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1. Introduction I: maximum likelihood estimation

* Setting: dominated families; i.i.d. sampling.

°* Xy,...,X, are L.i.d. with density pg, with respect to some
dominating measure p where pg, € P ={pg: 6 € ©} for ©
a parameter space.

* The likelihood is
Ln(0) = Hpe(Xi) :
=1

* Definition: A Maximum Likelihood Estimator (or MLE) of 6, is
any value 6 € © satisfying

Ln(é) — Sup Ln(e) :
0cO
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* Equivalently, the MLE # maximizes the log-likelihood

1 I =
—log L, (0) = — ] i) =Prl
o og Ln(6) n ;:1: og po(X;) og po(X)

where P, is the empirical measure,

1 n
P, = E;@Q.
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Example 1. Exponential (). X1,..., X, are i.i.d. pg, where

po(x) = Oexp(—0z)1 o) ().

Then the likelihood is

Ly (6)

so the log-likelihood is

n

= 0" eXp(—e Z X@'),

1

n

log L, (0) = nlog(d) — 6 Z X;

and 0,, = 1/X,,.

1
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1/n times log-likelihood, 7 = 50
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MLE p;(2) and true density pg, ()
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* Example 2. Monotone decreasing densities on (0, co).
X1,..., X, areiird. pg € P where

P = all nonincreasing densities on (0, o).
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* Example 2. Monotone decreasing densities on (0, co).
X1,..., X, areiird. pg € P where

P = all nonincreasing densities on (0, o).

* Then the likelihood is L, (p) = [T p(X;);
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* Example 2. Monotone decreasing densities on (0, co).
X1,..., X, areiird. pg € P where

P = all nonincreasing densities on (0, o).

* Then the likelihood is L, (p) = [[,—; p(X3);
* L,(p) is maximized by the Grenander estimator:

pn(x) = left derivative at x of the Least Concave Majorant
C,, of F,

where F,(z) =n~' >0 | 1{X; < z}
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Figure 5: Grenander Estimator, n = 10
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0.

Figure 5: Grenander Estimator, n = 100
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2. Introduction Il: empirical process theory

°* Xy,...,X,areiid. Pon (X, A)
* The empirical measure of the sample is

1 n
P, = 5;5&,

where
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* Thusforaset A e A

Pn(4) = %ZCSXi(A) = %Z 14(X;)

#{1§z§n XZ'GA}
- .

* For a (measurable) function f : X — R

Palf) = [ B0 =23 5
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° If fe Li(P),so P|f| = [|f|dP < oo, then

Prn(f) —as P(f) = Ef(X) (1)

by the SLLN.

* Suppose that F is a collection of real-valued functions
f: X — R. If the convergence in (1) holds uniformly over

ferF,

P, — P|lz = sup [P.(f) — P(f)| —a.s. O, 2)
feF

then call F a Glivenko-Cantelli class for P.
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* Bracketing numbers: for functions /, v : X — R with [ < u,
the bracket [/, u] is defined by

Lul={feF: l(zx) < f(z) <u(x) forall x € X}. (3)

[, u] is an e—bracket for L,.(P) if ||u — || p) <.
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* Bracketing numbers: for functions /, v : X — R with [ < u,
the bracket [/, u] is defined by

Lul={feF: () < f(r) <u(z) forall x € X'}. (4)

[, u] is an e—bracket for L,.(P) if ||u — || p) <.

* Nj(e, F, Ly(P)) = minimal number of ¢ — brackets
needed to cover F
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® Covering numbers:
N(e, F,| - ) is the minimal number of balls of radius e with
respect to || - || needed to cover F. If

B(fj,e)={feF: ||f—fill <e}

N F,||-]]) = min{J: F C U}-leB(fj,e)
forsome fi,...,f;}
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® Covering numbers:
N(e, F,| - ) is the minimal number of balls of radius e with
respect to || - || needed to cover F. If

B(fj,e)={feF: ||f—fill <e}

N F,||-]]) = min{J: F C U}-leB(fj,e)
forsome fi,...,f;}

®* Envelope function F' of a class F:

f(x)| < F(xz) forall z e X, all feF.
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* Theorem: (Bracketing Glivenko-Cantelli theorem)
If Njj(e, F, L1(P)) < oo for every e > 0, (so that also F has

envelope function F with PF < o), then F is
P—Glivenko-Cantelli.

