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Outline, Lecture 3

1. Illustration of the pointwise limit theory pattern:
convex hazards

2. Illustration of the pointwise limit theory pattern:
log-concave densities

3. A functional of interest:
estimation of the mode

4. Illustration of the pointwise limit theory pattern:
competing risks with current status data

5. Partial illustration of the pointwise limit theory pattern:
k−monotone densities

6. Partial illustration of the pointwise limit theory pattern:
distribution functions and monotone densities on R

2

7. Summary: problems and directions
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1. Convex hazards

Nonparametric methods for hazard rate functions.

• Grenander (’56): decreasing case
• Bray, Crawford and Proschan (1967): MLE for U-shaped

hazard functions
• Prakasa Rao (1970); Groeneboom (1985); Banerjee (2007):

asymptotics
• step-functions

• n−1/3 local convergence rates

Here we assume that

h(t) ≡ f(t)
1 − F (t)

is convex.

Let H(t) =
∫ t
0 h(s)ds.
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Then

Ln(h) =
n∏

i=1

{
h(Xi) exp [−H(Xi)]

}
,

and hence the MLE is found by

ĥn = argminh≥0,convex

{∫ ∞

0
(H − log h)dFn

}
.
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Define Empirical CDF and Hazard:

Fn(t) =
1
n

n∑
i=1

1[0,t](Xi), Hn(t) =
∫ t
0

1
1−Fn(s−)dFn(s).

Next, fix a T > 0. Then the LSE h̃n is defined on [0, T ] as

h̃n = argminh≥0,convex

{
1
2

∫ T

0
h2(t)dt −

∫ T

0
h(t)dHn(t)

}

Lecture 3: Some Theory for Estimation – p. 6/25



Let H̃n(t) =
∫ t
0 h̃n(s)ds, and H̃n(t) =

∫ t
0 H̃n(s)ds.

Also, let Yn(t) =
∫ t
0 Hn(s)ds.

The LSE must satisfy:

• H̃(T ) = Hn(T ) & H̃n(T ) = Yn(T )

• H̃n(t) ≥ Yn(t) for all t ∈ [0, T ]

• ∫ T
0 (H̃n − Yn)(t)d

[
h̃n

]′
(t) = 0.
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Theorem. Suppose that h ∈ K is the true hazard function.
Suppose that h(x0) > 0, h′′(x0) > 0, and h′′ is continuous in a

neighborhood of x0. Then for hn = h̃n or hn = ĥn(
n2/5{hn(x0) − h(x0)}
n1/5{h′

n(x0) − h′(x0)}

)
→d

(
c1 I(2)(0)
c2 I(3)(0)

)

where

c1 =
(

h2(x0)h′′(x0)
24S2(x0)

)1/5

and c2 =
(

h(x0)h′′(x0)3

243S(x0)

)1/5

,

for both h = h̃n and hn = ĥn, where I is the invelope function of
Y(t) ≡ ∫ t

0 W (s)ds + t4: i.e.

• I(t) ≥ Y(t) for all t ∈ R.

• ∫∞
−∞(I(t) − Y(t))dI(3)(t) = 0.

• I(2) is convex.
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2. Log-concave densities on R

Suppose that

f(x) = exp(ϕ(x))

where ϕ is concave. The class of all densities f on R of the form
is called the class of log-concave densities, Flog−concave.

• MLE f̂n exists and can be computed.
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is called the class of log-concave densities, Flog−concave.
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• Consistency and rates of convergence (Dümbgen and
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2. Log-concave densities on R

Suppose that

f(x) = exp(ϕ(x))

where ϕ is concave. The class of all densities f on R of the form
is called the class of log-concave densities, Flog−concave.

• MLE f̂n exists and can be computed.
• Consistency and rates of convergence (Dümbgen and

Rufibach, 2007).
• Pointwise limit theory? Yes! Balabdaoui and Rufibach

(2007)
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• Assumptions
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◦ f is log-concave
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• Assumptions
◦ f is log-concave
◦ f(x0) > 0
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• Assumptions
◦ f is log-concave
◦ f(x0) > 0
◦ If ϕ′′(x0) �= 0, then k = 2;

otherwise, k is the smallest integer such that
ϕ(j)(x0) = 0, j = 2, . . . , k − 1, ϕ(k)(x0) �= 0.
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◦ f is log-concave
◦ f(x0) > 0
◦ If ϕ′′(x0) �= 0, then k = 2;

otherwise, k is the smallest integer such that
ϕ(j)(x0) = 0, j = 2, . . . , k − 1, ϕ(k)(x0) �= 0.

