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Outline

• Introduction: current status data
• Estimation of F , unconstrained (old, Ayer et al. 1956)
• Estimation of F , constrained (new)
• The likelihood ratio test of H : F (t0) = θ0

• How big is “too big”? The limit Gaussian problem
• Limiting Distribution of the likelihood ratio statistic under H

• Confidence intervals for F (t0)
• Further problems
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1. Introduction: current status data

• X ∼ F , Y ∼ G, X,Y independent

Estimation and Testing – p. 4/4



1. Introduction: current status data

• X ∼ F , Y ∼ G, X,Y independent
• We observe (Y, 1{X ≤ Y }) ≡ (Y,∆) with density

pF (y, δ) = F (y)δ(1 − F (y))1−δg(y)

Estimation and Testing – p. 4/4



1. Introduction: current status data

• X ∼ F , Y ∼ G, X,Y independent
• We observe (Y, 1{X ≤ Y }) ≡ (Y,∆) with density

pF (y, δ) = F (y)δ(1 − F (y))1−δg(y)

• Suppose that (Yi,∆i) are i.i.d. as (Y,∆).

Estimation and Testing – p. 4/4



1. Introduction: current status data

• X ∼ F , Y ∼ G, X,Y independent
• We observe (Y, 1{X ≤ Y }) ≡ (Y,∆) with density

pF (y, δ) = F (y)δ(1 − F (y))1−δg(y)

• Suppose that (Yi,∆i) are i.i.d. as (Y,∆).
• Likelihood:

Ln(F ) =
n∏

i=1

F (Yi)∆i(1 − F (Yi))1−∆i
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• Likelihood ratio test of H : F (t0) = θ0
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• Likelihood ratio test of H : F (t0) = θ0

• The likelihood ratio statistic:

λn =
supF Ln(F )

supF :F (t0)=θ0
Ln(F )

=
Ln(F̂n)
Ln(F̂ 0

n)
.
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2. Estimation of F : Nonparametric MLE

• MLE (Unconstrained) F̂n(t) = argmaxF Ln(F )
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2. Estimation of F : Nonparametric MLE

• MLE (Unconstrained) F̂n(t) = argmaxF Ln(F )
• Another description: define

Gn(t) =
1
n

n∑
i=1

1[Yi≤t], Vn(t) =
1
n

n∑
i=1

∆i1[Yi≤t] .

Note that

Gn(t) →a.s. G(t), Vn(t) →a.s.

∫ t

0
F (y)dG(y) ≡ V (t) .
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2. Estimation of F : Nonparametric MLE

• MLE (Unconstrained) F̂n(t) = argmaxF Ln(F )
• Another description: define

Gn(t) =
1
n

n∑
i=1

1[Yi≤t], Vn(t) =
1
n

n∑
i=1

∆i1[Yi≤t] .

Note that

Gn(t) →a.s. G(t), Vn(t) →a.s.

∫ t

0
F (y)dG(y) ≡ V (t) .

• Thus
dV

dG
(t) = F (t)
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• Partial sum diagram: Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).
The partial sum diagram P = {Pi} is given by

Pi = (Gn(Y(i)), Vn(Y(i))), i = 1, . . . , n .
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• Partial sum diagram: Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).
The partial sum diagram P = {Pi} is given by

Pi = (Gn(Y(i)), Vn(Y(i))), i = 1, . . . , n .

• The Nonparametric MLE F̂n of F is:

F̂n(Y(i)) = left derivative of the Greatest

Convex Minorant of P at Y(i) .

• Greatest Convex Minorant = GCM
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Cumulative Sum Diagram: Example n = 5

i ∆(i) Y(i)

1 1 0.4
2 0 0.7
3 1 1.3
4 1 1.5
5 0 2.0

i

nVn(Y(i))

1 2 3 4 5

1

2

3
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Example continued, n = 5

i ∆(i) Y(i)

1 1 0.4
2 0 0.7
3 1 1.3
4 1 1.5
5 0 2.1

y

F̂n

1 2

0.5

1.0
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3. The constrained MLE F̂ 0
n . Recipe:

• Break P into PL and PR where

PL = {Pi : Y(i) ≤ t0}, PR = {Pi : Y(i) > t0} .
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n . Recipe:

• Break P into PL and PR where

PL = {Pi : Y(i) ≤ t0}, PR = {Pi : Y(i) > t0} .

