j−1), j = 1, . . . , K .

Then
(θ̂n, Λ̂n) ≡ argmaxθ,Λ ln(θ, Λ) .

This maximization can also be carried out in two steps via profile likelihood. For each fixed value
of θ we set

Λ̂n(·, θ) ≡ argmaxΛ ln(θ, Λ) ,
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and define
lprofile
n (θ) ≡ ln(θ, Λ̂n(·, θ)) .

Then
θ̂n = argmaxθ lprofile

n (θ) , and Λ̂n = Λ̂n(·, θ̂n) .

Computation of the (profile) “estimator” Λ̂n(·, θ) is computationally involved, but possible via the
iterative convex minorant algorithm; see e.g. Jongbloed (1998). For more on computation without
covariates see Wellner and Zhang (2000).

3 Information bounds for θ under the Poisson model.

We first compute information bounds for estimation of θ under the proportional mean (non-
homogeneous) Poisson process model.

Suppose that (N|Z) ∼ Poisson(Λ(·|Z)), and ((K, TK)|Z) ∼ G(·|Z) are conditionally independent
given Z. We will assume here that N is conditionally a nonhomogeneous Poisson process with
conditional mean function

E[N(t)|Z] = Λ(t|Z) ≡ eθ′ZΛ0(t) . (3.1)

The second equality expresses the proportional mean regression model assumption.
The likelihood for one observation is, using the same notation introduced in Section 2,

p(X; θ, Λ0) =
K∏

j=1

exp(−∆ΛKj)
(∆ΛKj)∆NKj

(∆NKj)!
.

Thus the log-likelihood for (θ, Λ0) for one observation is given by

log p(X; θ, Λ0) =
K∑

j=1

{∆NKj log ∆ΛKj −∆ΛKj − log(∆NKj !)} .

Differentiating this with respect to θ and Λ0 respectively, the scores for θ and Λ are easily seen to
be

l̇θ(x) =
K∑

j=1

Z(∆NKj − eθ′Z∆Λ0Kj) , (3.2)

while

l̇Λa(x) =
K∑

j=1

{
∆NKj

∆Λ0Kj
− eθ′Z

}
∆aKj

=
K∑

j=1

{
∆NKj − eθ′Z∆Λ0Kj

} ∆aKj

∆Λ0Kj
,

6



where

∆aKj =
∫ TK,j

TK,j−1

adΛ0 , a ∈ L2(Λ0) .

To compute the information bound for estimation of θ it follows from the results of Begun, Hall,

Huang, and Wellner (1983) and Bickel, Klaassen, Ritov, and Wellner (1993) that we want
to find a∗ so that

l̇θ − l̇Λa∗ ⊥ l̇Λa

for all a ∈ L2(Λ0); i.e.

0 = E
{

(l̇θ − l̇Λa∗)l̇Λa
}

= E


K∑

j=1

(∆NKj − eθ′Z∆Λ0Kj)
(

Z −
∆a∗Kj

∆Λ0Kj

)
l̇Λa


= E


K∑

j=1

(∆NKj − eθ′Z∆Λ0Kj)2
(

Z −
∆a∗Kj

∆Λ0Kj

)
∆aKj

∆Λ0Kj


= E


K∑

j=1

eθ′Z∆Λ0Kj

(
Z −

∆a∗Kj

∆Λ0Kj

)
∆aKj

∆Λ0Kj


by conditioning on K, TK , Z

= EK


K∑

j=1

E

{
eθ′Z∆Λ0Kj

(
Z −

∆a∗Kj

∆Λ0Kj

)
∆aKj

∆Λ0Kj

∣∣∣K}
= EK


K∑

j=1

E

{
E

{
eθ′Z∆Λ0Kj

(
Z −

∆a∗Kj

∆Λ0Kj

)
∆aKj

∆Λ0Kj

∣∣∣K, TK,j−1, TK,j

} ∣∣∣K}
= EK


K∑

j=1

E

{
∆Λ0Kj

∆aKj

∆Λ0Kj

(
E

{
Zeθ′Z |K, TK,j−1, TK,j

}
−

∆a∗Kj

∆Λ0Kj
E

{
eθ′Z |K, TK,j−1, TK,j

}) ∣∣∣K}}
.

Thus we see that the desired orthogonality holds with

∆a∗Kj

∆Λ0Kj
=

E
{

Zeθ′Z |K, TK,j−1, TK,j

}
E {eθ′Z |K, TK,j−1, TK,j}

. (3.3)

Hence the efficient score function for θ is given by

l∗θ(x) = l̇θ(x)− l̇Λa∗(x)

=
K∑

j=1

(∆NKj − eθ′Z∆Λ0Kj)

Z −
E

{
Zeθ′Z |K, TK,j−1, TK,j

}
E {eθ′Z |K, TK,j−1, TK,j}

 ,
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and the information for θ is, by computing conditionally on Z, K, TK ,

I(θ) = E0

{
l̇∗θ(X)⊗2

}
= E0


K∑

j=1

eθ′Z∆Λ0Kj

Z −
E

{
Zeθ′Z |K, TK,j−1, TK,j

}
E {eθ′Z |K, TK,j−1, TK,j}

⊗2
 .

