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* The likelihood ratio test of H : F'(ty) = 6y

* How big is “too big’? The limit Gaussian problem

* Limiting Distribution of the likelihood ratio statistic under H
* Confidence intervals for F'(¢)

* Further problems
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1. Introduction: current status data

* X~F, Y~ XY independent
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1. Introduction: current status data

* X~FY~G, X,Y independent
* We observe (Y, 1{X <Y}) = (Y, A) with density

pr(y,d) = F(y)°(1 — F(y))' °g(y)
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1. Introduction: current status data

* X~FY~G, X,Y independent
* We observe (Y, 1{X <Y}) = (Y, A) with density

pr(y,6) = F(y)° (1 = F(y))' °9(y)
* Suppose that (Y;, A;) are i.i.d. as (Y, A).
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1. Introduction: current status data

* X~FY~G, X,Y independent
* We observe (Y, 1{X <Y}) = (Y, A) with density

pr(y,6) = F(y)° (1 = F(y))' °9(y)
* Suppose that (Y;, A;) are i.i.d. as (Y, A).
* Likelihood:
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* Likelihood ratio test of H : F'(tg) = 6g
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* Likelihood ratio test of H : F'(tg) = 6g
* The likelihood ratio statistic:

N supp Lin (F) _ Ln(p”
SUpF:F(tO):QO Ln(F) Ln(FS)
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2. Estimation of /': Nonparametric MLE

* MLE (Unconstrained)  F,(t) = argmax L, (F)
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2. Estimation of /': Nonparametric MLE

* MLE (Unconstrained)  F,(t) = argmax L, (F)
* Another description: define

1 — 1 —
Gn(t) = Ezlmgt]» Vi (t) = EZAz‘l[Yigt]-
=1 1=1

Note that
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2. Estimation of /': Nonparametric MLE

* MLE (Unconstrained)  F,(t) = argmax L, (F)
* Another description: define

1 — 1 —
G(t) = ~ D <y, Valt) = - > Aily<y
=1 =1
Note that
t
Gn(t) —a.s. G(t), Vn(t) —a.s. /() F(y)dG(y) = V(t) .

® Thus
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* Partial sum diagram: Let Y(;) < Y(g) < --- < Y|y.
The partial sum diagram P = { P, } is given by

P, = (Gn(Yy), Va(Yy)), i=1,...,n.
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* Partial sum diagram: Let Y(;) < Y(g) < -+ <Yy,
The partial sum diagram P = { P, } is given by

P = (Gu(Y)), Va(Ye)), i=1,....n.
* The Nonparametric MLE F), of F is:

F,(Y(y)) = left derivative of the Greatest
Convex Minorant of P at Y, .
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* Partial sum diagram: Let Y(;) < Y(g) < -+ <Yy,
The partial sum diagram P = { P, } is given by

P = (Gu(Y)), Va(Ye)), i=1,....n.
* The Nonparametric MLE F), of F is:

F,(Y(y)) = left derivative of the Greatest
Convex Minorant of P at Y, .

* Greatest Convex Minorant = GCM
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Cumulative Sum Diagram: Example n = 5
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Example continued, n = 5
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3. The constrained MLE FT? Recipe:

* Break P into P; and Pr where

PL = {Pz : YV(Z) < to}, PR = {Pz : 5/(2) > t()} .

Estimation and Testing — p. 12/
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Estimation and Testing — p. 12/



3. The constrained MLE 13’7,? Recipe:

* Break P into P; and Pr where
Pr, = {PZ : YV(Z) < to}, Pr = {Pz ; 3/(2) > t()} :

* Form the GCM’s of Py, and Pg, say VEZ and VE.

* |f the slope of %7'5 exceeds 6, replace it by 6y; If the slope of
VE drops below 6y, replace it by 6,.
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3. The constrained MLE 13’7,? Recipe:

* Break P into P; and Pr where

PL = {PZ : YV(Z) < to}, PR = {Pz : 3/(2) > t()} .

* Form the GCM’s of Py, and Pg, say VEZ and VE.
* |f the slope of %7'5 exceeds 6, replace it by 6y; If the slope of
VE drops below 6y, replace it by 6,.

* The resulting (truncated or constrained) slope process
yields the constrained MLE F?.
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4. The likelihood ratio test of H : F'(tg) = 6

* Likelihood ratio statistic:

\ supp Ly (F) B Ly (
v L

SUD . (t4) =0, Ln (F)
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* Likelihood ratio statistic:

\ supp Ly (F) B Ly (
v L

SUD . (t4) =0, Ln (F)

* How big is “too big”?
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4. The likelihood ratio test of H : F'(tg) = 6

* Likelihood ratio statistic:

\ supp Ly (F) B Ly (
n — — T A

SUD . (t4) =0, Ln (F)

* How big is “too big"?
* When H : F(tg) = 6y holds, does

2log A\, —4 SOmething?
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4. The likelihood ratio test of H : F'(tg) = 6

* Likelihood ratio statistic:

supp Ly (F)

Ny = _ L
h SUPF: F(to)=60, Ln(F) L

* How big is “too big"?
* When H : F(tg) = 6y holds, does

2log A\, —4 SOmething?