• Form the GCM’s of PL and PR, say ṼL
n and ṼR

n .

• If the slope of Ṽ
L
n exceeds θ0, replace it by θ0; if the slope of

Ṽ
R
n drops below θ0, replace it by θ0.
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3. The constrained MLE F̂ 0
n . Recipe:

• Break P into PL and PR where

PL = {Pi : Y(i) ≤ t0}, PR = {Pi : Y(i) > t0} .

• Form the GCM’s of PL and PR, say ṼL
n and ṼR

n .

• If the slope of Ṽ
L
n exceeds θ0, replace it by θ0; if the slope of

Ṽ
R
n drops below θ0, replace it by θ0.

• The resulting (truncated or constrained) slope process
yields the constrained MLE F̂ 0

n .
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4. The likelihood ratio test of H : F (t0) = θ0

• Likelihood ratio statistic:

λn =
supF Ln(F )

supF :F (t0)=θ0
Ln(F )

=
Ln(F̂n)
Ln(F̂ 0

n)
.
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Ln(F )

=
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• Likelihood ratio statistic:
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supF Ln(F )

supF :F (t0)=θ0
Ln(F )

=
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2 log λn →d something?

Estimation and Testing – p. 15/4



4. The likelihood ratio test of H : F (t0) = θ0

• Likelihood ratio statistic:

λn =
supF Ln(F )

supF :F (t0)=θ0
Ln(F )

=
Ln(F̂n)
Ln(F̂ 0

n)
.

• How big is “too big”?
• When H : F (t0) = θ0 holds, does

2 log λn →d something?

• Answer: Yes! Banerjee and Wellner (2001)

Estimation and Testing – p. 15/4



5. How big is “too big”? The limiting Gaussian problem

• Suppose that we observe {X(t) : t ∈ R} where

X(t) = F (t) + σW (t)

◦ F (t) =
∫ t
−∞ f(s)ds,

◦ f monotone non-decreasing, and
◦ W is standard (two-sided) Brownian motion.
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∫ t
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• Suppose that we want to estimate the monotone function f .
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5. How big is “too big”? The limiting Gaussian problem

• Suppose that we observe {X(t) : t ∈ R} where

X(t) = F (t) + σW (t)

◦ F (t) =
∫ t
−∞ f(s)ds,

◦ f monotone non-decreasing, and
◦ W is standard (two-sided) Brownian motion.

• Suppose that we want to estimate the monotone function f .
Equivalently

dX(t) = f(t)dt + σdW (t) .

• The “canonical monotone function” is a linear one, and we
can change σ to 1 by virtue of scaling arguments so the
“canonical” version of the problem is as follows:

dX(t) = 2tdt + dW (t) ,
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• “estimate” 2t when {X(t) : t ∈ R}, is observed. Thus

X(t) = t2 + W (t) .

Unconstrained “Estimator”: Slope of GCM of X(t). Call this
process of slopes of the GCM S.
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• What is the “canonical constrained problem”?
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• What is the “canonical constrained problem”?
• Estimate the monontone function f(t) = 2t subject to the

constraint that f(0) = 0 when {X(t) : t ∈ R} is observed.
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• What is the “constrained estimator”?
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• What is the “constrained estimator”?
• Recipe:

◦ Break {X(t) : t ∈ R} into XL ≡ {X(t) : t < 0} and
XR ≡ {X(t) : t ≥ 0}.

◦ Form the GCM’s of XL and XR say Y L and Y R.
◦ If the slope of Y L exceeds 0, replace it by 0; if the slope

of Y R drops below 0, replace it by 0.
◦ The resulting (truncated or constrained) slope process

S0 is the constrained MLE of f(t) = 2t in the Gaussian
problem.
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Likelihood ratio test statistic in the Gaussian problem?