In particular, we have the following corollary:

Corollary 1. (Current status data). If P (K = 1) = 1 (so that the only TKj of relevance is T1,1 ≡ T
while T1,0 = 0), then the efficient score function is

l∗θ(x) = l̇θ(x)− l̇Λa∗(x) = (N(T )− eθ′ZΛ0(T ))

Z −
E

{
Zeθ′Z |T

}
E {eθ′Z |T}

 .

and the information for θ is given by

I(θ) = E0

{
l̇∗θ(X)⊗2

}
= E0

eθ′ZΛ0(T )

Z −
E

{
Zeθ′Z |T

}
E {eθ′Z |T}

⊗2
 .

This should be compared with the information for θ for the Cox proportional hazards model with
current status data given by Huang (1996), page 547.

Corollary 2. (Case 2 Interval-censored data). If P (K = 2) = 1 (so that the only TKj ’s of relevance
are T2,1 ≡ T1 and T2,2 = T2, while T2,0 = 0), then the efficient score function is

l∗θ(x) = l̇θ(x)− l̇Λa∗(x)

= (N(T1)− eθ′ZΛ0(T1))

Z −
E

{
Zeθ′Z |T1

}
E {eθ′Z |T1}


+ (N(T2)− N(T1)− eθ′Z(Λ0(T2)− Λ0(T1)))

Z −
E

{
Zeθ′Z |T1, T2

}
E {eθ′Z |T1, T2}

 ,

and the information for θ is given by

I(θ) = E0

{
l̇∗θ(X)⊗2

}
= E0

eθ′ZΛ0(T1)

Z −
E

{
Zeθ′Z |T1

}
E {eθ′Z |T1}

⊗2


+ E0

eθ′Z(Λ0(T2)− Λ0(T2))

Z −
E

{
Zeθ′Z |T1, T2

}
E {eθ′Z |T1, T2}

⊗2
 .
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This should be compared with the information for θ for the Cox proportional hazards model with
interval censored case II data given by Huang and Wellner (1995). Note that those calculations
resulted in an integral equation to be solved, analogously to the results for the mean functional
considered by Geskus and Groeneboom (1996), Geskus and Groeneboom (1997) and Geskus

and Groeneboom (1999).

4 Asymptotic normality of the two estimators of θ.

Here is the crucial theorem concerning the asymptotic behavior of the maximum pseudo-likelihood
and maximum likelihood estimators of θ when the proportional mean model holds, but the Poisson
assumption concerning N may fail.

Theorem 1. Under suitable regularity and integrability conditions, the estimators θ̂ps
n and θ̂n are

asymptotically normal:

√
n(θ̂n − θ0)→d Z ∼ Nd

(
0, A−1B

(
A−1

)′)
, (4.1)

and √
n(θ̂ps

n − θ0)→d Zps ∼ Nd

(
0, (Aps)−1Bps

(
(Aps)−1

)′) (4.2)

where

B ≡ Em∗(θ0, Λ0; X)⊗2 = E


K∑

j,j′=1

Cj,j′(Z)

Z −
E

(
Zeθ′0Z |K, TK,j , TK,j′

)
E

(
eθ′0Z |K, TK,j , TK,j′

)
⊗2

 ,

A = E


K∑

j=1

∆Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
⊗2

 ,

Cj,j′(Z) = Cov
[
∆NKj , ∆NKj′ |Z, K, TK

]
,

Bps = Em∗ps(θ0, Λ0; X)⊗2

= E


K∑

j,j′=1

Cps
j,j′(Z)

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
 Z −

E
(
Zeθ′0Z |K, TK,j′

)
E

(
eθ′0Z |K, TK,j′

)
′

 ,

Aps = E


K∑

j=1

Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
⊗2

 ,

Cps
j,j′(Z) = Cov

[
NKj , NKj′ |Z, K, TK,j , TK,j′

]
.
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Our proof of this theorem is based on the results of Zhang (1998). While we will not give the
proof in detail, we will present here as sketch of the computation of the asymptotic variances given
in (4.1) and (4.2).

Based on the Poisson model, the log-likelihood for (θ0, Λ0) with one observation is given by

m(θ, Λ; X) = log p(X; θ, Λ) =
K∑

j=1

{∆NKj log ∆ΛKj −∆ΛKj − log(∆NKj !)}

=
K∑

j=1

{
∆NKj log ∆Λ0Kj + ∆NKjθ

′Z − eθ′Z∆Λ0Kj − log(∆NKj !)
}

. (4.3)

Thus the log-likelihood ln(θ, Λ) for n i.i.d. observations is given by

ln(θ, Λ) = nPnm(θ, Λ; ·) . (4.4)

The maximum likelihood estimators (θ̂, Λ̂) are obtained by maximizing (4.4).
A natural pseudo-likelihood is obtained by simply taking the product of the marginal

distributions of the observed counts at the successive observation times. Thus a log-pseudo-
likelihood for one observation is given by

mps(θ, Λ; X) =
K∑

j=1

{NKj log ΛKj − ΛKj − log(NKj !)}

=
K∑

j=1

{
NKj log Λ0Kj + NKjθ

′Z − eθ′ZΛ0Kj − log(NKj !)
}

, (4.5)

and the log-pseudo-likelihood lps
n (θ, Λ) for n i.i.d. observations is given by

lps
n (θ, Λ) = nPnmps(θ, Λ; ·) , (4.6)

and the corresponding pseudo-MLE’s (θ̂ps, Λ̂ps) are obtained by maximizing (4.6).

