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1. Introduction I: maximum likelihood estimation

• Setting: dominated families; i.i.d. sampling.
• X1, . . . ,Xn are i.i.d. with density pθ0 with respect to some

dominating measure µ where pθ0 ∈ P = {pθ : θ ∈ Θ} for Θ
a parameter space.

• The likelihood is

Ln(θ) =
n∏

i=1

pθ(Xi) .

• Definition: A Maximum Likelihood Estimator (or MLE) of θ0 is
any value θ̂ ∈ Θ satisfying

Ln(θ̂) = sup
θ∈Θ

Ln(θ) .
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• Equivalently, the MLE θ̂ maximizes the log-likelihood

1
n

log Ln(θ) =
1
n

n∑
i=1

log pθ(Xi) = Pn log pθ(X)

where Pn is the empirical measure,

Pn =
1
n

n∑
i=1

δXi
.
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• Example 1. Exponential (θ). X1, . . . ,Xn are i.i.d. pθ0 where

pθ(x) = θ exp(−θx)1[0,∞)(x).

• Then the likelihood is

Ln(θ) = θn exp(−θ
n∑
1

Xi),

• so the log-likelihood is

log Ln(θ) = n log(θ) − θ

n∑
1

Xi

• and θ̂n = 1/Xn.
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MLE pθ̂(x) and true density pθ0
(x)
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• Example 2. Monotone decreasing densities on (0,∞).
X1, . . . ,Xn are i.i.d. p0 ∈ P where

P = all nonincreasing densities on (0,∞).
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• Example 2. Monotone decreasing densities on (0,∞).
X1, . . . ,Xn are i.i.d. p0 ∈ P where

P = all nonincreasing densities on (0,∞).

• Then the likelihood is Ln(p) =
∏n

i=1 p(Xi);
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• Example 2. Monotone decreasing densities on (0,∞).
X1, . . . ,Xn are i.i.d. p0 ∈ P where

P = all nonincreasing densities on (0,∞).

• Then the likelihood is Ln(p) =
∏n

i=1 p(Xi);
• Ln(p) is maximized by the Grenander estimator:

p̂n(x) = left derivative at x of the Least Concave Majorant

Cn of Fn

where Fn(x) = n−1
∑n

i=1 1{Xi ≤ x}
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Figure 5: Grenander Estimator, n = 10
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Figure 5: Grenander Estimator, n = 100
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2. Introduction II: empirical process theory

• X1, . . . ,Xn are i.i.d. P on (X ,A)
• The empirical measure of the sample is

Pn =
1
n

n∑
i=1

δXi

where

δx(A) = 1A(x) =

{
1 if x ∈ A,

0 if x /∈ A.
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• Thus for a set A ∈ A

Pn(A) =
1
n

n∑
i=1

δXi
(A) =

1
n

n∑
i=1

1A(Xi)

=
#{1 ≤ i ≤ n : Xi ∈ A}

n
.

• For a (measurable) function f : X → R

Pn(f) =
∫

fdPn =
1
n

n∑
i=1

f(Xi).
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• If f ∈ L1(P ), so P |f | =
∫ |f |dP < ∞, then

Pn(f) →a.s. P (f) = Ef(X) (1)

by the SLLN.
• Suppose that F is a collection of real-valued functions

f : X → R. If the convergence in (1) holds uniformly over
f ∈ F ,

‖Pn − P‖F = sup
f∈F

|Pn(f) − P (f)| →a.s. 0, (2)

then call F a Glivenko-Cantelli class for P .
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• Bracketing numbers: for functions l, u : X → R with l ≤ u,
the bracket [l, u] is defined by

[l, u] ≡ {f ∈ F : l(x) ≤ f(x) ≤ u(x) for all x ∈ X}. (3)

[l, u] is an ε−bracket for Lr(P ) if ‖u − l‖Lr(P ) < ε.
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• Bracketing numbers: for functions l, u : X → R with l ≤ u,
the bracket [l, u] is defined by

[l, u] ≡ {f ∈ F : l(x) ≤ f(x) ≤ u(x) for all x ∈ X}. (4)

[l, u] is an ε−bracket for Lr(P ) if ‖u − l‖Lr(P ) < ε.

