L ecture 3: Some Theory for Estimation
with Shape Constraints

Jon A. Wellner

University of Washington

Lecture 3: Some Theory for Estimation — p. 1/25



* Talks at YES-I Conference on
Shape Restricted Inference
Eurandom,
The Netherlands, October 8-10, 2007

* Email: jaw@stat.washington.edu
http: //lwww.stat.washington.edu/jaw/jaw.research.html

* Based on joint work with Piet Groeneboom, Geurt
Jongbloed,
former Ph.D. Students Jian Huang, Moulinath Banerjee,
Fadoua Balabdaoui, Marloes Maathuis, and Shuguang
Song;
current Ph.D. student Marios Pavlides, current post-doc
Hanna Jankowski;
and the work of many others.

Lecture 3: Some Theory for Estimation — p. 2/25



Outline, Lecture 3

1. lllustration of the pointwise limit theory pattern:
convex hazards

2. lllustration of the pointwise limit theory pattern:
log-concave densities

3. A functional of interest:
estimation of the mode

4. lllustration of the pointwise limit theory pattern:
competing risks with current status data

5. Partial illustration of the pointwise limit theory pattern:
k—monotone densities

6. Partial illustration of the pointwise limit theory pattern:
distribution functions and monotone densities on R?

7. Summary: problems and directions
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. Convex hazards

Nonparametric methods for hazard rate functions.

* Grenander (’56): decreasing case

* Bray, Crawford and Proschan (1967): MLE for U-shaped
hazard functions

* Prakasa Rao (1970); Groeneboom (1985); Banerjee (2007):.
asymptotics

* step-functions

* n~1/3 Jocal convergence rates

Here we assume that

h(t) = ] ;f(Ft)(t) IS convex.

Let H(t) = [, h(s)ds.
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Then

=11 { )exp | H(XZ-)]} ,

1=1

and hence the MLE is found by

hn = argminhzo,convex {/ (H — lOg h)d]Fn} .
0
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Define Empirical CDF and Hazard:

1 n
F,(t) = - > 1pg(Xs), Ha(t) = [y =, s AFn(s).
1=1

Next, fix a 7 > 0. Then the LSE h,, is defined on [0, 7] as

B | | T i
hn = @rgming,~q convex {5/0 he(t)dt _/o h(t)dHn(t)}
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~

Let H,,( fo s)ds, andH (t) = [! Hy(s)ds.

0
Also, Iet Y fO
The LSE must satlsfy

° H(T) =H,(T) & Hn(T) = Y, (T)
* Ho(t) > Y,(¢) forall t € [0, 7]

~

* Jo (= Ya)®)d [ha] () =0
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Theorem. Suppose that h € K is the true hazard function.
Suppose that h(xzg) > 0, h”(xzp) > 0, and A" is continuous in a

neighborhood of z,. Then for h,, = h or h, = h
2/5{h (z0) — h(wo) } c1 Z3)(0)
—d
/5 {R, (w0) — I (z0)} c2 Z4)(0)
where

. (h?(xom"(a;:o))” and e (h(m)h”(x;&)”i

2432 (ZIZ‘() 243S(ZIJO
for both h=h, and h, = hn, where Z IS the invelope function Of
fo ds + t*: i.e.

° I()_ ()forallteR.
* [T Z() = Y()dI®)(t) = 0.

e 7(2) is convex.
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2. Log-concave densities on R

Suppose that

f(z) = exp(p())

where ¢ is concave. The class of all densities f on R of the form
IS called the class of log-concave densities, Fjo;—concave-

* MLE fn exists and can be computed.
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2. Log-concave densities on R

Suppose that

f(z) = exp(p())

where ¢ is concave. The class of all densities f on R of the form
IS called the class of log-concave densities, Fjo;—concave-

* MLE fn exists and can be computed.

* Consistency and rates of convergence (Dumbgen and
Rufibach, 2007).