4.1 Asymptotic variance of the MLE

Based on the Poisson model, the log-likelihood for (θ0, Λ0) with one observation is given by (4.3).
Using the notation of Zhang (1998), page 29, we have

m1(θ, Λ; X) =
K∑

j=1

Z
[
∆NKj −∆Λ0Kje

θ′Z
]
,

m2(θ, Λ; X)[h] =
K∑

j=1

[
∆NKj

∆Λ0Kj
− eθ′Z

]
∆hKj ,

m11(θ, Λ; X) = −
K∑

j=1

∆Λ0KjZZ ′eθ′Z ,

10



m12(θ, Λ; X)[h] = mT
21(θ, Λ; X)[h] = −

K∑
j=1

Zeθ′Z∆hKj ,

m22(θ, Λ; X)[h, h] = −
K∑

j=1

∆NKj

(∆Λ0Kj)
2 ∆hKj∆hKj ,

where ∆hKj =
∫ TK,j
TK,j−1

hdΛ0 for h ∈ L2(Λ0). By A2 of Zhang (1998), page 30, we need to find a
h∗ such that

Ṡ12(θ0, Λ0)[h]− Ṡ22(θ0, Λ0)[h∗, h] = P {m12(θ0, Λ0; X)[h]−m22(θ0, Λ0; X)[h∗, h]} = 0,

for all h ∈ L2(Λ0). Note that

P {m12(θ0, Λ0; X)[h]−m22(θ0, Λ0; X)[h∗, h]}

= − E


K∑

j=1

[
Zeθ′0Z − ∆NKj

(∆Λ0Kj)
2 ∆h∗Kj

]
∆hKj


= − E(K,TK ,Z)


K∑

j=1

[
Zeθ′0Z −

eθ′0Z∆h∗Kj

∆Λ0Kj

]
∆hKj

 .

Therefore, an obvious choice of h∗ is

∆h∗Kj = ∆Λ0Kj

E
(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

) .

Hence

m∗(θ0, Λ0; X)
= m1(θ0, Λ0; X)−m2(θ0, Λ0; X)[h∗]

=
K∑

j=1

Z
(
∆NKj − eθ′0Z∆Λ0Kj

)
−

(
∆NKj

∆Λ0Kj
− eθ′0Z

)
∆Λ0Kj

E
(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)


=
K∑

j=1

(
∆NKj − eθ′0Z∆Λ0Kj

) Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
 .

By Theorem 2.3.5 of Zhang (1998), page 32, the asymptotic variance will be A−1B
(
A−1

)′, where

B = Em∗(θ0, Λ0; X)⊗2

= E(K,TK ,Z)


K∑

j,j′=1

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z)

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)


11



Z −
E

(
Zeθ′0Z |K, TK,j′−1, TK,j′

)
E

(
eθ′0Z |K, TK,j′−1, TK,j′

)
′

 ,

A = − Ṡ11(θ0, Λ0) + Ṡ21(θ0, Λ0)[h∗]

= E


K∑

j=1

∆Λ0Kje
θ′0ZZZ ′ − eθ′0Z∆Λ0Kj

E
(
Zeθ′0Z |K, TK,j′−1, TK,j′

)
E

(
eθ′0Z |K, TK,j′−1, TK,j′

) Z ′


= E(K,TK ,Z)


K∑

j=1

∆Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
 Z ′


= E(K,TK ,Z)


K∑

j=1

∆Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
⊗2

 ,

and

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z)

= E
[(

∆NKj − eθ′0Z∆Λ0Kj

) (
∆NKj′ − eθ′0Z∆Λ0Kj′

)
|Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′

]
.

Note that if the counting process is indeed a conditional Poisson process with the mean function
given as specified,

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z) =
{

∆Λ0Kje
θ′0Z , if j = j′

0 , if j 6= j′ .

This yields B = A = I(θ0) and thus A−1B
(
A−1

)′ = I−1(θ0). 2

4.2 Asymptotic Variance of the Pseudo-MLE

Based on the Poisson model, the pseudo log-likelihood for (θ0, Λ0) with one observation is given by
(4.5). Using the notation of Zhang (1998), page 29, we have

mps
1 (θ, Λ; X) =

K∑
j=1

Z
[
NKj − Λ0Kje

θ′Z
]
,

mps
2 (θ, Λ; X)[h] =

K∑
j=1

[
NKj

Λ0Kj
− eθ′Z

]
hKj ,

mps
11(θ, Λ; X) = −

K∑
j=1

Λ0KjZZ ′eθ′Z ,

12



mps
12(θ, Λ; X)[h] = mT

21(θ, Λ; X)[h] = −
K∑

j=1

Zeθ′ZhKj ,

mps
22(θ, Λ; X)[h, h] = −

K∑
j=1

NKj

(Λ0Kj)
2hKjhKj ,

where hKj =
∫ TK,j
0 hdΛ0 for h ∈ L2(Λ0). By A2 of Zhang (1998), page 30, we need to find a h∗

such that

Ṡps
12(θ0, Λ0)[h]− Ṡps

22(θ0, Λ0)[h∗, h] = P {mps
12(θ0, Λ0; X)[h]−mps

22(θ0, Λ0; X)[h∗, h]} = 0,

for all h ∈ L2(Λ0). Note that

P {mps
12(θ0, Λ0; X)[h]−mps

22(θ0, Λ0; X)[h∗, h]} = − E


K∑

j=1

[
Zeθ′0Z − NKj

(Λ0Kj)
2h
∗
Kj

]
hKj


= − E(K,TK ,Z)


K∑

j=1

[
Zeθ′0Z −

eθ′0Zh∗Kj

Λ0Kj

]
hKj

 .

