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Introduction: the Kiefer-Wolfowitz theorem

* Let f be a monotone density on [0, c0).
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Introduction: the Kiefer-Wolfowitz theorem

* Let f be a monotone density on [0, o).

* Thus F(z) = [, f(y)dy is a concave distribution function on
0, 00).

° LetF,(x) =n"' ", 1{X; < z} be the empirical d.f. of
X1,...,X, Ll.d. with density f.

° Let fn be the Grenander estimator of f;

.e. fn(x) IS the slope at = of the least concave majorant F,
of the empirical d.f. IF,,
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® Theorem 1. (Kiefer-Wolfowitz, 1976). Suppose that:

Then

|Er — Fa]

sup [Fut) — Fu(t)|
t<ai(F)

— O((n"'logn)?3) almost surely.
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® Theorem 1. (Kiefer-Wolfowitz, 1976). Suppose that:
° qi(F)=inf{t: F(t) =1} < oc.
o f’ continuous on [0, ay (F)].

° Bi(F) = inf0<t<a1(F)(_f,(t)/f2(t)> > 0.

Then

|Er — Fa]

sup |Fut) — Fu()|
t<ai(F)
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® Theorem 1. (Kiefer-Wolfowitz, 1976). Suppose that:
° qi(F)=inf{t: F(t) =1} < oc.
o f’ continuous on [0, ay (F)].
° B1(F) = infocien, ) (—f'(t)/f2(t)) > 0.
° () = SuPO<t<a1(F)(_f,(t))/inf0<t<a1(F) f? (t) < oo.
Then

HFn_]FnH SUup ’Fn(t) _Fn(t)‘

t<ai(F)

— O((n"'logn)?3) almost surely.
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® Theorem 2. (Wang (2000); Kulikov and Lopuhaa (2006)). If
f(tg) > 0, f'(tg) < 0, and f’ is continuous in a neighborhood
of ¢y, then

n?/3(F,(to + n~Y3t) — B, (tg + n~/3¢))

212 (to)
- (—f’(to)

in D|— K, K| for each fixed K > 0 where W is two-sided
standard Brownian motion starting from 0, C is the least

concave majorant of W (t) — ¢2, and

a = ([f'(to)]/ (4 (t0))) />,

1/3
) {C(at) — (W(at) — a’t*)}
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* Goal in these two talks: prove results similar to theorems 1
and 2 in the case when f is decreasing and convex.
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Goal in these two talks: prove results similar to theorems 1
and 2 in the case when f is decreasing and convex.

Unfortunately, there is not yet an analogue of Marshall’s
lemma for the MLEs f and £, in this case.

Good news: Dumbgen, Rufibach, Wellner have an
analogue of Marshall’s lemma for the Least Squares

Estimators f, and F,,.

Thus prove similar results for F,,.
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* Groeneboom (1989), page 104 says: “ We finally want to
note that the process {V(a) : a € R} not only describes the
limiting global behavior of the Grenander maximum
likelihood estimator of a (smooth and strictly decreasing)
density (see Groeneboom (1985)), but also describes the
limiting behavior of certain “isotonic” estimators of
distribution functions and hazard functions. In particular, by
using the properties of this process, a simple proof of
results in Kiefer and Wolfowitz (1976) can be given, which at
the same time clarifies the connection between these
results (on the estimation of concave distribution functions)
and results on the estimation of a monotone density.”

To the best of my knowledge Piet has not yet written the
“simple proof” he promised in 1989. We encourage him to
do so soon!
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* Theme 1: simplify proof of original K-W theorem using:
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© Results from empirical process theory involving the
oscillation modulus of the uniform empirical process:
Stute (1982), Mason, Shorack, Wellner (1983); Shorack

and Wellner (1986).

* Theme 2: proof of analogue of the K-W theorem for E,
corresponding to f convex using

© Results from interpolation theory for the complete (cubic)
spline interpolation operator I4; c.f. de Boor (2001).