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory — p. 20/!



* Theorem: (Bracketing Glivenko-Cantelli theorem)
If Njj(e, F, L1(P)) < oo for every e > 0, (so that also F has

envelope function F with PF < o), then F is
P—Glivenko-Cantelli.

® Theorem: (VC-Steele-Pollard-Giné-Zinn)
If 7 has envelope function F' with PF < oo and
Fu={fH{F <M} : feF} satisfies

n_lEIOgN(eana Ll(]P)n)) — 07

for all e > 0 and M > 0, then F is P—Glivenko-Cantelli (and
conversely).
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* Example: classical Glivenko-Cantelli theorem on R
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* Example: classical Glivenko-Cantelli theorem on R
°X=R, X~P on(R,B)
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* Example: classical Glivenko-Cantelli theorem on R
°X=R, X~P on(R,B)
° F={z— l_wylz): t e R} ={fi}
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* Example: classical Glivenko-Cantelli theorem on R
°X=R, X~P on(R,B)
O F={x—1_qyl®): teR}={fi}
° P(fy) = P(X <t) = Fx(1)
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* Example: classical Glivenko-Cantelli theorem on R
°X=R, X~P on(R,B)
O F={x—1_qyl®): teR}={fi}
° P(fy) = P(X <t) = Fx(1)
° P(ft) =Pn(X <) = Fn(t)

|P,, — P||x =sup |[F,(t) — Fx(t)| —a.s. O.
teR
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* Example: classical Glivenko-Cantelli theorem on R
°X=R, X~P on(R,B)
O F={x—1_qyl®): teR}={fi}
° P(fy) = P(X <t) = Fx(1)
° P(ft) =Pn(X <) = Fn(t)

|P,, — P||x =sup |[F,(t) — Fx(t)| —a.s. O.
teR

°© Here F =1, and by VC - theory, forevery r > 1, Q on R

r(V(F)-1)
N, 7, L,(Q) < K (%)

€

where V(F) = 2
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3. Consistency via Glivenko-Cantelli theorems

® Inequality 1. (van de Geer, 1993). Suppose that

pn = argmax{P, log(p) : p € P}.

Then with 1%(p, q) = (1/2) [[\/p — Val*du =1 — [ \/padp

Po

< sup{(Pn, — P) (\/;jo - 1) 1{po > 0} : p € P}

—a.s. 0

if FE{<\/;ZO—1)1{]?0>O}I pGP} IS

Py—Glivenko-Cantelli.

h2 (ﬁnapO)

VAN
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Proof of inequality 1.

* Since p, maximizes P, log p,

0 < 1/ log (ZE) P,
2 [po>0] Po
/ \/@—1 dP, since log(l+z) <z
[po>0] Po
- / J2 1| d(R, — Py)
[po>0] Po
—|—Po< ]ﬁ—l> 1{p0>0}
\/ Po

/[po>0] (\/M : 1) d(Pn — Fo) — hQ(ﬁmPo)

I
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* Inequality 2. (Birgé and Massart, 1994).
If p,, maximizes IP,, log p over P, then

P

_ 1 4
h?(Pn,po) < 12(Pp — Py) (5 log (p po) {po > 0})

2po

< 12sup{(P, — P, G log (p +p0> 1{po > 0}>

2po

: p € P}
a.s. O

if F= {( log (Pz‘yg‘)) 1{po > 0}) . pe 73}
Is Py—Glivenko-Cantelli.
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Proof of inequality 2.