Therefore, an obvious choice of h∗ is

h∗Kj = Λ0Kj

E
(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

) .

Hence

m∗ps(θ0, Λ0; X)
= mps

1 (θ0, Λ0; X)−mps
2 (θ0, Λ0; X)[h∗]

=
K∑

j=1

Z
(
NKj − eθ′0ZΛ0Kj

)
−

(
NKj

Λ0Kj
− eθ′0Z

)
Λ0Kj

E
(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)


=
K∑

j=1

(
NKj − eθ′0ZΛ0Kj

) Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
 .

By Theorem 2.3.5 of Zhang (1998), page 32, the asymptotic variance will be (Aps)−1Bps
(
(Aps)−1

)′,
where

Bps = Em∗ps(θ0, Λ0; X)⊗2

= E(K,TK ,Z)


K∑

j,j′=1

Cps(TK,j , TK,j′ ; Z)

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)


Z −
E

(
Zeθ′0Z |K, TK,j′

)
E

(
eθ′0Z |K, TK,j′

)
′

 ,
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Aps = − Ṡps
11(θ0, Λ0) + Ṡps

21(θ0, Λ0)[h∗]

= E


K∑

j=1

Λ0Kje
θ′0ZZZ ′ − eθ′0ZΛ0Kj

E
(
Zeθ′0Z |K, TK,j′

)
E

(
eθ′0Z |K, TK,j′

) Z ′


= E(K,TK ,Z)


K∑

j=1

Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
 Z ′


= E(K,TK ,Z)


K∑

j=1

Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
⊗2

 ,

and

Cps(TK,j , TK,j′ ; Z) = E
[(
NKj − eθ′0ZΛ0Kj

) (
NKj′ − eθ′0ZΛ0Kj′

)
|Z, K, TK,j , TK,j′

]
.

Note that if the counting process is indeed a conditional Poisson process with the mean function
given as specified,

Cps(TK,j , TK,j′ ; Z) = eθ′0ZΛ0K(j∧j′) .

This yields

Bps = Aps + 2E(K,TK ,Z)

∑
j<j′

eθ0ZΛ0Kj

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)


Z −
E

(
Zeθ′0Z |K, TK,j′

)
E

(
eθ′0Z |K, TK,j′

)
′


6= Aps .

5 Comparisons: MLE versus pseudo-MLE.

Scenario 1. We first suppose that the underlying counting process is in fact a standard
homogeneous Poisson process conditionally given Z, with baseline mean function Λ0(t) = λt, We
will also assume that the distribution of (K, TK) is independent of Z. As a consequence, Z is
independent of (K, TK), and the formulas in the preceding section simplify considerably. Because
of the Poisson process assumption, A = B = I(θ), and this matrix is given by

I(θ) = E(K,TK ,Z)


K∑

j=1

∆Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
⊗2


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= E(K,TK) {Λ0(TK,K)}EZ

eθ′0Z

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
⊗2


≡ E(K,TK) {Λ0(TK,K)}C ,

so that if C is nonsingular,

I(θ)−1 = C−1 1
E(K,TK) {Λ0(TK,K)} .

On the other hand,

Aps = E(K,TK ,Z)


K∑

j=1

Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
⊗2


= E(K,TK)


K∑

j=1

Λ0(TKj)

 E

eθ′0Z

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
⊗2

 ,

while

Bps = E(K,TK ,Z)


K∑

j,j′=1

Λ0(TK,j∧j′)

 EZ

eθ′0Z

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
⊗2

 ,

so that

(Aps)−1Bps
(
(Aps)−1

)′ = C−1
E(K,TK ,Z)

{∑K
j,j′=1 Λ0(TK,j∧j′)

}
(
E(K,TK)

{∑K
j=1 Λ0(TKj)

})2 .

Thus it follows that the ARE of the pseudo-MLE of θ relative to the MLE of θ under the above
scenario is given by

ARE(pseudo, mle) =
A−1B(A−1)T

(Aps)−1Bps((Aps)−1)T

=

{
E

{∑K
j=1 Λ0(TK,j)

}}2

E {Λ0(TK,K)}E
{∑K

j,j′=1 Λ0(TK,j∧j′)
} .

Note that this equals 1 if P (K = 1) = 1. Actually, we have not yet used the assumption about Λ0.
If we assume that Λ0(t) = λt, then

ARE(pseudo, mle) =

{
E

{∑K
j=1 TK,j

}}2

E {TK,K}E
{∑K

j,j′=1 TK,j∧j′

}
15



If we assume, further, that P (K = k) = 1 for a fixed integer k ≥ 2, and TK = (TK,1, . . . , TK,K) are
the order statistics of a sample of k uniformly distributed random variables on an interval [0, M ],
then

E


K∑

j=1

TK,j

 =
k∑

j=1

j

k + 1
M =

k

2
M ,

E {TK,K} =
k

k + 1
M ,

and

E


K∑

j,j′=1

TK,j∧j′

 =
k∑

j,j′=1

j ∧ j′

k + 1
M =

k(2k + 1)
6

M .