* Pointwise limit theory? Yes! Balabdaoui and Rufibach
(2007)
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* Assumptions
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* Assumptions
° fIs log-concave
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* Assumptions
° fIs log-concave

© f(CC()) > 0
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* Assumptions
° fIs log-concave
& f(CC()) > 0
o If o"’(xg) # 0, then k = 2;
otherwise, k is the smallest integer such that
gp(j)(azo) =0,7=2,...,k—1, ga(k)(azo) =+ 0.
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* Assumptions
° fIs log-concave
& f(CC()) > 0

° If " (xg) # 0, then k = 2;
otherwise, k is the smallest integer such that

©0W(zg) =0,7=2,....k—1, ¥ (zq) £ 0.
o (k) is continuous in a neighborhood of x.
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* Assumptions
° fIs log-concave
& f(CC()) > 0

° If " (xg) # 0, then k = 2;
otherwise, k is the smallest integer such that

o (k) is continuous in a neighborhood of x.

* Example f(z) = Cexp(—z*) with C = V2I'(3/4)/7: k = 4.
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* Assumptions
° fIs log-concave
& f(CL‘()) > 0

° If " (xg) # 0, then k = 2;
otherwise, k is the smallest integer such that

o (k) js continuous in a nelghborhood of xg.
°* Example f(z) = Cexp(— 4) with C' = /2I'(3/4) /7 k = 4.

* Driving process: Y;(t) = [[ W — 2,
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Assumptions
° fIs log-concave

© f(CL‘()) > 0
° If " (xg) # 0, then k = 2;
otherwise, k is the smallest integer such that

o (k) js continuous in a nelghborhood of z.
Example f(z) = Cexp(— Y with C = /2I'(3/4) /7. k = 4.
Driving process: Y (t) = [3 W — 2,

Process H; determlned by I|m|t Fenchel relations:
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Assumptions
° fIs log-concave
° f(xo) >0
° If " (xg) # 0, then k = 2;

otherwise, k is the smallest integer such that

©(zg) =0,7=2,...,k—1, ¢

o (k) is continuous in a neighborhood of x.

") (20) # 0.

Example f(z) = Cexp(— Y with C = /2I'(3/4) /7. k = 4.

Driving process: Y (¢ fO

tk—i—2

Process H; determlned by I|m|t Fenchel relations:

° Hp(t) < Yi(t)forallt € R
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Assumptions

° fIs log-concave

© f(w()) > 0

° If " (xg) # 0, then k = 2;
otherwise, k is the smallest integer such that

0 (zg) =0,7=2,...,
o (k) is continuous in a neighborhood of x.

— Cexp(— Y with C = /2I'(3/4) /7. k = 4.

Example f(x)

Driving process: Y (¢ fO

k—1, o

") (20) # 0.

tk—i—2

Process H; determlned by I|m|t Fenchel relations:

° Hp(t) < Yi(t)forallt € R
— Yi(8))dH (t)

N fR(Hk (t>

= (0
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Assumptions
° fIs log-concave
° f(xo) >0
° If " (xg) # 0, then k = 2;

otherwise, k is the smallest integer such that

©(zg) =0,7=2,...,k—1, ¢
o (k) is continuous in a neighborhood of x.

") (20) # 0.

Example f(z) = Cexp(— Y with C = /2I'(3/4) /7. k = 4.

Driving process: Y (¢ fO

tk—i—2

Process H; determlned by I|m|t Fenchel relations:

° Hp(t) < Yi(t)forallt € R
o [ (Hy(t) — Yi(£))dHP (2)

2) .
o H,i ) IS concave.

= (0
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* Pointwise limit theorem for fn(azo):

( PO (fulao) ~ @) ), (eHL0)
nlE=D G (F (o) = f'(0)) a1 (0)

where
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* Pointwise limit theorem for @, (x):

( nk/(2k+1) (Bnlzo) — (o)) ) . ( Ckng?)(O) )
n(k—1)/(2k+1) (@/( 0) — ( 0)) DkH,iB)(O)

where
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3. Estimation of the mode

Let x,,, be the mode of the log-concave density f, recalling that
Filog—concave C Funimodal- LOWEr bound calculations using G.