◦ ϕ(k) is continuous in a neighborhood of x0.

• Example f(x) = C exp(−x4) with C =
√

2Γ(3/4)/π: k = 4.
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◦ f is log-concave
◦ f(x0) > 0
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√

2Γ(3/4)/π: k = 4.
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• Process Hk determined by limit Fenchel relations:
◦ Hk(t) ≤ Yk(t) for all t ∈ R
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• Assumptions
◦ f is log-concave
◦ f(x0) > 0
◦ If ϕ′′(x0) �= 0, then k = 2;

otherwise, k is the smallest integer such that
ϕ(j)(x0) = 0, j = 2, . . . , k − 1, ϕ(k)(x0) �= 0.

◦ ϕ(k) is continuous in a neighborhood of x0.

• Example f(x) = C exp(−x4) with C =
√

2Γ(3/4)/π: k = 4.

• Driving process: Yk(t) =
∫ t
0 W (s)ds − tk+2.

• Process Hk determined by limit Fenchel relations:
◦ Hk(t) ≤ Yk(t) for all t ∈ R

◦ ∫
R
(Hk(t) − Yk(t))dH

(3)
k (t) = 0.
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• Assumptions
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√

2Γ(3/4)/π: k = 4.

• Driving process: Yk(t) =
∫ t
0 W (s)ds − tk+2.

• Process Hk determined by limit Fenchel relations:
◦ Hk(t) ≤ Yk(t) for all t ∈ R

◦ ∫
R
(Hk(t) − Yk(t))dH

(3)
k (t) = 0.

◦ H
(2)
k is concave.
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• Pointwise limit theorem for f̂n(x0):(
nk/(2k+1)(f̂n(x0) − f(x0))

n(k−1)/(2k+1)(f̂ ′
n(x0) − f ′(x0))

)
→d

(
ckH

(2)
k (0)

dkH
(3)
k (0)

)

where

ck ≡
(

f(x0)k+1|ϕ(k)(x0)|
(k + 2)!

)1/(2k+1)

,

dk ≡
(

f(x0)k+2|ϕ(k)(x0)|3
[(k + 2)!]3

)1/(2k+1)

.
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• Pointwise limit theorem for ϕ̂n(x0):(
nk/(2k+1)(ϕ̂n(x0) − ϕ(x0))

n(k−1)/(2k+1)(ϕ̂′
n(x0) − ϕ′(x0))

)
→d

(
CkH

(2)
k (0)

DkH
(3)
k (0)

)

where

Ck ≡
(

|ϕ(k)(x0)|
f(x0)k(k + 2)!

)1/(2k+1)

,

Dk ≡
(

|ϕ(k)(x0)|3
f(x0)k+1[(k + 2)!]3

)1/(2k+1)

.
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3. Estimation of the mode

Let xm be the mode of the log-concave density f , recalling that
Flog−concave ⊂ Funimodal. Lower bound calculations using G.
Jongbloed’s perturbation of a convex decreasing density, but
now perturbing ϕ yields:

Proposition. If f ∈ Flog−concave satisfies f(xm) > 0, f ′′(xm) < 0,
and f ′′ is continuous in a neighborhood of xm, and Tn is any
estimator of the mode xm ≡ ν(P ), then with Pn corresponding to
fεn

≡ exp(ϕεn
) with εn ≡ νn−1/5 and ν ≡ 2f ′′(xm)2/(5f(xm)),

lim inf
n→∞ n1/5 inf

Tn

max {En,Pn
|Tn − fεn

(xm)|, En,P |Tn − f(xm)|}

≥ 1
4

(
1

e10

)1/5( f(xm)
f ′′(xm)2

)1/5

.
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On the other hand, the limit theory of Balabdaoui and Rufibach
(2007) noted in the previous section implies that the mode
estimator derived from the MLE of f̂n, namely
x̂m ≡ min{u : f̂n(u) = supt f̂n(t)} ≡ M(f̂n), satisfies

n1/(2k+1)(x̂m − xm) →d

(
(4!)2f(xm)
f ′′(xm)2

)1/(2k+1)