Hence in this case

ARE(pseudo, mle) =
(k/2)2

k
k+1

k(2k+1)
6

=
3(k + 1)
2(2k + 1)

→ 3
4

as k →∞.

k 1 2 3 4 5 6 7 8 9 10
I(θ)−1(k)Mλ 2 3/2 4/3 5/4 6/5 7/6 8/7 9/8 10/9 11/10
V ps(k)Mλ 2 5/3 14/9 3/2 22/15 13/9 10/7 17/12 38/27 7/5
ARE(k) 1.00 .900 0.857 0.833 0.818 0.808 0.800 0.794 0.789 0.786

Scenario 2. A variant on these calculations is to repeat all the assumptions about Z and (K, TK),
assume, conditionally on K, that TK = (TK,1, . . . , TK,K) are the order statistics of a sample of K
uniformly distributed random variables on an interval [0, M ], but now allow a distribution for K.
Then

E


K∑

j=1

TK,j

∣∣∣K
 =

K∑
j=1

j

K + 1
M =

K

2
M ,

E
{

TK,K

∣∣∣K}
=

K

K + 1
M ,

and

E


K∑

j,j′=1

TK,j∧j′

∣∣∣K
 =

K∑
j,j′=1

j ∧ j′

K + 1
M =

K(2K + 1)
6

M .

If we let K be distributed according to 1+Poisson(µ), then the ARE will be asymptotically 3/4
again as µ → ∞. A more interesting choice of the distribution of K is the Zeta(α) distribution
given as follows: for α > 1,

P (K = k) =
1/kα

ζ(α)
, k = 1, 2, . . . ,

16



where ζ(α) =
∑∞

j=1 j−α is the Riemann Zeta function. Then we can compute

E


K∑

j=1

TK,j

 = E


K∑

j=1

j

K + 1

 M =
Eα(K)

2
M =

M

2
ζ(α− 1)

ζ(α)
,

E {TK,K} = Eα

(
K

K + 1

)
M ,

and

E


K∑

j,j′=1

TK,j∧j′

 = Eα

 K∑
j,j′=1

j ∧ j′

K + 1

 M

=
M

6
Eα(K(2K + 1))

=
M

6
{
2Eα(K2) + Eα(K)

}
=

M

6

{
2ζ(α− 2) + ζ(α− 1)

ζ(α)

}

Hence in this case
I(θ)−1(α) = C−1 1

MλEα

(
K

K+1

) ,

V ps(α) = C−1

{
2ζ(α−2)+ζ(α−1)

ζ(α)

}
6Mλ

(
ζ(α−1)
2ζ(α)

)2 ,

and

ARE(pseudo, mle)(α) ≡ ARE(α)

=
(Eα(K)/2)2

Eα{ K
K+1}Eα

K(2K+1)
6

=
3
2

ζ(α− 1)/ζ(α)

Eα{ K
K+1}

2ζ(α−2)+ζ(α−1)
ζ(α)

=
3
2

ζ(α− 1)
{2ζ(α− 2) + ζ(α− 1)}Eα{ K

K+1}
,

and this varies between 0 and 1 as α varies from 3 to ∞; note that for α = 3, E(K2) =∞ = ζ(1),
while E(K) = ζ(2)/ζ(3) .= 10.5844 . . .. See Figure 1.

17



3.5 4 4.5 5 5.5 6

0.2

0.4

0.6

0.8

Figure 1: ARE(α)

If we change the distribution of K to K ∼ Unif{1, . . . , k0}, then

E


K∑

j=1

TK,j

 = E


K∑

j=1

j

K + 1

 M =
E(K)

2
M =

k0 + 1
4

M ,

E


K∑

j,j′=1

TK,j∧j′

 = Eα

 K∑
j,j′=1

j ∧ j′

K + 1

 M

=
M

6
E(K(2K + 1))

=
M

6
{
2E(K2) + E(K)

}
=

M

6

{
2
(k0 + 1)(2k0 + 1)

6
+

k0 + 1
2

}
while

E {TK,K} = E

(
K

K + 1

)
M ,

Hence in this case
I(θ)−1(α) = C−1 1

MλE
(

K
K+1

) ,

V ps(k0) = C−1
(k0+1)(2k0+1)/3+(k0+1)/2

6

Mλ(k0 + 1)2/16
,
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and

ARE(pseudo, mle)(k0) ≡ ARE(k0)

=
(E(K)/2)2

E{ K
K+1}E

K(2K+1)
6

=
(k0 + 1)2/16

E{ K
K+1}

(k0+1)(2k0+1)/3+(k0+1)/2
6

,

and this varies between 1 and 9/16 as k0 varies from 1 to ∞.

Scenario 3. We now suppose that the underlying counting process is not a Poisson process,
conditionally given Z, but is, instead, defined as in terms of the “negative-binomialization” of an
empirical counting process, as follows: suppose that X1, X2, . . . are i.i.d. with distribution function
F on R, and define

Nn(t) =
n∑

i=1

1[Xi≤t] for t ≥ 0 .

Suppose that (N |Z) ∼ Negative Binomial(r(Z, γ, θ), p) where r(Z, γ, θ) = γeθ′Z , and define N by

N(t) ≡ NN (t) =
N∑

i=1

1[Xi≤t] .

