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Outline, Lecture 2

• Illustration of the pointwise limit theory pattern:
convex densities

• Illustration of the pointwise limit theory pattern:
convex hazards

• Illustration of the pointwise limit theory pattern:
log-concave densities

• A functional of interest:
estimation of the mode
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Tentative Outline, Lecture 3

• Illustration of the pointwise limit theory pattern: competing
risks with current status data
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• Step 0. X ∼ Pκ, κ ∈ K, a set of shape-restricted functions
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1.1 Reminder: outline for pointwise limit theory

• Step 0. X ∼ Pκ, κ ∈ K, a set of shape-restricted functions
• Step 1. Optimization criterion determining estimator:

◦ Log-likelihood
◦ Least squares contrast function

• Step 2. Fenchel conditions characterizing the solution of the
optimization problem

• Step 3. Localization rate or tightness result
empirical process theory: Kim-Pollard type lemmas

• Step 4. Localization of the Fenchel conditions
• Step 5. Weak convergence of the (localized) driving process

to a limit (Gaussian) driving process
empirical process theory: bracketing CLT with functions
dependent on n.
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• Step 6. Preservation of (localized) Fenchel relations in the
limit.
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• Step 6. Preservation of (localized) Fenchel relations in the
limit.

• Step 7. Unique (Gaussian world) estimator resulting from
limit Fenchel relations

• Step 8 Cross-check/compare limiting result with local
pointwise lower bound theory.
Use Groeneboom’s lower bound lemma (relative of results
of Donoho & Liu, Le Cam).
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2.1 Illustration: convex decreasing densities

Step 0. X ∼ f on [0,∞) with f ↘ 0 and convex (K)

Step 1. Optimization criteron: log-likelihood or least squares

f̂n = argmaxf∈K

{
n∑

i=1

log f(Xi)

}

f̃n = argminf∈Kψn(f)

where

ψn(f) ≡ 1
2

∫ ∞

0
f2(x)dx−

∫ ∞

0
f(x)dFn(x).
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Step 2. Characterization: the Fenchel conditions for f̃n:
let

H̃n(x) ≡
∫ x

0

∫ y

0
f̃n(t)dtdy for all x ∈ [0,∞), and

Yn(x) =
∫ x

0
Fn(y)dy

Then f̃n ∈ K is the LSE if and only if

H̃n(x) ≥ Yn(x) for all x > 0,∫ ∞

0
(H̃n(x) − Yn(x))dH̃(3)

n (x) = 0,

H̃n has convex second derivative f̃n.
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Step 3. Localization rate / tightness

Proposition. Let x0 be an interior point of the support of f . For
0 < x ≤ y, define Un(x, y) by

Un(x, y) ≡
∫

[x,y]
{z − (x+ y)/2}d(Fn − F )(y).

Then there exist δ > 0 and c0 > 0 so that, for each ε > 0 and x
with |x− x0| < δ,

|Un(x, y)| ≤ ε(y − x)4 +Op(n−4/5), 0 ≤ y − x0 ≤ c0.

Proposition. Let x0 and f satisfy f ′′(x0) > 0 and f ′′ continuous at
x0. Let ξn → x0, and let

τ−n ≡ max{t ≤ ξn : f̃ (3)
n discontinuous at t} τ+

n ≡ min{t > ξn : f̃ (3)
n disco

Then τ+
n − τ−n = Op(n−1/5).
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Proposition. Suppose f ′(x0) < 0, f ′′(x0) > 0 and f ′′ continuous in
a nbhd. of x0. Then

sup
|t|≤M

|f̃(x0 + n−1/5t) − f0(x0) − n−1/5tf ′(x0)| = Op(n−2/5),

and

sup
|t|≤M

|f̃ ′(x0 + n−1/5t) − f ′(x0)| = Op(n−1/5).

Step 4. Localize the Fenchel relations: define

Y
loc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

{Fn(v) − Fn(x0)

+
∫ v

x0

(f(x0) + (u− x0)f(x0)du
}
dv,
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H̃ loc
n (t) ≡ n4/5

∫ x0+n−1/5t

x0

∫ v

x0

{f̃n(u) − f(x0) − (u− x0)f ′(x0)}dudv

+ Ãnt+ B̃n.