* Answer: Yes! Banerjee and Wellner (2001)
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5. How big Is “too big”? The limiting Gaussian problem

* Suppose that we observe {X (¢) : t € R} where
X(t)=F(t)+cW(t)
° F(t) = [' f(s)ds,

° f monotone non-decreasing, and
° W Is standard (two-sided) Brownian motion.

Estimation and Testing — p. 16/



5. How big Is “too big”? The limiting Gaussian problem

* Suppose that we observe {X (¢) : t € R} where

X(t) = F(t) + oW (t)

° F(t) = [' f(s)ds,
° f monotone non-decreasing, and
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* Suppose that we want to estimate the monotone function f.
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dX (t) = f(t)dt + odW ().
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5. How big Is “too big”? The limiting Gaussian problem

* Suppose that we observe {X (¢) : t € R} where

X(t) = F(t) + oW (t)

° F(t) = [' f(s)ds,
° f monotone non-decreasing, and
° W Is standard (two-sided) Brownian motion.

* Suppose that we want to estimate the monotone function f.
Equivalently

dX (t) = f(t)dt + odW ().

* The “canonical monotone function” is a linear one, and we
can change o to 1 by virtue of scaling arguments so the
“canonical”’ version of the problem is as follows:

dX (t) = 2tdt + dW (¢),

Estimation and Testing — p. 16/



* “estimate” 2t when {X(¢) : t € R}, is observed. Thus
X(t)=t*+W(t).

Unconstrained “Estimator”: Slope of GCM of X (¢). Call this
process of slopes of the GCM S.
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* What is the “canonical constrained problem”?
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* What is the “canonical constrained problem”?

* Estimate the monontone function f(¢) = 2t subject to the
constraint that f(0) = 0 when {X (¢) : t € R} is observed.
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e \What is the “constrained estimator”?

Estimation and Testing — p. 21/



* What is the “constrained estimator”?
* Recipe:
°© Break {X(t):t € R} into X*={X(¢t):t<0}and
XE={X(t):t>0}.
°© Form the GCM’s of X* and X say Y and Y*.
o If the slope of Y* exceeds 0, replace it by 0; if the slope
of Y drops below 0, replace it by 0.

° The resulting (truncated or constrained) slope process
SY is the constrained MLE of f(t) = 2t in the Gaussian
problem.
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Likelihood ratio test statistic in the Gaussian problem?

® Suppose {X(t) : t € |—c,c|} is given by
dX(t) = f(t)dt + dW (t)

SO
X(t) = F(t) + W(t).
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Likelihood ratio test statistic in the Gaussian problem?

® Suppose {X(t) : t € |—c,c|} is given by
dX(t) = f(t)dt + dW (t)
SO
X(t)=F({)+W(t).

* Radon-Nikodym derivative (drifted process relative to zero
drift):

de ¢ 1 ¢ 2
— = X — — t)dt ) .
e ([ gax—3 [ Poa)
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Likelihood ratio test statistic in the Gaussian problem?

® Suppose {X(t) : t € |—c,c|} is given by
dX(t) = f(t)dt + dW (t)
SO
X(t)=F({)+W(t).

* Radon-Nikodym derivative (drifted process relative to zero
drift):

de ¢ 1 ¢ 2
— = X — — t)dt ) .
e ([ gax—3 [ Poa)

* F(c, K) = {monotone functions f : [—c,c] = R, ||f|lc < K}
Fole, K) ={f € Fle,K): f(0) =0}
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* Then

su i) APy /dP, dP;/dPy
2log \. = 210g( Preriex) 4Fy/ O>:210g< ! )

Supfej:0<ch) de/dPO de?O/dPO
c 1 c

. 2{ [ x5 [ o

/ chdX+ / f020 }

_ 2/_<f fu0)dX — {f2() 20 ()}t
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* Taking the limit as ¢ — oo with K = K. = 5c¢, this yields

Qlog)\—Q/ 0)dX — /{f2 (t)}dt
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* Taking the limit as ¢ — oo with K = K. = 5¢, this yields
Qlog)\—Q/ 0)dX — /{f2 (t)}dt
* From the characterizations of f and fo:

[ex=Fuaj=o. [ x-FRyij=o
R R
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* |ntegration by parts:
[ -dnax = [ (- fyax = [ xi(i - i)

—/Fd]?—l—/ﬁbdfo
D D




* |ntegration by parts:

[ -dnax = [ (- fyax = [ xi(i - i)

D

—/Fd]g—l—/ﬁbdfo
D D

* Likelihood ratio statistic becomes:

2log A — /D (200 - f2(0))dt.
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6. Limit distribution, LR statistic under H

* Limit distributions for £, and F°. Set
Gle(t,h) = n3(Gp(t +n 3h) — Gp(t))
Vie(t, h)
— pl/3 {nl/?’(Vn(t +nmYBR) — V(1) — Gleet, h)F(t)} .
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6. Limit distribution, LR statistic under H

* Limit distributions for £, and F°. Set

Gloc(t, h) = nt3(Gp(t + n~3h) — G, (1))
Vie(t, h)
— pl/3 {nl/?’(Vn(t +nmY3R) — V(1) — Gloe(t, h)F(t)} .