© QOsclillation theory of the uniform empirical process.
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2. Proof of the Kiefer-Wolfowitz (1976) theorem

®* Lemma. (Marshall) Let F\n be the least concave majorant of
F,, and let h be a concave function on [0, c0). Then

|En = Al < [[Frn = All.
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* Qutline of the Proof of the KW theorem:
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* Qutline of the Proof of the KW theorem:
° Step 1: Marshall’'s lemma.
© Step 2: Construct LL,, (convenient) satisfying

Pr(A,) = Pr(L, concave on [0,00)) >1—n"*

for all n sufficiently large.
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* Qutline of the Proof of the KW theorem:
° Step 1: Marshall’'s lemma.
© Step 2: Construct LL,, (convenient) satisfying

Pr(A,) = Pr(L, concave on [0,00)) >1—n"?

for all n sufficiently large.
o Step 3. On A,, note that by Marshall's lemma we have

F\n_Ln+Ln_Fn"

n — Ln|| + [|Lp — Fy|

[ — LnH T HLn _FnH — 2HFn _LnH
Q{HFTL_F_(Ln_Ln)“+"F_Ln"}
2D, + 2F,,.

|Ern — Fal]

11 VAN VANSN VAN
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* Qutline of the Proof of the KW theorem:
° Step 1: Marshall’'s lemma.
© Step 2: Construct LL,, (convenient) satisfying

Pr(A,) = Pr(L, concave on [0,00)) >1—n"?

for all n sufficiently large.
o Step 3. On A,, note that by Marshall's lemma we have

< |[[Fn = Lyl + [[Ln — Fy|
< [ — LnH T HLn _FnH — 2HFn _LnH
< 2{[[Fn — F — (L — Ly)[| + | F — Ln|l}

2y = Dl

°o Step 4. Fix k € N. Take L,, = IL,F,,, L, = I,F based on
the knots a; = F~'(j/k), 7 =0,1,... .k — 1, ax = a1 (F).
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* From de Boor (2001), page 36, (18):

lg — I2g|| < w(g;]al), la| = fgfgk(aj —aj-1),

w(g;0) = sup{|g(t) —g(s)| : [t —s| < b}.

A Kiefer - Wolfowitz theorem for Convex Densities — p. 12/42



* From de Boor (2001), page 36, (18):

_ < : — .
g = gl < w(gilal), o = max (a; - aj0).

w(g;0) = sup{|g(t) —g(s)| : [t —s| < b}.

* Thus with R = max{1, f(0)}/f(a1(F)),

D, |Fy, — F — I(F, — F)|| <w(F, — F;lal)
n=2w(Un(F); |al)

n~Y2w(Uy; Rpp), pn=1/ky, =< C(n"‘logn)'/3
n~Y2{(2 4+ ¢)Rpy log(1/p,)}/? a.s.

O((n"tlogn)??) as..

=

VANVA
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* For E,, use the inequality of de Boor (2001), page 31, (2): if
1g"|] < oo, then

//H

1
lg — Lyl < g!alzllg
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* For E,, use the inequality of de Boor (2001), page 31, (2): if
1g"|] < oo, then

//H

1
lg — Lyl < g!a!2llg

* Taking g = F, this yields,

1
|F = Ln|| = |F = LF| < clal*l|F”|

1

< ng(F)p%-
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* For E,, use the inequality of de Boor (2001), page 31, (2): if
1g"|] < oo, then

//H

1
lg = Tgll < Slal’llg
* Taking g = F, this yields,

1
|F = Ln|| = |F = LF| < clal*l|F”|

1

< ng(F)p?z-

* Thus we are done if we can prove “step 2” for L,, = I[F,,:
i.e. Pr(LL, concaveon [0,00)) >1—n"2.
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° Lemma. If p, — 0 and §,, — 0, then for the uniform(0, 1) d.f.
F=1I,

Pr(1Gn(pn) — Pnl > 6apn) < 2exp(—2 npad2(1 + o(1)))

where o(1) depends only on 4,.
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° Lemma. If p, — 0 and §,, — 0, then for the uniform(0, 1) d.f.
F=1I,

Pr(1Gn(pn) — Pnl > 6apn) < 2exp(—2 npad2(1 + o(1)))

where o(1) depends only on 4,.
* Proof: Hoeffding’s inequality gives

PT((Gn(pn> - pn>:|: > pn)‘> < exp(—npnh(l + )‘>)

with h(z) = z(logx — 1) + 1. Since h(1 £ \) ~ 271\ as
A\, 0, the lemma follows. ]
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° Lemma. If p, — 0 and §,, — 0, then for the uniform(0, 1) d.f.
F=1I,