Then

H̃ loc
n (t) ≥ Y

loc
n (t)

with equality if and only if x0 + n−1/5t is a jump point of H̃(3)
n .

Note that

(H̃ loc
n )(2)(t) = n2/5(f̃n(x0 + n−1/5t) − f(x0) − n−1/5tf ′(x0)),

(H̃ loc
n )(3)(t) = n1/5(f̃ ′n(x0 + n−1/5t) − f ′(x0)).
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Step 5. Weak convergence of the (localized) driving process Yn

to a limit (Gaussian) driving process

Y
loc
n (t)

d= n3/10

∫ x0+n−1/5t

x0

{Un(F0(v)) − Un(F (x0))}dv +
1
24
f ′′(x0)t4 + o(1)

⇒
√
f(x0)

∫ t

0
W (s)ds+

1
24
f ′′(x0)t4

by KMT or theorems 2.11.22 or 2.11.23, VdV & W (1996)

= a

∫ t

0
W (s)ds+ σt4

≡ Y(t) ≡ Ya,σ(t)

where Un(t) ≡ √
n(Gn(t) − t) is the empirical process of

ξ1, . . . , ξn i.i.d. Uniform(0, 1), a ≡√f(x0, σ ≡ f ′′(x0)/24.
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Step 6. Preservation of (localized) Fenchel relations in the limit.

• {(H̃ loc
n , H̃

loc,(1)
n , H̃

loc,(2)
n , H̃

loc,(3)
n )}n≥1 is tight.
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◦ H(x) ≥ Y(x) for all x.
◦ ∫∞

−∞(H(x) − Y(x))dH(3)(x) = 0.

◦ H(2) is convex.
• Is there a unique such process H = Ha,σ? If so, done!
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Step 7. Unique (Gaussian world) estimator resulting from limit
Fenchel relations! (Proof: suppose there are two such
processes, H1 and H2. Then GJW (2001) showed
H1 = H2 ≡ H.)

Upshot: after rescaling to universal (a = 1, σ = 1) limit:

Theorem. If f ∈ C, f(x0) > 0, f ′′(x0) > 0, and f ′′ continuous in a
neighborhood of x0, then(

n2/5(f̃n(x0) − f(x0))
n1/5(f̃ ′n(x0) − f ′(x0))

)
→d

(
c1(f)H(2)(0)
c2(f)H(3)(0)

)

where

c1(f) ≡
(
f2(x0)f ′′(x0)

24

)1/5

, c2(f) ≡
(
f(x0)f ′′(x0)3

243

)1/5

.
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Step 8 (or 0′). Cross-check/compare limiting result with local
pointwise lower bound theory.
Use Groeneboom’s lower bound lemma (relative of results of
Donoho & Liu, Le Cam).

Define fε by renormalizing (or linearly correcting) f̃ε defined by

f̃ε(x) =


f(x0 − εcε) + (x− x0 + εcε)f ′(x0 − εcε), x ∈ (x0 − εcε, x0 − ε)
f(x0 + ε) + (x− x0 − ε)f ′(x0 + ε), x ∈ (x0 − ε, x0 + ε)
f(x), otherwise

where cε is chosen so that f̃ε is continuous at x0 − ε. Let Pn be
defined by fεn

≡ fνn−1/5 where

ν ≡ 2f ′′(x0)2

5f(x0)
.
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Proposition. If f(x0) > 0, f ′′(x0) > 0, and f ′′ is continuous in a
neighborhood of x0,

n2/5 inf
Tn

max {En,Pn
|Tn − fεn

(x0)|, En,P |Tn − f(x0)|}

≥ 1
4

(
3

e
√

2

)1/5

· c1(f),

n1/5 inf
Tn

max {En,Pn
|Tn − fεn

(x0)|, En,P |Tn − f(x0)|}

≥ 1
4

(
6 · 242

e

)1/5

· c2(f)
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y
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The following pages show: (from Groeneboom, Jongbloed, and
Wellner (2001))

• the “invelope process” H, and the driving process Y

• the derivative process H(1), and the process Y (1)

• the concave (limit world estimator of 12t2) process H(2)

• the piecewise (limit world estimator of 24t) process H(3)
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