* Theorem 1. If g(tg) = G'(tp) and f(ty) = F'(to) exist, then:
A. Ggloc(t(), h) —p g(t())h.
B. VI°¢(tg, h) = aW (h) + bh? where
a — \/F(t())(l — F(to))g(to), b= f(to)g(to)/Q, and W is a
two-sided Brownian motion starting from 0.
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* Now define

Zn(h) = n'3(E,(to + hn~'/3) — F(ty)),
Z0(h) = n*3(EFQ(to + hn /%) — F(to)) .
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* Now define

Zn(h) = n'3(E,(to + hn~'/3) — F(ty)),
72 (h) = n'3(F°(tg + hn~3) — F(ty)).

® Theorem 2. If the hypotheses of Theorem 1 hold with
f(tg) > 0, g(tp) > 0, and F'(tg) = 6y, then

(Zn (1), Zyy () = (Sa,p(R), Sap(h))/g(to)

where S, , and S? , are the constrained and unconstrained
slope processes corresponding to X, (k) = aW (h) + bh*.
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* Limit distribution for 2log A\,
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* Limit distribution for 2log A,

* Theorem 3. (Banerjee and Wellner, 2001). Suppose that F
and G have densities f and g which are strictly positive and
continuous in a neighborhood in a neighborhood of t,.
Suppose that F(ty) = 6p. Then

1
g(to)a?
{(S(=

2log A\, —y

/ (Sup(2))? — (8%4())?) dz
< )2 — (8°(2))%}dz =D,

and the distribution of D is universal (free of parameters).
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7. Confidence intervals for F'(%()

* Wald-type intervals:

Zn(o) — nl/S(Fn(tO) — F(to)) — Sa,b(o)/g(to)
4 [F(to)(1 = F(to))f(to) | /°
{ 29(to) } S(0)
= C(F, f,9)S(0)

where S(0) £ 27 = 2argmin(W (k) + h2), S(0) = S1.1(0).




7. Confidence intervals for F'(%()

* Wald-type intervals:

Zn(o) — n1/3(ﬁn(t0) — F(to)) — Sa,b(o)/g(t())
4 [F(to)(1 = F(to))f(to) | /°

{ 29(to) } S(0)
C(F, f,9)S(0)

where S(0) £ 27 = 2argmin(W (k) + h2), S(0) = S1.1(0).
* Wald - interval:

A

Fn(tO) T n_l/SC(Fna fna gn) ta

where f, and g, are estimates of f and ¢ (at t,), and ¢, /2
satisfies
P(2Z > ty2) = /2.
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* Problem: this involves smoothing to get
estimators f,, and ,,!
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* Confidence intervals from the LR test
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* Confidence intervals from the LR test

* |nvert the test:
{60 :2log A (0) < do} -

where P(D < d,) =1—«
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* Confidence intervals from the LR test

* |nvert the test:
{60 :2log A (0) < do} -

where P(D < d,) =1— «
* Advantage: no smoothing needed!
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Confidence intervals from the LR test

Invert the test:
{60 :2log A (0) < do} -

where P(D < d,) =1— «
Advantage: no smoothing needed!

Tradeoff: need to compute constrained estimator(s) }3’3 of F
and )\, (9) for many different values of the constraint 6.
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8. Further problems

* Can we find the distribution of D analytically?
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8. Further problems

* Can we find the distribution of D analytically?

* Does the same limit D arise as the limit distribution for the
likelihood ratio test for a large class of such problems
Involving monotone functions? (Yes — Banerjee (2005))
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8. Further problems

* Can we find the distribution of D analytically?

* Does the same limit D arise as the limit distribution for the
likelihood ratio test for a large class of such problems
Involving monotone functions? (Yes — Banerjee (2005))

* Power? What is the appropriate contiguity theory? What is
the limit distribution of the likelihood ratio statistic under
local alternatives? See Banerjee and Wellner (2001),
(2005D).
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* Power? What is the appropriate contiguity theory? What is
the limit distribution of the likelihood ratio statistic under
local alternatives? See Banerjee and Wellner (2001),
(2005D).

* What happens if we constrain at £ > 1 points?
(Independence!)
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Involving monotone functions? (Yes — Banerjee (2005))

* Power? What is the appropriate contiguity theory? What is
the limit distribution of the likelihood ratio statistic under
local alternatives? See Banerjee and Wellner (2001),
(2005D).
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* Confidence bands for the whole monotone function F'?
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8. Further problems

* Can we find the distribution of D analytically?

* Does the same limit D arise as the limit distribution for the
likelihood ratio test for a large class of such problems
Involving monotone functions? (Yes — Banerjee (2005))

* Power? What is the appropriate contiguity theory? What is
the limit distribution of the likelihood ratio statistic under
local alternatives? See Banerjee and Wellner (2001),
(2005D).

* What happens if we constrain at £ > 1 points?
(Independence!)

* Confidence bands for the whole monotone function F'?

* Confidence intervals (and bands?) for estimating a concave
distribution function F'?
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