Pr(1Gn(pn) — Pnl > 6apn) < 2exp(—2 npad2(1 + o(1)))

where o(1) depends only on 4,.
* Proof: Hoeffding’s inequality gives

PT((Gn(pn> - pn>:|: > pn)‘> < exp(—npnh(l + )‘>)

with h(z) = z(logx — 1) + 1. Since h(1 £ \) ~ 271\ as
A\, 0, the lemma follows. ]

° Lemma. If 51(F) > 0 and ~1(F') < oo, then for &, large

Pr(AS) < 4k, exp(=80~'5%(F)np>).

A Kiefer - Wolfowitz theorem for Convex Densities — p. 14/42



° proof: SetT,, ; =F,(a;) —Fn(aj-1),7=1,...,k = ky, and
Aja =a; —a;—1. Then

j=1
Thus
) kn—1 Toi Taisi kn—1
P(A5) < EZP{%;<A;W}E§:PBW)
j=1 g=1
kn,—1
— P(Bn,jﬂ{‘Tn,i—l/kn’ S(Sn/kn}v i:jaj+1)
j=1
kn,—1
+ > P(Bnj N{|Tni — 1/knl > 6n/kn}, i =4,5 +1)
71=1

I, + 11, .
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° If |1 — 1/kn| < n/kn,i=j,5+1,and

Aj+1a
> 1+ 30,, 1
Aja = + (1)
we have
1 O0p, 1—0,
Tn 2 — — = )
=k, ky kn
1+ 9,
Tn,j—l—l < 7 )
T, ; 1 — 6, 1 — 6, 146,
= A > 1+ 30,) > > 15
Aj j+1a = kn ( + ) - kn 1 — 5n = J+1

if 9,, < 1/3. Thus when (1) holds, the events in the sum I,
are empty and hence I,, = 0.
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* To show that (1) holds, note that

Aj_|_1CL

Aja

SO

Aj_|_1CL
AjCL

Sy - P

| |
UETNE

B

= |
[S—

if 9, = B1(F)/(6ky) (SO 30, = B1(F)/(2ky,)).
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* Then it follows from Lemma 1 that

11,

I

i
2) P(|Tn; — 1/kn| > 6n/kn)
j=1

k

4 zn: exp(—2"'np, 2 (1 + o(1)))

VAN

< akexp(-2 "t A (14 o1))

2
F
< 4kn eXP(—”pz 518(0 ) )

for n sufficiently large. Choosing
1/ky, < pp = (7Tlogn/(3Kn))Y/3 where K = 52(F)/80 makes
this bound smaller than 4n =2 for n sufficiently large. O
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3. The convex case, k = 2.

~

* Suppose that ﬁl = Hf,(f) where:
(@) Hy(z) > Yo (z) = [ Fa(s)ds,
(b) [°(H, — Y,)dHY = 0.
Here we start with a local limit theorem which follows from
Groeneboom, Jongbloed, and Wellner (2001).
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3. The convex case, k = 2.

° Suppose that fn = N( ) Where
(a) Hn( N) = n N: fO
(b) [°(H, — Y,)dHY = 0.

Here we start with a local limit theorem which follows from

Groeneboom, Jongbloed, and Wellner (2001).

® Theorem. If f(t9) > 0, f"(tg) > 0 and f and f” are
continuous in a neighborhood of ¢y, then

n3/5(Fy(to + n1/5t) — Fi(to + n~1/51))
n/5(H, (to +n~1/5t) — n(to +n~1/5¢))

(cl(f,to)( HV (at) - <at>>
Cg(f, to) (HQ (at) Yg(at)

where
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* the processes Yy and H, are described by

t
Yao(t) = / W(s)ds + t*,

0
Hs(t) > Yo(t) forall t € R,

/ (Hy — Yo)dHY =0,

— 00
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* the processes Yy and H, are described by

t
Yao(t) = / W(s)ds + t*,

0
Hs(t) > Yo(t) forall t € R,

/ (Hy — Yo)dHY =0,

— 00

* the constants c;(f,to) are given by

(o )3\ (o S0\
Cl(f7 tO) - (24f”(t0)> ) CQ(fv tO) - (24 f”(tO)3> ’
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* the processes Yy and H, are described by

t
Yao(t) = / W(s)ds + t*,

0
Hs(t) > Yo(t) forall t € R,

/ (Hy — Yo)dHY =0,

— 00

* the constants c;(f,to) are given by

(o )3\ (o fE)ANYE
Cl(f7 tO) - (24f”(t0)> ) CQ(fv tO) - (24 f”(tO)3> ’