• Suppose {X(t) : t ∈ [−c, c]} is given by

dX(t) = f(t)dt + dW (t)

so
X(t) = F (t) + W (t) .

Estimation and Testing – p. 25/4



Likelihood ratio test statistic in the Gaussian problem?

• Suppose {X(t) : t ∈ [−c, c]} is given by

dX(t) = f(t)dt + dW (t)

so
X(t) = F (t) + W (t) .

• Radon-Nikodym derivative (drifted process relative to zero
drift):

dPf

dP0
= exp

(∫ c

−c
fdX − 1

2

∫ c

−c
f2(t)dt

)
.
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Likelihood ratio test statistic in the Gaussian problem?

• Suppose {X(t) : t ∈ [−c, c]} is given by

dX(t) = f(t)dt + dW (t)

so
X(t) = F (t) + W (t) .

• Radon-Nikodym derivative (drifted process relative to zero
drift):

dPf

dP0
= exp

(∫ c

−c
fdX − 1

2

∫ c

−c
f2(t)dt

)
.

• F(c,K) = {monotone functions f : [−c, c] → R, ‖f‖c ≤ K}
F0(c,K) = {f ∈ F(c,K) : f(0) = 0}
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• Then

2 log λc = 2 log

(
supf∈F(c,K) dPf/dP0

supf∈F0(c,K) dPf/dP0

)
= 2 log

(
dPf̂/dP0

dPf̂0
/dP0

)

= 2
{∫ c

c
f̂cdX − 1

2

∫ c

−c
f̂2

c (t)dt

−
∫ c

c
f̂c,0dX +

1
2

∫ c

−c
f̂2

c,0(t)dt

}

= 2
∫ c

−c
(f̂c − f̂c,0)dX −

∫ c

−c
{f̂2

c (t) − f̂2
c,0(t)}dt .
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• Taking the limit as c → ∞ with K = Kc = 5c, this yields

2 log λ = 2
∫

D
(f̂ − f̂0)dX −

∫
D
{f̂2(t) − f̂2

0 (t)}dt
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• Taking the limit as c → ∞ with K = Kc = 5c, this yields

2 log λ = 2
∫

D
(f̂ − f̂0)dX −

∫
D
{f̂2(t) − f̂2

0 (t)}dt

• From the characterizations of f̂ and f̂0:∫
R

(X − F̂ )df̂ = 0,

∫
R

(X − F̂0)df̂0 = 0 .
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• Integration by parts:∫
R

(f̂ − f̂0)dX =
∫

D
(f̂ − f̂0)dX = −

∫
D

Xd(f̂ − f̂0)

= −
∫

D
F̂ df̂ +

∫
D

F̂0df̂0

=
∫

D
f̂dF̂ −

∫
D

f̂0dF̂0

=
∫

D
{f̂2(t) − f̂2

0 (t)}dt .
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• Integration by parts:∫
R

(f̂ − f̂0)dX =
∫

D
(f̂ − f̂0)dX = −

∫
D

Xd(f̂ − f̂0)

= −
∫

D
F̂ df̂ +

∫
D

F̂0df̂0

=
∫

D
f̂dF̂ −

∫
D

f̂0dF̂0

=
∫

D
{f̂2(t) − f̂2

0 (t)}dt .

• Likelihood ratio statistic becomes:

2 log λ =
∫

D
{f̂2(t) − f̂2

0 (t)}dt .
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6. Limit distribution, LR statistic under H

• Limit distributions for F̂n and F̂ 0
n . Set

G
loc
n (t, h) = n1/3(Gn(t + n−1/3h) − Gn(t))

V
loc
n (t, h)

= n1/3
{
n1/3(Vn(t + n−1/3h) − Vn(t)) − G

loc
n (t, h)F (t)

}
.
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6. Limit distribution, LR statistic under H

• Limit distributions for F̂n and F̂ 0
n . Set

G
loc
n (t, h) = n1/3(Gn(t + n−1/3h) − Gn(t))

V
loc
n (t, h)

= n1/3
{
n1/3(Vn(t + n−1/3h) − Vn(t)) − G

loc
n (t, h)F (t)

}
.