* By concavity of log,

ﬁn"‘pO 1 <ﬁn)
lo 1 >0 > =log| — |1 > 0.
(P52 ) 1ipo > 0} = glog (22) 1w > 0)

°* Factl. K(P,Q) > 2h*(P,Q) > 0.
° Fact2. h?(P,Q) < 12h*(P,(P+ Q)/2) .
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Proof of inequality 2, cont’d

* Since p, maximizes P, log p,

0 < P,|=log|=2)1{pyg>0
(4 g<po tro > 0}

< P, (%1 o (ﬁn;op()) 1{po > 0}>

= (Pn - PR) (% log (ﬁnz;;op()) 1{po > 0}>
+ P (% log (ﬁn220p0> 1{po > O})

= (Pn - PR) (% log (ﬁn2;0p0> {po > 0}>
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Proof of inequality 2, cont’d

< (P, - R) (% log <ﬁ ”QZOP 0) 1{po > 0}>
— h2(P07(ﬁn+P0)/2)

1 Dn +
< (P - R) (5 log (p 2p0p0> {po > 0}>

1 P
- Eh2(PO, (P, + Py)/2)

since

h2(P,Q) < 12h%(P, (P + Q)/2).
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* Inequality 3. (Pfanzagl,1988)
If P is convex and p,, maximizes P, log p over P, then

- 2/\”
R Fnp0) < <Pn—Po>(Ap )

Pn 1+ Po
2p
<  sup{(P, — F ( ):pGP
(B = ) (=2 }
—as 0

i .7—"5{ 2p_ . peP} is P,—Glivenko-Cantelli.

P+Po
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4. Consistency: examples

° P ={pg(x) =0 %1{x >0} : 6 > 0} — Inequality 2
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4. Consistency: examples

° P ={pg(x) =0e91{x >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R"} —
Inequality 3
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4. Consistency: examples

° P ={pg(x) =0e91{x >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R"} —
Inequality 3

* P = {all k-monotone densities on R*} — Inequality 3
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4. Consistency: examples

° P ={pg(x) =0e91{x >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R"} —
Inequality 3

* P = {all k-monotone densities on R*} — Inequality 3

* P = {one-jump counting process with

panel count observation scheme}
(Schick and Yu (2000); van der Vaart and Wellner (2000))
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4. Consistency: examples

° P ={pg(x) =0e91{x >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R*} —
Inequality 3

* P = {all k-monotone densities on R*} — Inequality 3

* P = {one-jump counting process with

panel count observation scheme}
(Schick and Yu (2000); van der Vaart and Wellner (2000))

* P = {competing risks model with current status censoring}
(Maathuis)
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4. Consistency: examples

° P ={pg(x) =0e91{x >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R*} —
Inequality 3

* P = {all k-monotone densities on R*} — Inequality 3

* P = {one-jump counting process with
panel count observation scheme}
(Schick and Yu (2000); van der Vaart and Wellner (2000))

* P = {competing risks model with current status censoring}
(Maathuis)

* ... (see Torgnon-Cortona-Delft notes) at

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory — p. 29/!



4. Consistency: examples

°* P ={py(x) =0e%1{z >0} : 6 > 0} — Inequality 2

e P = {all monotone decreasing densities on R"} —
Inequality 3

* P = {all k-monotone densities on R*} — Inequality 3

* P = {one-jump counting process with

panel count observation scheme}
(Schick and Yu (2000); van der Vaart and Wellner (2000))

* P = {competing risks model with current status censoring}
(Maathuis)

* ... (see Torgnon-Cortona-Delft notes) at
http://www.stat.washington.edu/jaw/RESEARCH/
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5. Introduction I, part 2: more empirical process theory

* If f € Ly(P), so P|f|* = [ f?dP < oo, then

V(P (f) = P(f)) —a N(O, Varp(f(X)) (5)

by the classical Central Limit Theorem.

® Suppose that F is a collection of real-valued functions
f : X — R. If the convergence in (5) holds uniformly over
feF,

VP, — P)(f) = Gp(f)  in £2(F) (6)

where Gp Is a P—Brownian bridge process then call F a
Donsker class for P.
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Two Donsker theorems:

®* Theorem: (Ossiander, 1987) If

1
/ \/10gN[](€,f, LQ(P))CZG < o0
0

(so that F has an envelope F with PF? < ~o) then F is
P—Donsker.
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Two Donsker theorems:

®* Theorem: (Ossiander, 1987) If

1
/ \/10gN[](€,f, LQ(P))CZE < o0
0

(so that F has an envelope F with PF? < ~o) then F is
P—Donsker.