Then, since
E(N |Z) = r(Z, γ, θ)

q

p
, V ar(N |Z) = r(Z, γ, θ)

q

p2
,

it follows that

E{N(t)|Z} = E{E[N(t)|Z, N ]|Z} = E{NF (t)|Z} = γeθ′ZF (t)
q

p
= eθ′ZΛ0(t) ,

with Λ0(t) ≡ γF (t)(q/p). Alternatively, (N(t)|Z) ∼ Negative Binomial(r, p
p+qF (t)) by

straightforward computation, and hence it follows that

E{N(t)|Z} = r
qF (t)/(p + qF (t))

p/(p + qF (t))
= rF (t)

q

p
= γeθ′0Z q

p
F (t) = eθ′0ZΛ0(t) ,

in agreement with the above calculation. Moreover

V ar{N(t)|Z} = r
qF (t)/(p + qF (t))
(p/(p + qF (t)))2

= r
q

p
F (t)(1 +

q

p
F (t))

= r
q

p
F (t) + r

(
q

p

)2

F (t)2 .
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Now we want to calculate

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z)

= E
[(

∆NKj − eθ′0Z∆Λ0Kj

) (
∆NKj′ − eθ′0Z∆Λ0Kj′

)
|Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′

]
.

By computing conditionally on N , and using the fact that conditionally on
Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′ and N , N has increments with a joint multinomial distribution,
we find that

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z)

= E
[(

∆NKj − eθ′0Z∆Λ0Kj

) (
∆NKj′ − eθ′0Z∆Λ0Kj′

) ∣∣∣Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′

]
= E

{
E

[(
∆NKj − E(∆NKj |N) + E(∆NKj |N)− eθ′0Z∆Λ0Kj

)
·

(
∆NKj′ − E(∆NKj′ |N) + E(∆NKj′ |N)− eθ′0Z∆Λ0Kj′

)
∣∣∣N, Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′

] ∣∣∣Z, K, TK,j−1, TK,j , TK,j′−1, TK,j′

}
=

{
E {N∆FKj(1−∆FKj)|Z, K, TK}+ E

{
(N − rq/p)2(∆FKj)2|Z, K, TK

}
, if j = j′

−E
{
N∆FKj∆FKj′ |Z, K, TK

}
+ E

{
(N − rq/p)2∆FKj∆FKj′ |Z, K, TK

}
, if j 6= j′

=

{
r q

p

(
∆FK,j − (∆FK,j)2

)
+ r q

p2 ∆F 2
K,j , if j = j′{

r q
p2 − r q

p

}
∆FKj∆FKj′ , if j 6= j′

=

{
r q

p∆FK,j + r q2

p2 (∆FK,j)2, if j = j′

r q2

p2 ∆FKj∆FKj′ , if j < j′

=

{
eθ′0Z∆Λ0,K,j + γ−1eθ′0Z∆(Λ0,K,j)2, if j = j′ ,

γeθ′0Z q2

p2 ∆FKj∆FKj′ , if j 6= j′ ,

=
{

eθ′0Z∆Λ0,K,j + γ−1eθ′0Z(∆Λ0,K,j)2, if j = j′ ,
γ−1eθ′0Z∆Λ0Kj∆Λ0Kj′ , if j 6= j′ .

Remark. Note that if (N |Z) ∼ Poisson(r(Z, γ, θ)), then the process N ≡ NN is conditionally,
given Z, a non-homogeneous Poisson process with conditional mean function

E{N(t)|Z} = γeθ′ZF (t) = eθ′ZΛ0(t) ,

and conditional variance function

V ar{N(t)|Z} = γeθ′ZF (t) = eθ′ZΛ0(t)

where Λ0(t) = γF (t).

We will also assume, as in Scenarios 1 and 2, that the distribution of (K, TK) is independent
of Z. As a consequence, Z is independent of (K, TK), and the formulas in the preceding section
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again simplify. By taking F uniform on [0, M ], Λ0(t) = λt where λ = (γ/M)(q/p), and we compute,
using moments and covariances of uniform spacings, as found on page 721 of Shorack and Wellner

(1986),

B = Em∗(θ0, Λ0; X)⊗2

= E(K,TK ,Z)


K∑

j,j′=1

C(TK,j , TK,j′ , TK,j−1, TK,j′−1; Z)

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)


Z −
E

(
Zeθ′0Z |K, TK,j′−1, TK,j′

)
E

(
eθ′0Z |K, TK,j′−1, TK,j′

)
′


= E(K,TK ,Z)


K∑

j=1

(eθ′0Z∆Λ0Kj + γ−1eθ′0Z(∆Λ0Kj)2)

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
 Z −

E
(
Zeθ′0Z

)
E

(
eθ′0Z

)
′


+ E(K,TK ,Z)


K∑

j 6=j′

γ−1eθ′0Z∆Λ0Kj∆Λ0Kj′

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
 Z −

E
(
Zeθ′0Z

)
E

(
eθ′0Z

)
′


= C

EK,TK


K∑

j=1

(∆Λ0Kj + γ−1(∆Λ0Kj)2)

 + γ−1EK,TK


K∑

j 6=j′

∆Λ0Kj∆Λ0Kj′




= C

{
λME

(
K

K + 1

)
+ γ−1λ2M2E

(
K

K + 2

)}
= λMC

{
E

(
K

K + 1

)
+ γ−1λME

(
K

K + 2

)}
where, as in scenario 1,

C ≡ EZ

eθ′0Z

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
⊗2

 .