* and the constant a is defined by

- (i)
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* Global theory hypotheses:
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* Global theory hypotheses:

° R1. F has continuous 3rd derivative F'®) = #(t) > 0,
t € |0, 7], and

> 0.

Bo(F,7) = inf )

o<t<t f3(t)
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Ba(F7) = o<t<t f3(t) -0
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°© R4. R=max{l, f(0)}/f(1) < 0.

A Kiefer - Wolfowitz theorem for Convex Densities — p. 21/42



* Global theory hypotheses:

° R1. F has continuous 3rd derivative F'®) = #(t) > 0,
t € |0, 7], and

Bo(F,7) = inf )

0.
o<t<t f3(t) -

° R2. i (F,7) = SUP0<t<T\(_f/(t)/f2(t)) < 0.

° R3. 12o(F,7) = supgeie, f"(t)/ infoci<r f7(t) < oo
°© R4. R=max{l, f(0)}/f(1) < 0.

®* Theorem. Suppose that R1 - R4 hold. Then

~ ~ logn 3/5
| F, — Fp|| = sup |Fn(t) — Fn(t)| = O ( ) a.s.

0<t<T n
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® Corollary. If R1-R4 hold, then

Vn(E, — F) = n(F, — F) + O(n"Y%logn)?>°) a.s.

uniformly on [0, 7].
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® Corollary. If R1-R4 hold, then

Vn(E, — F) = n(F, — F) + O(n"Y%logn)?>°) a.s.

uniformly on [0, 7].
* Qutline of the Proof of the KW theorem, convex case:
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® Corollary. If R1-R4 hold, then

Vn(E, — F) = v/n(F, — F) + O(n Y (logn)?°) a.s.

uniformly on [0, 7].
* Qutline of the Proof of the KW theorem, convex case:

° Step 1: Analogue of Marshall’'s lemma for the least
squares estimator: for any A with convex second
derivative,

|HS) — Rl < 2|[F, — A
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® Corollary. If R1-R4 hold, then

Vn(E, — F) = v/n(F, — F) + O(n Y (logn)?°) a.s.

uniformly on [0, 7].
* Qutline of the Proof of the KW theorem, convex case:

° Step 1: Analogue of Marshall’'s lemma for the least
squares estimator: for any A with convex second
derivative,

|HS) — Rl < 2|[F, — A

© Step 2: Construct H,, ;. (convenient), show that

Pr(A,) = PF(IHI(2,)~€ is convex on [0,00)) > 1 —n 2

n?n

for all n sufficiently large if
k =k, = (CoBa(F,7)n/logn)'/® for some Cy.
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* Proof outline, continued:
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* Proof outline, continued:

° Step 3. On A,, note that by the analogue of Marshall’s
lemma we have

|Fn —Fall < IHY -HY)L +H), —Fal
< JHD —HE |+ B, —Fa
< 2|F, —HY) ||+ B || - Fal
= 3|F, —H, |
< 3{|F, - F—H}, —H)I+IF-HY|}

S =S,
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* Proof outline, continued:

° Step 3. On A,, note that by the analogue of Marshall’s
lemma we have

|Fn —Fall < IHY -HY)L +H), —Fal
< JHD —HE |+ B, —Fa
< 2|F, —HY) ||+ B || - Fal
= 3|F, —H, |
< 3{|F, - F—H}, —H)I+IF-HY|}
= 3D, + 3E,.

