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* 1987: Diaconis and Freedman paper entitled:

“A dozen de Finetti-style theorems
In search of a theory”

* Since then Diaconis has written at least a half dozen further
papers on de Finetti theorems.

* |s there a theory now??
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What kind of theory?

* Local (pointwise), or
* Global (with some global measure of deviations):

° Hellinger distance (densities or intensities)
© L4 or Ly—distances
© supremum metrics

* Lower bounds, or

* Upper bounds.

* Estimation, or

* Testing (within a shape constrained family)
* Confidence sets?

* Assuming shape constraint, or

* Testing to see if a shape constraint is true?
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Outline, Lecture 2
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Outline, Lecture 2

* |llustration of the pointwise limit theory pattern:
convex densities

* |llustration of the pointwise limit theory pattern:
log-concave densities

* |llustration of the pointwise limit theory pattern:
convex hazard functions

e A functional of interest:
estimation of the mode
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Outline, Lecture 3
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Outline, Lecture 3

* |llustration of the pointwise limit theory pattern: competing
risks with current status data

* Partial illustration of the pointwise limit theory pattern:
k—monotone densities

* Partial illustration of the pointwise limit theory pattern:
distribution functions and monotone densities on R?

* Problems and directions ...
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* Step0. X ~ P, k € K, a set of shape-restricted functions
* Step 1. Optimization criterion determining estimator:

° Log-likelihood

© Least squares contrast function

* sStep 2. Fenchel conditions characterizing the solution of the
optimization problem

* Step 3. Localization rate or tightness result
empirical process theory: Kim-Pollard type lemmas

* Step 4. Localization of the Fenchel conditions

* Step 5. Weak convergence of the (localized) driving process
to a limit (Gaussian) driving process
empirical process theory: bracketing CLT with functions
dependent on n.

* Step 6. Preservation of (localized) Fenchel relations in the

HS
T,
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* Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

Global analogues:

* Global rate result via Birgé & Massart, Wong & Shen global
rate theorem (van der Vaart and Wellner (1996), Theorems
3.2.5 0r 3.4.4).
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* Step 7. Unique (Gaussian world) estimator resulting from
localized limit processes and limit Fenchel relations

* Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory provided by Groeneboom’s
lemma (Donoho & Liu, Le Cam).

Global analogues:

* Global rate result via Birgé & Massart, Wong & Shen global
rate theorem (van der Vaart and Wellner (1996), Theorems
3.2.5 0r 3.4.4).

* Global minimax lower bounds ( Assouad’s lemma or Fano’s
lemma).
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1.2 lllustration of the pattern: the Grenander estimator

Step 0. X ~ f on [0,00) with f X\ 0.
Step 1. Optimization criterion: log-likelihood or least squares

Fo = argmax ;. {Zlog f(XZ-)} = argmin vy, ( f)

=1l

n=s| " Py - / " f (@) dF ()

Step 2. Characterization: the Fenchel conditions

where

F,(z) < F,(z /fn )dt for all x € [0,00), and

F,(z) = F,(z) ifand onlyif f,(z—) > fn(z+).
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The second of these is equivalent to

| (Fale) = Fula))dfi(a) = 0.
0
The geometric interpretation of these two conditions is

]?( ) the left-derivative of the slope at = of the
95)) = _ N
" least concave majorant F;,, of F,
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Special feature:
Grenander and other monotone function problems.

Switching

Let

sn(a) = argmax {F,(s) — as}, a > 0.

Then for each fixed t € (0,00) and a > 0

Warning: Not available (yet?) for other models.
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Steps 3-8 in Case 1. When f is the Uniform density on [0, 1],
Groeneboom and Pyke (1983) show that for each zy € (0, 1)

Vn(fa(zo) — f(x0)) —a S(o)

where S Is the left derivative of the least concave majorant C of a
standard Brownian bridge process U on [0, 1]. See handout.

* “Driving process” is U.

* Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C\Y) = S:

C(t) > U(t) forallt € (0,1),
C(t) = U(¢) ifand only if CV(¢—) > CM(¢+).

* No localization in this case!
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Steps 3-7 in Case 2. When f satisfies f/'(xg) < 0, f(x¢) > 0 and f’
IS continuous in a neighborhood of x(, then Prakasa-Rao (1970)
showed that

n'3(fa(@o) = f(0)) —a (|f (o) f(20)]/2)"/*S(0)

where S(0) is the slope at 0 of the least concave majorant of

W (h) — h? for a two-sided Brownian motion process W'.
Proof: See van der Vaart and Wellner (1996), pages 296 - 297.

° “Driving process” IS
= /f(zo)W(h) + f'(x9)h? = aW (h) — bh?.
* Process related to estimator maintaining Fenchel relations
in the limit is C and its slope process C) = S:

C(h) > Z(h) forall h € (—o0, 00),
C(h) = Z(h) ifand only if CM) (h—) > C(h+).

e Localization rate is n—1/3 .
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Steps 3-8in Case 3. If fUW)(z9) =0,j=1,...,p—1, f®(xq) #0,
then from the methods of Wright (1981) and Leurgans (1982)
that

P/ P (fo (o) = £(w0)) —a (f(w0)” )Y 8,(0);

with A = f®)(z0)/(p + 1)!. Here S,(0) is the slope at 0 of the
least concave majorant of W (h) — |h[PT.

* “Driving process” is Z(h) = \/f(xo)W (h) — Alh[PT.
* Process related to estimator maintaining Fenchel relations
in the limit is C,, and its slope process Cg) =
Cy(h) > Zy(h) forall h € (—o0,0),
Cy(h) = Zy(h) if and only if C{Y(h—) > CV (h+).

 Localization rate is n—1/(2p+1)
|
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Steps 3-8 in Case 4. If zg € (a, b) with f(z) constant on (a,b), then
Carolan and Dykstra (1999) showed that

ilFatan) = feo) = Lo T=pz +5 (P2 ) |

a

where p = f(xo)(b —a) = F(b) — F(a), Z ~ N(0,1), Sis the
process of slopes of a Brownian bridge process U as in case 1,
and Z and S are independent.

This Is much as in case 1, but with a twist or two:; see the
handout.

* “Driving process” is Z(h) = U(F(a+ h)) — U(F(a)).
* Process related to estimator maintaining Fenchel relations
In the limit is C;,. and its slope process clV) = = Sioc.

loc —

Cioc(h) > Z(h) forall h € [0,b — al,
Cioe(h) = Z(h) if and only if C\V)(h—) > C'V) (h+).

loc

o | An~raliZ=atinn Anhs +A thoa intarv/al [~ L]
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Steps 3-8 in Case 5. If f Is discontinuous at x(, then Anevski and
Hossjer (2002) show that

P(Fu(wo)—f(w0) < @) — P(argmax{No(h)—pyya/2a/2(h)} < 0)

where Ny is a two-sided, centered Poisson process with rates
f(xo+) and f(zg—) to the right and left of 0 respectively,

Bh, h>0
,OB,C(h) = { } 9

—Ch, h<O.

f(xo) = (f(xo+) + f(xo—))/2,d = f(xo—) — f(xo+). SOomewhat
more naturally,

fa(x0) — f(z0) —a R(0)

where R(h) is the process of slopes (left derivatives) of the least
concave majorant of the process

Mi(h) = No(h) — (d/2)[h].

Some Theory for Estimat

ion —p. 26/27



* “Driving process” is M(h) = Ng(h) — (d/2)|h|.

* Process related to estimator maintaining Fenchel relations
in the limit is K and its slope process K(1) = R:

K(h) > M(h) forall h € R,
K(h) = M(h) if and only if KV (h—) > KM (h+).

e |Localization rate is n 1!
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