On the other hand, we find that

A = E(K,TK ,Z)


K∑

j=1

∆Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j−1, TK,j

)
E

(
eθ′0Z |K, TK,j−1, TK,j

)
⊗2


= CλME

{
K

K + 1

}
.
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Thus the asymptotic variance of the MLE for this scenario is

A−1B(A−1)′ = (λMC)−1
E

{
K

K+1

}
+ λM

γ E
{

K
K+2

}
{

E
(

K
K+1

)}2 .

Now for the asymptotic variance of the pseudo-MLE under scenario 3. To calculate Bps we first
need to calculate

Cps(TK,j , TK,j′ ; Z)

= E
[(
NKj − eθ′0ZΛ0Kj

) (
NKj′ − eθ′0ZΛ0Kj′

)
|Z, K, TK,j , TK,j′

]
= E

{
E

[(
NKj − eθ′0ZΛ0Kj

) (
NKj′ − eθ′0ZΛ0Kj′

)
|N, Z, K, TK,j , TK,j′

] ∣∣∣Z, K, TK,j , TK,j′

}
= E

{
N(F (TK,j ∧ TK,j′)− F (TK,j)F (TK,j′)) + (N − rq/p)2F (TK,j)F (TK,j′)

∣∣∣Z, K, TK,j , TK,j′

}
= r

q

p
{F (TK,j ∧ TK,j′)− F (TK,j)F (TK,j)}+ r

q

p2
F (TK,j)F (TK,j′)

= eθ′0ZΛ0(TK,j ∧ TK,j′) + γ−1eθ′0ZΛ0(TK,j)Λ0(TK,j)

= eθ′0ZΛ0(TK,j)
(
1 + γ−1Λ0(TK,j′)

)
if j ≤ j′ .

We can then calculate

Bps = Em∗ps(θ0, Λ0; X)⊗2

= E(K,TK ,Z)


K∑

j,j′=1

Cps(TK,j , TK,j′ ; Z)

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)


Z −
E

(
Zeθ′0Z |K, TK,j′

)
E

(
eθ′0Z |K, TK,j′

)
′


= E(K,TK ,Z)


K∑

j,j′=1

(
Λ0(TK,j)

(
1 + γ−1Λ0(TK,j′)

))
eθ′0Z

Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)


Z −
E

(
Zeθ′0Z

)
E

(
eθ′0Z

)
′


= C

λME

 K∑
j,j′=1

j ∧ j′

k + 1

 +
λ2M2

γ
E

 K∑
j,j′

UK,jUK,j′


= C

λME

(
K(2K + 1)

6

)
+

λ2M2

γ
E

 K∑
j,j′

UK,jUK,j′


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= C

{
λME

(
K(2K + 1)

6

)
+

λ2M2

γ
E

(
K(3K + 1)

12

)}
= λMC

{
E

(
K(2K + 1)

6

)
+

λM

γ
E

(
K(3K + 1)

12

)}

Aps = E(K,TK ,Z)


K∑

j=1

Λ0Kje
θ′0Z

Z −
E

(
Zeθ′0Z |K, TK,j

)
E

(
eθ′0Z |K, TK,j

)
⊗2


= λMCE

(
K

2

)
.

Thus we find that the asymptotic variance of the pseudo-MLE θ̂ps
n is given by

(Aps)−1Bps((Aps)−1)′ = (λMC)−1
E

(
K(2K+1)

6

)
+ λM

γ E
(

K(3K+1)
12

)
{
E

(
K
2

)}2 ,

and the asymptotic relative efficiency of the pseudo-mle to the mle is, under scenario 3,

ARE(pseudo, mle)(NegBin) =

E{ K
K+1}+λM

γ
E{ K

K+2}
{E( K

K+1)}
2

E
(
K(2K+1)

6

)
+λM

γ
E

(
K(3K+1)

12

)
{E(K2 )}2

=
E

{
K

K+1

}
+ λM

γ E
{

K
K+2

}
E

(
K(2K+1)

6

)
+ λM

γ E
(

K(3K+1)
12

) ·
E (K/2))

E
(

K
K+1

)
2

=
E

{
K

K+1

}
+ λM

γ E
{

K
K+2

}
E

(
K

K+1

) ·
E

(
K(2K+1)

6

)
E

(
K(2K+1)

6

)
+ λM

γ E
(

K(3K+1)
12

)
·ARE(pseudo, mle)(Poisson)

=

(
1 + λM

γ

E( K
K+2)

E( K
K+1)

)
(

1 + λM
γ

E
(
K(3K+1)

12

)
E

(
K(2K+1)

6

)
) ·ARE(pseudo, mle)(Poisson) .

Note that when factor λM/γ = q/p→ 0, is zero then we recover our earlier result for the Poisson
case. This is to be expected since Poisson(Λ0(t) exp(θ′0Z)) becomes the limiting distribution of
Negative Binomial(r, p/(p + qF (t))) as p→ 1.
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6 Conclusions and Further Problems

Conclusions
As in the case of panel count data without covariates studied in Sun and Kalbfleisch (1995)

and Wellner and Zhang (2000), the pseudo likelihood estimation method for the semiparametric
proportional mean model with panel count data proposed and studied in Zhang (1998) and Zhang

(2001) also has advantages in terms of computational simplicity. The results of section 5 above show
that the maximum pseudo-likelihood estimator of the regression parameters can be very inefficient
relative to the maximum likelihood estimator, especially when the distribution of K is heavy -
tailed. In such cases it is clear that we will want to avoid the pseudo-likelihood estimator, and the
computational effort required by the “full” maximum likelihood estimators can be justified by the
consequent gain in efficiency.