© Step 4. Fix k € N. Take H,, , = I4Y,, H, = 14Y where
I4g 1s the “complete spline interpolant” of ¢ based on the
knots a; = F~((j/k)F (7)), 7 =0,1,..., k. Thus

H) = I1Y,)D, Hy = (1Y),
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* |nterpolation theory bounds:
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* |nterpolation theory bounds:
° If ¢ has bounded 4th derivative ¢¥, then

|
lgV) — (I19) V|| < 2—4!a!3Hg(4)H-

A Kiefer - Wolfowitz theorem for Convex Densities — p. 24/42



* |nterpolation theory bounds:
° If ¢ has bounded 4th derivative ¢¥, then

1
l9' = Lag) VIl < o5 laP gl
o Applying this to Y'(t) = [ F(s)ds yields
_ (1) (1) 1 35
E, = Y —H. ' || < —l|a’[[Y™]
& 24
1

< ﬂyg(F, T)pi’b — O((’n_1 log n)3/5).
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* |nterpolation theory bounds:
° If ¢ has bounded 4th derivative ¢¥, then

|
l9' = Lag) VIl < o5 laP gl

o Applying this to Y'(t) = [ F(s)ds yields

n, 1
En = YO —H| < glal’ |y
1
< ﬂyg(F, )p2 = O((n"'log n)3/5).

* To handle the random term D,,, use de Boor’s (2001)
bounds together with empirical process oscillation theory:
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* The random term D,, is bounded as follows:

D, = |Fn—F—(H), - HD)
= |[(Yn =) — (I4(Yn — V)|
< (19/4)dist((Y, — Y)<1>,$3)
< (19/4)dist((Y,, — V)1, $5)
< (19/91(Yn — V)V — [I(Y, — V)V
S (19/4)”Fn — /i = IQ(Fn o F)H
< (19/4)w(F, — F;la|) < (19/4)n"Y2w(U,; Rp»)
<

O(n 12\/pnlog(1/pn)) a.s.
O((n™'logn)*/?)

if we choose p,, = (Mn~!logn)/® for some M; cf. de Boor
(2001), pages 56 and 36.
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* |t remains to prove that step 2 holds: i.e. show that

2) " is convex on [0,00)) > 1 —n~2

n,kKn

for n sufficiently large.
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* |t remains to prove that step 2 holds: i.e. show that

Pr(A,) = PF(H@,){ is convex on [0,00)) > 1 —n 2

n,kKn

for n sufficiently large.
° Let

Sn,k = Hn,kn — LlYn = C’Yna
Sn,k = Hkn = ]4Y = CY.
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* |t remains to prove that step 2 holds: i.e. show that

Pr(A,) = PF(H@,)% is convex on [0,00)) > 1 —n 2

n,

for n sufficiently large.
° Let

Sn,k = Hn,kn — LlYn = CYTL)
Sn,k = Hkn = I4Y = CY.

* The slope of Sff,){ on [a;_1,a;| is

( (D) (1) )
12 S, 1(a;—1) + S, 1(a;)
B; = B;(CS) = (A.a)3< ’ S Aja— A;Y, »
/ \ y,
_ 2
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* The slope of the Hermite interpolant on |a;_1, a;] IS

~ 12 K, (a;_ I, (a;
Bj = BJ(Herm) — (Aja>3 { (CL] 1)2‘|_ (CLJ)AJ_Q B Aan}
12

]
=y
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* The slope of the Hermite interpolant on |a;_1, a;] IS

- 12 Fp(aj—1) 4+ Fpn(aj)
B, = B;(H — 4 2 Aa— A;Y,
J ]( erm) (Aja)3 { 9 ](l J
12
= Bap

* Corresponding to the random 7;, ; and Rz, ; the
corresponding population values are given by

b = (C[Y])(l)(aj—l);r (€] (ay) Aja— AjY,

(1) (g v (a.
Tn’j — Y (a]_1>2_|_ (a])Aja o AJY
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e \We write

Tj—Tj = Tj—tj—th—’l“j
Rj —7rj + (T —t; — (Rj —7j)) + 15 — 7
Rj—Tj+Aj—|-bj.
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e \We write

Tj—Tj — Tj—tj+tj—rj
Rj —7rj + (T —t; — (Rj —7j)) + 15 — 7
= Rj—Tj—I—Aj—l—bj.