* Theorem: (Pollard,1982; Koltchinskii, 1981)
If F has envelope function F with PF? < oo and

1
/ sup  /log N(e|[ Fllg.2, F, L2(Q))de < o
0 @

then F is P—Donsker.
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Two Donsker theorems:

®* Theorem: (Ossiander, 1987) If

1
/ \/IOgNH(E’f’ LQ(P))CZE < o0
0

(so that F has an envelope F with PF? < ~o) then F is
P—Donsker.

* Theorem: (Pollard,1982; Koltchinskii, 1981)
If F has envelope function F with PF? < oo and

1
/ sup  /log N(e|[ Fllg.2, F, L2(Q))de < o
0 @

then F is P—Donsker.
* log Njj(e, F, Lo(P)) < Ke " with r < 2 suffices.
supg log N (|| F'||g,2, F, L2(Q)) < Ke " with r < 2 suffices.
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6. Rates of convergence via empirical process theory

®* Suppose O Is a metric space with a metric d.
* Consider estimation of # € © by maximizing

M, (0) = P,mg(X), 0 c 0o
for some collection of real-valued functions mg(X) from

O x X to R.

* Possibilities for my:
o mg(X) = log pg(X)
o mg(X) =logqy(X) for gy € Py C P, or
o my(X) = — [ pidu + 2py(X).

* Population version of criterion function:

M(6) = Pymg(X), 0€O.
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Rates via empirical process theory, contd.

* Now assume that 6, is a point maximizing M(6).

* When M is sufficiently smooth, the first derivative of M
vanishes at 0y and the second derivative is typically
negative definite. Hence it is very natural to assume that

M(6) — M(6p) < —d*(6, 6o) (7)

for 6 in a neighborhood of 6.
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Rates via empirical process theory, contd.

Basic rate theorem: Suppose that:
¢ (7) holds for 6 in a neighborhood of 6;
o M, — M satisfies

* o o o ¢n(5)
E d(937191()1)3<5‘(Mn M)(0) — (M, — M) (6o)| S Jn

where ¢,, are functions satisfying 6 — ¢,,(5) /6
IS decreasing for some a < 2 (not depending on n).

»n Maximizes M, (6)

D>
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Rates via empirical process theory, contd.

o Then
rnd (O, 00) = O;(l)

for r,, satisfying

T2 O, (i> <\/n  forevery n.
T

n
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Rates via empirical process theory, contd.

° If $,,(6) = 67, then r,, = nITH = ns.

15, S name / situation

1 1/2 classical smoothness

1/2 1/3 bounded monotone on R

3/4 2/5 convex on R

3/4 2/5 | bounded second derivative on [0, 1]
1—d/4|2/(d+4) convex in R?
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Rates via empirical process theory, contd.

° If $,,(6) = 67, then r,, = nITH = ns.

15, S name / situation

1 1/2 classical smoothness

1/2 1/3 bounded monotone on R

3/4 2/5 convex on R

3/4 2/5 | bounded second derivative on [0, 1]
1—d/4|2/(d+4) convex in R?

* How do we get ¢,(6)? Empirical process theory ... !
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Rates via empirical process theory, contd.

* When M,,(6) = P,,mg and M(0) = Pymy, then with
Gp = \/H(Pn — PO)

vn sup  |(M, —M)(0) — (M, — M)(0o)| = [IGnllrm;00)
d(0,00)<é

where
./\/l(;(@o) — {mg — My, : d(@, (9()) < 5}

* Then the key oscillation condition of the theorem becomes:

E™||Gnllrms00) S ¢n(0)
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Rates via empirical process theory, contd.

* Uniform entropy bounds and bracketing bounds yield

E|Gullm, S J(1, Ms)(PMF)'/2,

Y

E|Gnllm, S Jjp(1, Mg, La(P))(PME)Y2,

where M; is an envelope function for the class
My = {mg — My, : d(@,@o) < 5},

T, /¢1+1ogzv lF],F, - 1) de

J(5, F) = sgp/ 1+ 10g N(e| Fllga. ., La(Q) de.
0
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Rates via empirical process theory, contd.