Our derivation of the asymptotic normality of the maximum likelihood estimator of the
regression parameters results in a relatively complicated expression for the asymptotic variance
which may be difficult to estimate directly. Hence it becomes important to develop efficient
algorithms for computation of the maximum likelihood estimator in order to allow implementation,
for example, of bootstrap inference procedures. Alternatively, profile likelihood inference may be
quite feasible in this model; see e.g. Murphy and Van der Vaart (1997), Murphy and Van der

Vaart (1999), Murphy and Van der Vaart (2000) for likelihood ratio procedures in some related
interval censoring models.

Further problems
The asymptotic normality results stated in section 4 will be developed and given in detail in

Liu, Wellner, and Zhang (2002). There are quite a large number of interesting problems still
open concerning the semiparametric model for panel count data which has been studied here. Here
is a short list:
• Find a fast and reliable algorithm for computation of the MLE θ̂ of θ. Although reasonable
algorithms for computation of the maximum pseudo-likelihood estimators have been proposed in
Zhang (1998) and Zhang (2001) based on the earlier work of Sun and Kalbfleisch (1995), good
algorithms for computation of the maximum likelihood estimators have yet to be developed and
implemented.
• Show that the natural semiparametric profile likelihood ratio procedures are valid for inference
about the regression parameter θ via the theorems of Murphy and Van der Vaart (1997), Murphy

and Van der Vaart (1999), and Murphy and Van der Vaart (2000).
• Do the non-standard likelihood ratio procdures and methods of Banerjee and Wellner (2001)

extend to the present model to give tests and confidence intervals for Λ0(t)?
• Are there compromise or hybrid estimators between the maximum pseudo-likelihood estimators
and the full maximum likelihood estimators which have the computational advantages of the former
and the efficiency advantages of the latter?
• Do similar results continue to hold for panel count data with covariates, but with other models
for the mean function replacing the proportional mean model given by (1.1)?
• Are there computational or efficiency advantages to using the MLE’s for one of the class of Mixed
Poisson Process (N|Z), for example the Negative-Binomial model? Further comparisons with the
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work of Dean and Balshaw (1997), Hougaard, Lee, and Whitmore (1997), and Lawless (1987a),
Lawless (1987b) would be useful.
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Hougaard, P., Lee, M.T., and Whitmore, G. A. (1997). Analysis of overdispersed count data by
mixtures of Poisson variables and Poisson processes. Biometrics 53, 1225 - 1238.

Huang, J. (1996). Efficient estimation for the Cox model with interval censoring, Annals of
Statistics, 24, 540-568.

Huang, J., and Wellner, J. A. (1995). Efficient Estimation for the Cox Model with Case 2 Interval
Censoring, Preprint.

25



Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation.
Journal of Computation and Graphical Statistics 7, 310-321.

Kalbfleisch, J. D. and Lawless, J. F. (1981). Statistical inference for observational plans arising
in the study of life history processes. In Symposium on Statistical Inference and Applications
In Honour of George Barnard’s 65th Birthday. University of Waterloo, August 5-8, 1981.

Kalbfleisch, J. D. and Lawless, J. F. (1985). The analysis of panel count data under a Markov
assumption. Journal of the American Statistical Association 80, 863 - 871.

Lawless, J. F. (1987a). Regression methods for Poisson process data. J. Amer. Statist. Assoc.
82, 808-815.

Lawless, J. F. (1987b). Negative binomial and mixed Poisson regression. Canad. J. Statist. 15,
209-225.

Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent
events. Technometrics 37, 158 - 168.

Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean
and rate functions of recurrent events. J. Roy. Statist. Soc. B, 711-730.

Liu, H., Wellner, J. A., and Zhang, Y. (2002). Large sample theory for two estimators in a
semiparametric model for panel count data. Manuscript in progress.

Murphy, S. and Van der Vaart, A. W. (1997). Semiparametric likelihood ratio inference. Ann.
Statist. 25, 1471 - 1509.

Murphy, S. and Van der Vaart, A. W. (1999). Observed information in semi-parametric models.
Bernoulli 5, 381–412.

Murphy, S. and Van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95,
449 - 485.

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York.

Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based
on panel count data. Statistica Sinica 5, 279 - 290.

Sun, J. and Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent
observation and censoring times. J. R. Stat. Soc. Ser. B 62, 293 - 302.

Thall, P. F., and Lachin, J. M. (1988). Analysis of Recurrent Events: Nonparametric Methods
for Random-Interval Count Data. J. Amer. Statist. Assoc. 83, 339-347.

Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal interval count
data. Biometrics 44, 197-209.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with
panel count data. Ann. Statist. 28, 779 - 814.

Zhang, Y. (1998). Estimation for Counting Processes Based on Incomplete Data. Unpublished
Ph.D. dissertation, University of Washington.

26



Zhang, Y. (2001). A semiparametric pseudo likelihood estimation method for panel count data.
Biometrika 88, to appear.

University of Washington

Statistics

Box 354322

Seattle, Washington 98195-4322

U.S.A.

e-mail: jaw@stat.washington.edu

Department of Statistics

University of Central Florida

P.O. Box 162370

Orlando, Florida 32816-2370

e-mail: zhang@pegasus.cc.ucf.edu

University of Washington

Biostatistics

Box 357232

Seattle, Washington 98195-7232

U.S.A.

e-mail: hliu@u.washington.edu

27