Jongbloed’s perturbation of a convex decreasing density, but
now perturbing ¢ yields:

Proposition. If f € Fiog—concave SatiSfies f(xn,) > 0, f/(zm) <0,
and f” is continuous in a neighborhood of z,,, and T,, is any
estimator of the mode z,,, = v(P), then with P,, corresponding to

fe. = exp(pe, ) With €, = vn~ Y% and v = 21" () (5f (zm)),

lim inf n'/? inf max B 2 [T = Jie, (@) o 8 2| = 1 ) )

n—o0 T,

i) (7o)
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On the other hand, the limit theory of Balabdaoui and Rufibach
(2007) noted In the previous section implies that the mode

estimator derived from the MLE of fn namely
Zm = min{u : fn(u) = sup, fu(t)} = M(f,), satisfies

pMCHD (3 gy ((4!)2f(33m)

1/(2k+1)
f”(xm)Q )

M(H)

where M(H,f)) — argmax(H,gz)).
Note that when k£ = 2 this agrees with the lower bound
calculation, at least up to absolute constants.
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4. Competing risks with current status data

See two papers by Groeneboom, Maathuis, and Wellner (2007),
Ann. Statist. {0 appear:

http://ww. stat.washi ngton. edu/jaw j aw_papers. ht m

http://stat.ethz.ch/ maat hui s/ papers/
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5. k—monotone densities

See paper by Balabdaoui and Wellner (2007), Ann. Statist., t0
appear:

http://ww. stat.washi ngton. edu/jaw j aw_papers. ht m
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6. Distribution functions & monotone densities on R?

Monotone densities on R?: two types
* Block decreasing: Fgp

Consider step 8 in the case of mixtures of uniform monotone
densities first first:
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6. Distribution functions & monotone densities on R?

Monotone densities on R?: two types
* Block decreasing: Fgp

* Mixtures of uniform densities (on rectangular densities
anchored at 0): Fsari

= [ pes@dew

for some distribution function G on (0, co)<.

Consider step 8 in the case of mixtures of uniform monotone
densities first first:
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Proposition 1. (Pavlides, 2007). Suppose that f € Fspi; Where
z, € (0,00)% satisfies f(xy) > 0, df(zy)/0x; <0forj=1,...,d,

0 f(z)

O0x1---0xq T=T

(1) > 0,

and the mixed derivative in the last display is continuous on
some neighborhood of z,. Then there is a sequence

{fn}n21 C Fspu Such that

lim inf inf max {Efnnl/?’]Tn — fn(Zo)l; Efn1/3‘Tn - f@o)’}

m inf in
> (6;231)1/3 {1 rf) -f(&o)}m-

8331 . -~(9£L“d

L=I,

e Rate of convergence is n'/? for all d.
e Constant reduces to the familiar constant when d = 1.
e Shuguang Song (2001): estimation of a distribution function F

with rectangular “current status” censoring.
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Proposition 2. (Pavlides, 2007). Suppose that f € Fgp where
z, € (0,00)? satisfies f(z,) > 0,

Of (zy)
633]'

<0 j=1,...

, d,

and all the derivatives in the last display are continuous on some
neighborhood of x,. Then there is a sequence {f,},>1 C Fsp

such that

lim inf inf max

n—aoo

>

Ty

o—1/(d(d+2))

12f zy)dot

4

24(d + 2)

e

(9:133

{ B s HIT, — folay)], Bpn/ED|T, — f(ay)|}

y 1/(d+2)
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Set

Fo(z) = fn(y)dy.
[0,]

Then the Fenchel conditions for the LSE f}b INn Fgppy are:

* F,(z) >F,(z) forall z

* Ji0,00)(Fn(z) — F, (z)dfn(z) = 0

Localization?
Driving process?

Lecture 3: Some Theory for Estimation — p. 20/25



Localization of F,,: write [t| = []{_, t;.

Let A? denote the d—dimensional difference operator:

(Al (w,v) = ) (=PI gy, v54).
24 corners

Then | conjecture that
Yioe(t) = n?/? {Aan(£07£0 +tnVBD) — ACP(zg, 2y + tn 1/ BD)

— 3t (o) |

= Vf(zg)WQE) —o(fo)lt]”  inC[-K, K]
= Y(2)

for each K > 0 where W (t) is a 2?—sided Brownian sheet and

d adf@)

7(fo) = ca 1) E| = (<110 f(a).