• N[ ](ε,F , Lr(P )) = minimal number of ε − brackets
needed to cover F
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• Covering numbers:
N(ε,F , ‖ · ‖) is the minimal number of balls of radius ε with
respect to ‖ · ‖ needed to cover F . If

B(fj , ε) = {f ∈ F : ‖f − fj‖ < ε}

N(ε,F , ‖ · ‖) = min{J : F ⊂ ∪J
j=1B(fj , ε)

for some f1, . . . , fJ}
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• Covering numbers:
N(ε,F , ‖ · ‖) is the minimal number of balls of radius ε with
respect to ‖ · ‖ needed to cover F . If

B(fj , ε) = {f ∈ F : ‖f − fj‖ < ε}

N(ε,F , ‖ · ‖) = min{J : F ⊂ ∪J
j=1B(fj , ε)

for some f1, . . . , fJ}
• Envelope function F of a class F :

|f(x)| ≤ F (x) for all x ∈ X , all f ∈ F .
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• Theorem: (Bracketing Glivenko-Cantelli theorem)
If N[ ](ε,F , L1(P )) < ∞ for every ε > 0, (so that also F has
envelope function F with PF < ∞), then F is
P−Glivenko-Cantelli.
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• Theorem: (Bracketing Glivenko-Cantelli theorem)
If N[ ](ε,F , L1(P )) < ∞ for every ε > 0, (so that also F has
envelope function F with PF < ∞), then F is
P−Glivenko-Cantelli.

• Theorem: (VC-Steele-Pollard-Giné-Zinn)
If F has envelope function F with PF < ∞ and
FM ≡ {f1{F ≤ M} : f ∈ F} satisfies

n−1E log N(ε,FM , L1(Pn)) → 0,

for all ε > 0 and M > 0, then F is P−Glivenko-Cantelli (and
conversely).
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• Example: classical Glivenko-Cantelli theorem on R
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• Example: classical Glivenko-Cantelli theorem on R

◦ X = R, X ∼ P on (R,B)
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• Example: classical Glivenko-Cantelli theorem on R

◦ X = R, X ∼ P on (R,B)
◦ F = {x �→ 1(−∞,t](x) : t ∈ R} ≡ {ft}
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• Example: classical Glivenko-Cantelli theorem on R

◦ X = R, X ∼ P on (R,B)
◦ F = {x �→ 1(−∞,t](x) : t ∈ R} ≡ {ft}
◦ P (ft) = P (X ≤ t) ≡ FX(t)
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• Example: classical Glivenko-Cantelli theorem on R

◦ X = R, X ∼ P on (R,B)
◦ F = {x �→ 1(−∞,t](x) : t ∈ R} ≡ {ft}
◦ P (ft) = P (X ≤ t) ≡ FX(t)
◦ P(ft) = Pn(X ≤ t) ≡ Fn(t)

‖Pn − P‖F = sup
t∈R

|Fn(t) − FX(t)| →a.s. 0.
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• Example: classical Glivenko-Cantelli theorem on R

◦ X = R, X ∼ P on (R,B)
◦ F = {x �→ 1(−∞,t](x) : t ∈ R} ≡ {ft}
◦ P (ft) = P (X ≤ t) ≡ FX(t)
◦ P(ft) = Pn(X ≤ t) ≡ Fn(t)

‖Pn − P‖F = sup
t∈R

|Fn(t) − FX(t)| →a.s. 0.

◦ Here F = 1, and by VC - theory, for every r ≥ 1, Q on R

N(ε,F , Lr(Q)) ≤ K

(
M

ε

)r(V (F)−1)

where V (F) = 2
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3. Consistency via Glivenko-Cantelli theorems

• Inequality 1. (van de Geer, 1993). Suppose that

p̂n = argmax{Pn log(p) : p ∈ P}.

Then with h2(p, q) = (1/2)
∫

[
√

p −√
q]2dµ = 1 − ∫ √

pqdµ

h2(p̂n, p0) ≤ (Pn − P0)

(√
p̂n

p0
− 1

)
1{p0 > 0}

≤ sup{(Pn − P0)
(√

p

p0
− 1
)

1{p0 > 0} : p ∈ P}
→a.s. 0

if F ≡
{(√

p
p0

− 1
)

1{p0 > 0} : p ∈ P
}

is

P0−Glivenko-Cantelli.
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Proof of inequality 1.