° Let m, = log (p;g;o), M, (p) = Pymy,.

* Fact: The MLE p,, satisfies M., (p,,) > M,,(po)
°* Theorem. (Birgé and Massart). Suppose py € P. Then

M(p) — M(po) = Po(myp — myp,) < —h*(p, po) -

Furthermore, with Ms = {m, — m,, : h(p,po) <9I},

J1(8, P, h)
Ep Gnllm, S Jjp(8, P, k) <1+ []52\/5 >E¢n(5)

where

o
J[]((S,P,h) — /52 \/1 —I—logNH(E,P,h) de.
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Rates via empirical process theory, contd.

* Thus the rate of convergence of the MLE r,, = ™ is
determined by the solution of

\/ET;Q :/; \/logNH<€,P,h)d€.

T'n

* |f

K
logN[](E,P,h) =~ m (8)

then r, is given by

n?/ 7+ if 4 > 1/2 (upper limit dominant)
T'n = : .. .
n"/? if v < 1/2 (lower limit dominant) .
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Rates via empirical process theory, contd.

* Le Cam (1973); Birgé (1983):

optimal rate of convergence r,, = " determined by
nry, ¢ = log Njj(1/ry, P, h) 9)
° |f
K

log Npj(€, P) =< (10)

61/7

(9) leads to the optimal rate of convergence

roPt — nY/(2y+1)

* Conclusion: the MLE is (possibly) rate sub-optimal if
v < 1/2.
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Rates via empirical process theory, contd.

* Typically
1 d

v«

where d is the dimension of the underlying sample space
and « Is a measure of the “smoothness” (or number of
derivatives) of the functions in P.

* Hence

N |

leads to v < 1/2.

* But there are many examples/problem with v > 1/2!
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Optimal rate and MLE global rate as a function of -y
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Difference of rates v /(2v + 1) — /2

0.1 0.2 0.3 0.4 0.5
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/. Rates for MLEs: examples

* (Birgé-Massart, 1993): a—Holderian densities on [0, 1] with
o < 1/2, riie = po/2 PP — po/(2atl)

* (Birgé, 1987, 1989): monotone density on R.
1/y=1/1=1. re = pl/3 = pP*.

* (Biau-Devroye, 2003): monotone decreasing densities In
Rt 1/y =d/a = d. rift = pl/@+d) | pmie — 1/(2d)7
(Entropies still unknown; rate of convergence of MLE
unknown).

* (van de Geer, 1996, 2000): Interval censoring in R.

1/v =1/1 =1 r™e = pl/3 (up to log terms); r&" =2

* (Maathuis, 2004). competing risks with current status data.

1/v =1/1, rmle = pl/3 = p2P*
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/. Rates for MLEs: examples, cont'd.

* (Ghosal and van der Vaart, 2001): normal location mixtures
on R. log Njj(e, P, h) < (log(1/¢€))*" 1.
ypmle rgpbayes _ n1/2/(10g n)1/2—|—7’\/1/2.

- —

e k—monotone densities on R*+: 7" = pk/(2k+1)7

T;nle _ nk‘/(2k—i—1)?
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8. Problems and challenges

* Characterization of consistency of MLE’s (dominated case)?
* Characterization of rate of convergence of MLE's?
* Is the MLE always rate-supoptimal when ~ < 1/2?

* Exact bounds for Njj(€, Prmonotone,d, 1)?
Exact rates for MLE over P,,onotone,d?

* More entropy results for Nj(e, P, h)?

* Beyond consistency and global rates:
° Tools for local rates? (No unifying method yet!)

° Algorithms for computation?
(Iterative Convex Minorant; Support reduction; ... ?)

° Non-dominated case: characterization of consistency?

© Methods for global rates when model assumptions fail?
(Kleljn and van der Vaart (2005) treat nonparametric
Bayes estimators)
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