°* For0<s<t< oo, set
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e \We write

Tj—Tj — Tj—tj+tj—Tj
Rj —7rj + (T —t; — (Rj —7j)) + 15 — 7
= iy — Pp ap Ay = s

For0 < s <t < oo, Set

* Then:

Phy, — / sl () = %(F(t) L F(s))(t — s) — / F(u)du,

IP)nhs,t

1 t
/hs,t(:c)dlﬁ‘n(:c) — §(Fn(t) + F,.(s))(t —s) — / Fp(u)du,
Tn,j = Pha/j_l,a/j7 Rn,j — Pnhaj_l,aj-
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® Lemma.

Pr(’Rn,j - Tn,j’ > 5np7?;) = Pr(|(P, — P)hS,t‘ > 5np§z)
< 2exp(—3n62p8 12(a) (1 + o(1))
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® Lemma.

PT(’(Pn - P>h8,t‘ > 5np§z)
< 2exp(—3nd2phf2(a})(1 + o(1))).

Pr(|Rn; — rnj| > 6npj)

* Proof. Bernstein's inequality. L]
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® Lemma.

PT(’Rn,j - Tn,j’ > 5np73z) = Pr(|(P, — P>h8,t‘ > 5np§z)
< 2exp(—3n62p8 12(a) (1 + o(1))

* Proof. Bernstein’s inequality. L]
°® Lemma. With A; =T, ; —tp; — (Rnj — Tnj)

Pr(|Aj| > npy) < 4exp(=100"ndnp,, f*(af)(1 + o(1))).
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Lemma.

PT(’Rn,j - rn,j’ > 5np731) = Pr(|(P, — P)hS,t‘ > 5np§z)
< 2exp(—3n62p8 12(a) (1 + o(1))

Proof. Bernstein’s inequality. []
Lemma. With Aj = Tnyj — tnyj — (Rnyj — Tn’j),

Pr(|Aj| > npy) < 4exp(=100"ndnp,, f*(af)(1 + o(1))).

Proof. Interpolation theory bounds and Bernstein’s
Inequality. []
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Lemma.

PT(’Rn,j - rn,j’ > 5np731> = Pr(|(P, — P)hS,t‘ > 5np§z>
< 2exp(~3n82 f2(a})(1 + o(1))).

Proof. Bernstein’s inequality. []
Lemma. With A, =T, ; —t,; — (Rnj — Tnj),
Pr(|A;] > dnpp) < 4exp(—100~"ndypj, f*(a}) (1 + o(1))).

Proof. Interpolation theory bounds and Bernstein’s
Inequality. []

Lemma. maxj< <k |tnj — Tni|/(Aja)* = o(1).
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® Lemma.

Pr(|Rn,j — Tnj| > 5np731> = Pr(|[(Pn — P)hst| > 5np§z>
< 2exp(—3nb;p, f*(a})(1+ o(1))).

* Proof. Bernstein’s inequality. L]
°® Lemma. With A; =T, ; —tp; — (Rnj — Tnj)

Pr(|Aj| > npy) < 4exp(=100"ndnp,, f*(af)(1 + o(1))).

* Proof. Interpolation theory bounds and Bernstein’s
Inequality. []

° Lemma. maxi<j<k |tn; — Tnjl/(Aja)* = o(1).

® Lemma.

Pr(Tnj — Tl > 36,5) < 6 exp(—100~ nd2pd (%) (1 + o(1))).
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® Lemma.

Pr(|Rn,j — Tnj| > 5np731> = Pr(|[(Pn — P)hst| > 5np§z>
< 2exp(—3nb;p, f*(a})(1+ o(1))).

* Proof. Bernstein’s inequality. L]
°® Lemma. With A; =T, ; —tp; — (Rnj — Tnj)

Pr(|Aj| > npy) < 4exp(=100"ndnp,, f*(af)(1 + o(1))).

* Proof. Interpolation theory bounds and Bernstein’s
Inequality. []

° Lemma. maxi<j<k |tn; — Tnjl/(Aja)* = o(1).

® Lemma.
Pr(|Tnj — gl > 30np3) < 6exp(—100"nd2p3 f2(a?)(1 + o(1))).

* proof. Combine the previous 3 lemmas L] |
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* Lemma. (Final exponential bound for step 2.)
Pp(A5,) < 12k, exp(—K 35 (F, T)np)),)

where K1 = 4246732800 < 4.3 x 10°.
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4. Some Illustrative plots
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