M(H(2)
k )

where M(H(2)
k ) = argmax(H(2)

k ).
Note that when k = 2 this agrees with the lower bound
calculation, at least up to absolute constants.
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4. Competing risks with current status data

See two papers by Groeneboom, Maathuis, and Wellner (2007),
Ann. Statist. to appear:

http://www.stat.washington.edu/jaw/jaw papers.html

http://stat.ethz.ch/ maathuis/papers/
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5. k−monotone densities

See paper by Balabdaoui and Wellner (2007), Ann. Statist., to
appear:

http://www.stat.washington.edu/jaw/jaw papers.html
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6. Distribution functions & monotone densities on R
2

Monotone densities on R
d: two types

• Block decreasing: FBD

Consider step 8 in the case of mixtures of uniform monotone
densities first first:
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6. Distribution functions & monotone densities on R
2

Monotone densities on R
d: two types

• Block decreasing: FBD

• Mixtures of uniform densities (on rectangular densities
anchored at 0): FSMU

f(x) =
∫

(0,∞)d

1
|y|1(0,y](x)dG(y)

for some distribution function G on (0,∞)d.

Consider step 8 in the case of mixtures of uniform monotone
densities first first:
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Proposition 1. (Pavlides, 2007). Suppose that f ∈ FSMU where
x0 ∈ (0,∞)d satisfies f(x0) > 0, ∂f(x0)/∂xj < 0 for j = 1, . . . , d,

(−1)d ∂df(x)
∂x1 · · · ∂xd

∣∣∣
x=x0

> 0,

and the mixed derivative in the last display is continuous on
some neighborhood of x0. Then there is a sequence
{fn}n≥1 ⊂ FSMU such that

lim inf
n→∞ inf

Tn

max
{
Efn

n1/3|Tn − fn(x0)|, Efn1/3|Tn − f(x0)|
}

≥
(

e−13d−1

23d

)1/3{
(−1)d ∂df(x)

∂x1 · · · ∂xd

∣∣∣
x=x0

· f(x0)
}1/3

.

• Rate of convergence is n1/3 for all d.
• Constant reduces to the familiar constant when d = 1.
• Shuguang Song (2001): estimation of a distribution function F
with rectangular “current status” censoring.
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Proposition 2. (Pavlides, 2007). Suppose that f ∈ FBD where
x0 ∈ (0,∞)d satisfies f(x0) > 0,

∂f(x0)
∂xj

< 0 j = 1, . . . , d,

and all the derivatives in the last display are continuous on some
neighborhood of x0. Then there is a sequence {fn}n≥1 ⊂ FBD

such that

lim inf
n→∞ inf

Tn

max
{
Efn

n1/(d+2)|Tn − fn(x0)|, Efn1/(d+2)|Tn − f(x0)|
}

≥ e−1/(d(d+2))

4

12f(x0)d
d+1

2d(d + 2)
·

d∏
j=1

{∣∣∣∣∂f(x)
∂xj

∣∣∣
x=x0

∣∣∣∣}


1/(d+2)

.
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Set

F̃n(x) ≡
∫

[0,x]
f̃n(y)dy.

Then the Fenchel conditions for the LSE f̃n in FSMU are:

• F̃n(x) ≥ Fn(x) for all x

• ∫
(0,∞)(F̃n(x) − Fn(x)df̃n(x) = 0

Localization?
Driving process?
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Localization of Fn: write |t| ≡∏d
j=1 tj.

Let ∆d denote the d−dimensional difference operator:

(∆dg)(u, v) =
∑

2d corners
(−1)par(vj)g(vj , vj+1).