• Since p̂n maximizes Pn log p,

0 ≤ 1
2

∫
[p0>0]

log
(

p̂n

p0

)
dPn

≤
∫

[p0>0]

(√
p̂n

p0
− 1

)
dPn since log(1 + x) ≤ x

=
∫

[p0>0]

(√
p̂n

p0
− 1

)
d(Pn − P0)

+ P0

(√
p̂n

p0
− 1

)
1{p0 > 0}

=
∫

[p0>0]

(√
p̂n/p0 − 1

)
d(Pn − P0) − h2(p̂n, p0)
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• Inequality 2. (Birgé and Massart, 1994).
If p̂n maximizes Pn log p over P, then

h2(p̂n, p0) ≤ 12(Pn − P0)
(

1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
≤ 12 sup{(Pn − P0)

(
1
2

log
(

p + p0

2p0

)
1{p0 > 0}

)
: p ∈ P}

→a.s. 0

if F ≡
{(

1
2 log

(
p+p0

2p0

)
1{p0 > 0}

)
: p ∈ P

}
is P0−Glivenko-Cantelli.
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Proof of inequality 2.

• By concavity of log,

log
(

p̂n + p0

2p0

)
1{p0 > 0} ≥ 1

2
log
(

p̂n

p0

)
1{p0 > 0}.

• Fact 1. K(P,Q) ≥ 2h2(P,Q) ≥ 0.

• Fact 2. h2(P,Q) ≤ 12h2(P, (P + Q)/2) .
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Proof of inequality 2, cont’d

• Since p̂n maximizes Pn log p,

0 ≤ Pn

(
1
4

log
(

p̂n

p0

)
1{p0 > 0}

)
≤ Pn

(
1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
= (Pn − P0)

(
1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
+ P0

(
1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
= (Pn − P0)

(
1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
− 1

2
K(P0, (P̂n + P0)/2)
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Proof of inequality 2, cont’d

•

≤ (Pn − P0)
(

1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
− h2(P0, (P̂n + P0)/2)

≤ (Pn − P0)
(

1
2

log
(

p̂n + p0

2p0

)
1{p0 > 0}

)
− 1

12
h2(P0, (P̂n + P0)/2)

since

h2(P,Q) ≤ 12h2(P, (P + Q)/2).

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory – p. 27/5



• Inequality 3. (Pfanzagl,1988)
If P is convex and p̂n maximizes Pn log p over P, then

h2(p̂n, p0) ≤ (Pn − P0)
(

2p̂n

p̂n + p0

)
≤ sup{(Pn − P0)

(
2p

p + p0

)
: p ∈ P}

→a.s. 0

if F ≡
{

2p
p+p0

: p ∈ P
}

is P0−Glivenko-Cantelli.
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4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2
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4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory – p. 29/5



4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

• P = {all k-monotone densities on R+} – Inequality 3

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory – p. 29/5



4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

• P = {all k-monotone densities on R+} – Inequality 3

• P = {one-jump counting process with
panel count observation scheme}

(Schick and Yu (2000); van der Vaart and Wellner (2000))
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4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

• P = {all k-monotone densities on R+} – Inequality 3

• P = {one-jump counting process with
panel count observation scheme}

(Schick and Yu (2000); van der Vaart and Wellner (2000))
• P = {competing risks model with current status censoring}

(Maathuis)
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4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

• P = {all k-monotone densities on R+} – Inequality 3

• P = {one-jump counting process with
panel count observation scheme}

(Schick and Yu (2000); van der Vaart and Wellner (2000))
• P = {competing risks model with current status censoring}

(Maathuis)
• · · · (see Torgnon-Cortona-Delft notes) at
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4. Consistency: examples

• P = {pθ(x) = θe−θx1{x ≥ 0} : θ > 0} – Inequality 2

• P = {all monotone decreasing densities on R
+} –

Inequality 3

• P = {all k-monotone densities on R+} – Inequality 3

• P = {one-jump counting process with
panel count observation scheme}

(Schick and Yu (2000); van der Vaart and Wellner (2000))
• P = {competing risks model with current status censoring}

(Maathuis)
• · · · (see Torgnon-Cortona-Delft notes) at

http://www.stat.washington.edu/jaw/RESEARCH/

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory – p. 29/5



5. Introduction II, part 2: more empirical process theory

• If f ∈ L2(P ), so P |f |2 =
∫

f2dP < ∞, then

√
n(Pn(f) − P (f)) →d N(0, V arP (f(X)) (5)

by the classical Central Limit Theorem.
• Suppose that F is a collection of real-valued functions

f : X → R. If the convergence in (5) holds uniformly over
f ∈ F ,

√
n(Pn − P )(f) ⇒ GP (f) in �∞(F) (6)

where GP is a P−Brownian bridge process then call F a
Donsker class for P .
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Two Donsker theorems:

• Theorem: (Ossiander, 1987) If∫ 1

0

√
log N[ ](ε,F , L2(P ))dε < ∞

(so that F has an envelope F with PF 2 < ∞) then F is
P−Donsker.
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Two Donsker theorems:

• Theorem: (Ossiander, 1987) If∫ 1

0

√
log N[ ](ε,F , L2(P ))dε < ∞

(so that F has an envelope F with PF 2 < ∞) then F is
P−Donsker.

• Theorem: (Pollard,1982; Koltchinskii, 1981)
If F has envelope function F with PF 2 < ∞ and∫ 1

0
sup
Q

√
log N(ε‖F‖Q,2,F , L2(Q))dε < ∞

then F is P−Donsker.
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Two Donsker theorems:

• Theorem: (Ossiander, 1987) If∫ 1

0

√
log N[ ](ε,F , L2(P ))dε < ∞

(so that F has an envelope F with PF 2 < ∞) then F is
P−Donsker.

• Theorem: (Pollard,1982; Koltchinskii, 1981)
If F has envelope function F with PF 2 < ∞ and∫ 1

0
sup
Q

√
log N(ε‖F‖Q,2,F , L2(Q))dε < ∞

then F is P−Donsker.
• log N[ ](ε,F , L2(P )) ≤ Kε−r with r < 2 suffices.

supQ log N(ε‖F‖Q,2,F , L2(Q)) ≤ Kε−r with r < 2 suffices.
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6. Rates of convergence via empirical process theory

• Suppose Θ is a metric space with a metric d.
• Consider estimation of θ ∈ Θ by maximizing

Mn(θ) = Pnmθ(X), θ ∈ Θ

for some collection of real-valued functions mθ(X) from
Θ ×X to R.

• Possibilities for mθ:
� mθ(X) = log pθ(X)
� mθ(X) = log qθ(X) for qθ ∈ P0 ⊂ P, or
� mθ(X) = − ∫ p2

θdµ + 2pθ(X).
• Population version of criterion function:

M(θ) = P0mθ(X), θ ∈ Θ.
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Rates via empirical process theory, contd.

• Now assume that θ0 is a point maximizing M(θ).
• When M is sufficiently smooth, the first derivative of M

vanishes at θ0 and the second derivative is typically
negative definite. Hence it is very natural to assume that

M(θ) − M(θ0) � −d2(θ, θ0) (7)

for θ in a neighborhood of θ0.
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Rates via empirical process theory, contd.

Basic rate theorem: Suppose that:
� (7) holds for θ in a neighborhood of θ0;
� Mn − M satisfies

E∗ sup
d(θ,θ0)<δ

|(Mn − M)(θ) − (Mn − M)(θ0)| � φn(δ)√
n

,

where φn are functions satisfying δ �→ φn(δ)/δα

is decreasing for some α < 2 (not depending on n).
� θ̂n maximizes Mn(θ)
� θ̂n →p∗ θ0
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Rates via empirical process theory, contd.

� Then
rnd(θ̂n, θ0) = O∗

p(1)

for rn satisfying

rn
2φn

(
1
rn

)
≤ √

n for every n .
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Rates via empirical process theory, contd.

• If φn(δ) = δβ , then rn = n
1

2(2−β) ≡ ns.

β s name / situation

1 1/2 classical smoothness
1/2 1/3 bounded monotone on R

3/4 2/5 convex on R

3/4 2/5 bounded second derivative on [0, 1]
1 − d/4 2/(d + 4) convex in Rd
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Rates via empirical process theory, contd.

• If φn(δ) = δβ , then rn = n
1

2(2−β) ≡ ns.

β s name / situation

1 1/2 classical smoothness
1/2 1/3 bounded monotone on R

3/4 2/5 convex on R

3/4 2/5 bounded second derivative on [0, 1]
1 − d/4 2/(d + 4) convex in Rd

• How do we get φn(δ)? Empirical process theory ... !
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Rates via empirical process theory, contd.