• Theorem 1. If g(t0) = G′(t0) and f(t0) = F ′(t0) exist, then:
A. Gloc

n (t0, h) →p g(t0)h.
B. Vloc

n (t0, h) ⇒ aW (h) + bh2 where
a =

√
F (t0)(1 − F (t0))g(t0), b = f(t0)g(t0)/2, and W is a

two-sided Brownian motion starting from 0.
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• Now define

Zn(h) = n1/3(F̂n(t0 + hn−1/3) − F (t0)) ,

Z
0
n(h) = n1/3(F̂ 0

n(t0 + hn−1/3) − F (t0)) .
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• Now define

Zn(h) = n1/3(F̂n(t0 + hn−1/3) − F (t0)) ,

Z
0
n(h) = n1/3(F̂ 0

n(t0 + hn−1/3) − F (t0)) .

• Theorem 2. If the hypotheses of Theorem 1 hold with
f(t0) > 0, g(t0) > 0, and F (t0) = θ0, then

(Zn(h), Z0
n(h)) ⇒ (Sa,b(h), S0

a,b(h))/g(t0)

where Sa,b and S0
a,b are the constrained and unconstrained

slope processes corresponding to Xa,b(h) = aW (h) + bh2.
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• Limit distribution for 2 log λn
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• Limit distribution for 2 log λn

• Theorem 3. (Banerjee and Wellner, 2001). Suppose that F
and G have densities f and g which are strictly positive and
continuous in a neighborhood in a neighborhood of t0.
Suppose that F (t0) = θ0. Then

2 log λn →d
1

g(t0)a2

∫
((Sa,b(z))2 − (S0

a,b(z))2) dz

d=
∫

{(S(z))2 − (S0(z))2}dz ≡ D ,

and the distribution of D is universal (free of parameters).

Estimation and Testing – p. 31/4



x

F
(x

)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Brownian
Exponential

Estimation and Testing – p. 32/4



7. Confidence intervals for F (t0)

• Wald-type intervals:

Zn(0) = n1/3(F̂n(t0) − F (t0)) →d Sa,b(0)/g(t0)

d=
{

F (t0)(1 − F (t0))f(t0)
2g(t0)

}1/3

S(0)

≡ C(F, f, g) S(0)

where S(0) d= 2 Z ≡ 2argmin(W (h) + h2), S(0) ≡ S1,1(0).
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7. Confidence intervals for F (t0)

• Wald-type intervals:

Zn(0) = n1/3(F̂n(t0) − F (t0)) →d Sa,b(0)/g(t0)

d=
{

F (t0)(1 − F (t0))f(t0)
2g(t0)

}1/3

S(0)

≡ C(F, f, g) S(0)

where S(0) d= 2 Z ≡ 2argmin(W (h) + h2), S(0) ≡ S1,1(0).
• Wald - interval:

F̂n(t0) ± n−1/3C(F̂n, f̂n, ĝn) tα

where f̂n and ĝn are estimates of f and g (at t0), and tα/2

satisfies
P (2Z > tα/2) = α/2 .
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• Problem: this involves smoothing to get
estimators f̂n and ĝn!
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• Confidence intervals from the LR test
• Invert the test:

{θ : 2 log λn(θ) ≤ dα} .

where P (D ≤ dα) = 1 − α

• Advantage: no smoothing needed!

• Tradeoff: need to compute constrained estimator(s) F̂ 0
n of F

and λn(θ) for many different values of the constraint θ.
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8. Further problems

• Can we find the distribution of D analytically?
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8. Further problems

• Can we find the distribution of D analytically?
• Does the same limit D arise as the limit distribution for the

likelihood ratio test for a large class of such problems
involving monotone functions? (Yes – Banerjee (2005))

• Power? What is the appropriate contiguity theory? What is
the limit distribution of the likelihood ratio statistic under
local alternatives? See Banerjee and Wellner (2001),
(2005b).

• What happens if we constrain at k > 1 points?
(Independence!)

• Confidence bands for the whole monotone function F?
• Confidence intervals (and bands?) for estimating a concave

distribution function F?
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