TR=3E |

U |
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Next:
* localize F,, analogously to Y'c to get Hloc
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Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
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Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
* prove tightness / rate result

Lecture 3: Some Theory for Estimation — p. 22/25



Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
* prove tightness / rate result

® Conjecture:

! (fa(zo) = flzo) —a gy

= 8dH(§)‘

where the process H(t) is determined by
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Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
* prove tightness / rate result

® Conjecture:

n3(falzo) — f(&o)) —d atl---é’th@|

= 8dH(§)‘

where the process H(t) is determined by
° H(t) = Y(2)
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Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
* prove tightness / rate result

® Conjecture:

n3(falzo) — f(&o)) —d atl---é’th@|

= 8dH(§)‘

where the process H(t) is determined by
° H(t) = Y(2)

° Jpa(E(t) = Y(2))d {0UH(2) } = 0.
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Next:
* localize F,, analogously to Y'c to get Hlo¢
* verify localized Fenchel relations
* prove tightness / rate result

® Conjecture:

n3(falzo) — f(&o)) —d atl---é’th@|

= 8dH(§)‘

where the process H(t) is determined by
° H(t) = Y(2)
° Jpa(H(t) — Y(2))d {87H(2) } = 0.
o AYOH(t)}(u,v) > 0 for all u,v € R,
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/. Summary: problems and directions

* More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best™? When is the MLE or LSE
Inferior?
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/. Summary: problems and directions

* More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best™? When is the MLE or LSE
Inferior?

* Analogues of the results of Groeneboom & Pyke , Wright,
Leurgans, Carolan and Dykstra, Anevski and HGssjer for the
MLE and LSE of a convex decreasing density? When
f(t) =2(1 —t)y, does

Ja(Feerer (1) — £(1)) — Invelope of /O U(F(s))ds?
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/. Summary: problems and directions

* More/better optimality theory for shape-constrained
problems?
When is the MLE or LSE “best™? When is the MLE or LSE
Inferior?

* Analogues of the results of Groeneboom & Pyke , Wright,
Leurgans, Carolan and Dykstra, Anevski and HGssjer for the
MLE and LSE of a convex decreasing density? When
f(t) =2(1 —t)y, does

Jr(Femves (1) — f(£)) — Invelope of /O U(F(s))ds?

* Banerjee and Wellner (2001) studied likelinood ratio tests of
H : f(ty) = 0y versus K : f(tg) # 6 in the case of monotone
f. Is there a nice theory of pointwise likelihood ratio tests in

other shape-constrained problems, e.g. when f is convex?
|
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* Does the pointwise limit theory outline work for
k—monotone densities / functions as partially proved by
Balabdaoui and Wellner (2007, Ann. Statist. to appear)?
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* Does the pointwise limit theory outline work for
k—monotone densities / functions as partially proved by
Balabdaoui and Wellner (2007, Ann. Statist. to appear)?

* Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
Does the outline discussed in my lectures here work?
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* Does the pointwise limit theory outline work for
k—monotone densities / functions as partially proved by
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* Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
Does the outline discussed in my lectures here work?

* Higher dimensional shape constraints?
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* Pointwise limit theory for MLE of a completely monotone
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© Pointwise limit theory for log-concave estimators of a
density in R? or R%?
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* Does the pointwise limit theory outline work for
k—monotone densities / functions as partially proved by
Balabdaoui and Wellner (2007, Ann. Statist. to appear)?

* Pointwise limit theory for MLE of a completely monotone
density (= scale mixture of exponential)?
Does the outline discussed in my lectures here work?

* Higher dimensional shape constraints?
© Pointwise limit theory for log-concave estimators of a
density in R? or R%?
© Pointwise limit theory for LSE of a convex regression
function?

© Even when the MLE is rate sub-optimal (as will probably
be the case for the class Fgp), Is it doing something
else right?
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