Then I conjecture that

Y
loc
n (t) ≡ n2/3

{
∆d

Fn(x0, x0 + tn−1/(3d)) − ∆dF (x0, x0 + tn−1/(3d))

− n−1/3|t|f(x0)
}

⇒
√

f(x0)W (t) − σ(f0)|t|2 in C[[−K,K]d]
≡ Y(t)

for each K > 0 where W (t) is a 2d−sided Brownian sheet and

σ(f0) ≡ cd(−1)d ∂df(x)
∂x1 · · · ∂xd

∣∣∣
x=x0

≡ cd(−1)d∂df(x0).
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Next:
• localize F̃n analogously to Y

loc
n to get H̃ loc

n
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Next:
• localize F̃n analogously to Y

loc
n to get H̃ loc

n

• verify localized Fenchel relations
• prove tightness / rate result
• Conjecture:

n1/3(f̃n(x0) − f(x0)) →d
∂d

∂t1 · · · ∂td
H(t)

∣∣∣
t=0

≡ ∂d
H(t)

∣∣∣
t=0

where the process H(t) is determined by
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n to get H̃ loc

n

• verify localized Fenchel relations
• prove tightness / rate result
• Conjecture:

n1/3(f̃n(x0) − f(x0)) →d
∂d

∂t1 · · · ∂td
H(t)

∣∣∣
t=0

≡ ∂d
H(t)

∣∣∣
t=0

where the process H(t) is determined by
◦ H(t) ≥ Y(t)
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Next:
• localize F̃n analogously to Y

loc
n to get H̃ loc

n

• verify localized Fenchel relations
• prove tightness / rate result
• Conjecture:

n1/3(f̃n(x0) − f(x0)) →d
∂d

∂t1 · · · ∂td
H(t)

∣∣∣
t=0

≡ ∂d
H(t)

∣∣∣
t=0

where the process H(t) is determined by
◦ H(t) ≥ Y(t)
◦ ∫

Rd(H(t) − Y(t))d
{
∂d

H(t)
}

= 0.
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Next:
• localize F̃n analogously to Y

loc
n to get H̃ loc

n

• verify localized Fenchel relations
• prove tightness / rate result
• Conjecture:

n1/3(f̃n(x0) − f(x0)) →d
∂d

∂t1 · · · ∂td
H(t)

∣∣∣
t=0

≡ ∂d
H(t)

∣∣∣
t=0

where the process H(t) is determined by
◦ H(t) ≥ Y(t)
◦ ∫

Rd(H(t) − Y(t))d
{
∂d

H(t)
}

= 0.

◦ ∆d{∂d
H(t)}(u, v) ≥ 0 for all u, v ∈ R

d.
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7. Summary: problems and directions

• More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best”? When is the MLE or LSE
inferior?
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• More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best”? When is the MLE or LSE
inferior?

• Analogues of the results of Groeneboom & Pyke , Wright,
Leurgans, Carolan and Dykstra, Anevski and Hössjer for the
MLE and LSE of a convex decreasing density? When
f(t) = 2(1 − t)+, does

√
n(f̂ convex

n (t) − f(t)) → Invelope of
∫ t

0
U(F (s))ds?
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7. Summary: problems and directions

• More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best”? When is the MLE or LSE
inferior?

• Analogues of the results of Groeneboom & Pyke , Wright,
Leurgans, Carolan and Dykstra, Anevski and Hössjer for the
MLE and LSE of a convex decreasing density? When
f(t) = 2(1 − t)+, does

√
n(f̂ convex

n (t) − f(t)) → Invelope of
∫ t

0
U(F (s))ds?

• Banerjee and Wellner (2001) studied likelihood ratio tests of
H : f(t0) = θ0 versus K : f(t0) �= θ0 in the case of monotone
f . Is there a nice theory of pointwise likelihood ratio tests in
other shape-constrained problems, e.g. when f is convex?
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• Does the pointwise limit theory outline work for
k−monotone densities / functions as partially proved by
Balabdaoui and Wellner (2007, Ann. Statist. to appear)?
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k−monotone densities / functions as partially proved by
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• Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
Does the outline discussed in my lectures here work?
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• Higher dimensional shape constraints?
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• Does the pointwise limit theory outline work for
k−monotone densities / functions as partially proved by
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• Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
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• Does the pointwise limit theory outline work for
k−monotone densities / functions as partially proved by
Balabdaoui and Wellner (2007, Ann. Statist. to appear)?

• Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
Does the outline discussed in my lectures here work?

• Higher dimensional shape constraints?
◦ Pointwise limit theory for log-concave estimators of a

density in R
2 or R

d?
◦ Pointwise limit theory for LSE of a convex regression

function?
◦ Even when the MLE is rate sub-optimal (as will probably

be the case for the class FBD), is it doing something
else right?
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