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Outline, Lecture 2
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convex hazards

* |llustration of the pointwise limit theory pattern:
log-concave densities

e A functional of interest:
estimation of the mode
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Tentative Outline, Lecture 3

* |llustration of the pointwise limit theory pattern: competing
risks with current status data
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* Step0. X ~ P, k € K, a set of shape-restricted functions
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® Step 0. ~ P., k € IC, a set of shape-restricted functions
X~P K t of shap tricted funct

* Step 1. Optimization criterion determining estimator:
° Log-likelihood
© Least squares contrast function

* sStep 2. Fenchel conditions characterizing the solution of the
optimization problem

* Step 3. Localization rate or tightness result
empirical process theory: Kim-Pollard type lemmas

* Step 4. Localization of the Fenchel conditions

* Step 5. Weak convergence of the (localized) driving process
to a limit (Gaussian) driving process
empirical process theory: bracketing CLT with functions
dependent on n.
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* Step 6. Preservation of (localized) Fenchel relations in the
limit.
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* Step 6. Preservation of (localized) Fenchel relations in the
limit.

* Step 7. Unique (Gaussian world) estimator resulting from
limit Fenchel relations

* Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory.
Use Groeneboom’s lower bound lemma (relative of results
of Donoho & Liu, Le Cam).
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2.1 lllustration: convex decreasing densities

Step 0. X ~ f on [0, 00) with f, 0 and convex (K)
Step 1. Optimization criteron: log-likelinood or least squares

fr = argmax . {Zlog f(XZ-)}

=1l

~

fn = argmin .1 (f)

where

Un(f) = %/OOO fQ(x)dx — /OOO f(x)dF,(x).
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Step 2. Characterization: the Fenchel conditions for f},,:
let

Then f;L € K Is the LSE if and only if

H,(z) > Y, (z) for all z > 0,
Y, («))dHY (x) = 0,

\

» has convex second derivative fn
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Step 3. Localization rate / tightness

Proposition. Let xy be an interior point of the support of f. For
0 < x <y, define U, (x,y) by

Then there exist 6 > 0 and ¢y > 0 so that, for each ¢ > 0 and z
with |z — CC()’ < 0,

Un(z,y)| < ely —z)* + Op(n_4/5), 0<y—x9<cp.

Proposition. Let zp and f satisfy f”(xzg) > 0 and f” continuous at
xg. Let &, — xo, and let

7 = max{t < &, : ﬂ3)discontinuous att} 7 =min{t > ¢, : ﬁg?’)disco

n

Then 7+ — 7= = O, (n"1/%). ,
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Proposition. Suppose f'(zg) < 0, f"(x9) > 0 and f” continuous in
a nbhd. of xy5. Then

sup |f(zo +n~2t) — fo(xo) — n~Y0tf! (z)| = Op(n2/%),
[t <M
and

sup |f'(wo +n~"5t) — f'(o)| = Op(n~ /7).
tI<M

Step 4. Localize the Fenchel relations: define

To+n—1/5¢
Yioo(s) = / {Fu(0) — Fu(z0)

- L:(f(:co) + (u - fco)f(xo)du} 4o
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N ro+n=1/5t v

floe(r) = / / () = ) = (o — s50) Y )l
+ A t+ B,

Then

H*“(t) > Yio(t)
with equality if and only if 25 + n~/%t is a jump point of H.>.
Note that
(HEHYD () = n5(fa(zo +n" %) — flzo) — n/5tf! (x0)),
(HB () = nB(f (w0 + n~V0t) — f(z0)).
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Step 5. Weak convergence of the (localized) driving process Y,
to a limit (Gaussian) driving process

Yie(t)

To+n—1/5¢
2 g [ (U (Fo(v) — Un(F (o)) v + o " (ao)t* + o(1)

= +/f(x0) /O t W (s)ds + 2i4 " (o)t

by KMT or theorems 2.11.22 or 2.11.23, VdV & W (1996)
= a/t W(s)ds + ot*
= Y(L?) = Yo,0(t)

where U, (t) = v/n(G,(t) — t) is the empirical process of
1., & 1id. Uniform(0,1), a = /f(xo, o = f(x0)/24.
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Step 6. Preservation of (localized) Fenchel relations in the limit.

~ {(HZOC loc( )7 }A’ITZLOC,(2)7 Hloc )}n>1 ic tlght
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Step 6. Preservation of (localized) Fenchel relations in the limit.
¢ {(HZOC ZOC (1 ), ﬁéoc,@), [A‘quzoc’(s))}nzl IS tight.
o Yloc =y

* Fenchel relations satisfied:
o H'9¢(x) > Ylo¢(z) for all =

° [ (HIe(w) — Yieo(w))dHy P (@) = 0.
* Any limit process H for a subsequence {H'9°} must satisfy
° H(z) > Y(z) for all z.
o [% (H(z) — Y(z))dH®) (z) = 0.
o H® is convex.
* |s there a unique such process H = H, ,? If so, done!
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Step 7. Unique (Gaussian world) estimator resulting from limit
Fenchel relations! (Proof: suppose there are two such
processes, H; and Hy. Then GJW (2001) showed

H1 = H2 — H)

Upshot: after rescaling to universal (a = 1, o = 1) limit:

Theorem. If f € C, f(xg) > 0, f"(x¢) > 0, and f” continuous in a
neighborhood of z(, then

( n?/5(Fu(x0) — f(x0)) ) N ( er(FYH®(0) )
n'/5(fl(z0) — f'(z0)) H

(f) = (f?(aco;if"(xo))”ﬂ o) = (f(xo>f"<xo>3)”?
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Step 8 (or 0"). Cross-check/compare limiting result with local
pointwise lower bound theory.

Use Groeneboom’s lower bound lemma (relative of results of
Donoho & Liu, Le Cam).

Define f. by renormalizing (or linearly correcting) 7. defined by

) [ fzo — ecd) + (. — zo + ec) f'(xo — €ce), x € (zo — €ce, To — €)
fe(x) =< f(xo+e)+ (x —x20—¢€)f (20 + €), r € (xg — €,20 + €)
- f(2), otherwise

where ¢, IS chosen so that fﬁ IS continuous at g — €. Let P, be
defined by f. = f,,,-1/s Where

2f”(:C0)2
5f(wo)

vV
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Proposition. If f(zg) > 0, f"(x9) > 0, and f” is continuous in a
neighborhood of z),

n2/5 i%lf max {En,p,n T — fe, (x0)], En,P‘Tn — f(zo)l}

> i (%)1/5'01(&

nl/® iqr}f max{E, p, | Ty — fe.(x0)|, En,p|Tn — f(z0)|}

o942\ 1/5
YL

€
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

* the “invelope process” H, and the driving process Y
* the derivative process H!), and the process Y}
* the concave (limit world estimator of 12¢) process H (%)

* the piecewise (limit world estimator of 24t) process H ()
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