• When Mn(θ) = Pnmθ and M(θ) = P0mθ, then with
Gn =

√
n(Pn − P0)

√
n sup

d(θ,θ0)<δ
|(Mn − M)(θ) − (Mn − M)(θ0)| = ‖Gn‖Mδ(θ0)

where
Mδ(θ0) = {mθ − mθ0 : d(θ, θ0) < δ}.

• Then the key oscillation condition of the theorem becomes:

E∗‖Gn‖Mδ(θ0) � φn(δ)

Consistency and rates of convergencefor maximum likelihood estimatorsvia empirical process theory – p. 37/5



Rates via empirical process theory, contd.

• Uniform entropy bounds and bracketing bounds yield

E‖Gn‖Mδ
� J(1,Mδ)(PM2

δ )1/2 ,

E‖Gn‖Mδ
� J[ ](1,Mδ , L2(P ))(PM2

δ )1/2 ,

where Mδ is an envelope function for the class
Mδ = {mθ − mθ0 : d(θ, θ0) ≤ δ},

J[ ](δ,F , ‖ · ‖) =
∫ δ

0

√
1 + log N[ ](ε‖F‖,F , ‖ · ‖) dε

J(δ,F) = sup
Q

∫ δ

0

√
1 + log N(ε‖F‖Q,2,F , L2(Q)) dε .
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Rates via empirical process theory, contd.

• Let mp = log
(

p+p0

2p0

)
, Mn(p) = Pnmp.

• Fact: The MLE p̂n satisfies Mn(p̂n) ≥ Mn(p0)
• Theorem. (Birgé and Massart). Suppose p0 ∈ P. Then

M(p) − M(p0) = P0(mp − mp0) � −h2(p, p0) .

Furthermore, with Mδ = {mp − mp0 : h(p, p0) ≤ δ},

E∗
P0
‖Gn‖Mδ

� J̃[ ](δ,P , h)

(
1 +

J̃[ ](δ,P , h)
δ2
√

n

)
≡ φn(δ)

where

J̃[ ](δ,P , h) ≡
∫ δ

cδ2

√
1 + log N[ ](ε,P , h) dε.
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Rates via empirical process theory, contd.

• Thus the rate of convergence of the MLE rn = rmle
n is

determined by the solution of

√
nr−2

n =
∫ r−1

n

cr−2
n

√
log N[ ](ε,P , h)dε.

• If

log N[ ](ε,P , h) � K

ε1/γ
(8)

then rn is given by

rn =

{
nγ/(2γ+1) if γ > 1/2 (upper limit dominant)
nγ/2 if γ < 1/2 (lower limit dominant) .
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Rates via empirical process theory, contd.

• Le Cam (1973); Birgé (1983):
optimal rate of convergence rn = ropt

n determined by

nr−2
n = log N[ ](1/rn,P , h) (9)

• If

log N[ ](ε,P) � K

ε1/γ
(10)

(9) leads to the optimal rate of convergence

ropt
n = nγ/(2γ+1) .

• Conclusion: the MLE is (possibly) rate sub-optimal if
γ ≤ 1/2.
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Rates via empirical process theory, contd.

• Typically
1
γ

=
d

α

where d is the dimension of the underlying sample space
and α is a measure of the “smoothness” (or number of
derivatives) of the functions in P.

• Hence

α ≤ d

2

leads to γ ≤ 1/2.

• But there are many examples/problem with γ > 1/2!
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Optimal rate and MLE global rate as a function of γ
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Difference of rates γ/(2γ + 1) − γ/2
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7. Rates for MLEs: examples

• (Birgé-Massart, 1993): α−Hölderian densities on [0, 1] with
α < 1/2. rmle

n = nα/2, ropt
n = nα/(2α+1).

• (Birgé, 1987, 1989): monotone density on R+.
1/γ = 1/1 = 1. rmle

n = n1/3 = ropt
n .

• (Biau-Devroye, 2003): monotone decreasing densities in
R

+d. 1/γ = d/α = d. ropt
n = n1/(2+d), rmle

n = n1/(2d)?
(Entropies still unknown; rate of convergence of MLE
unknown).

• (van de Geer, 1996, 2000): Interval censoring in R.
1/γ = 1/1 = 1 rmle

n = n1/3 (up to log terms); ropt
n =?

• (Maathuis, 2004): competing risks with current status data.
1/γ = 1/1, rmle

n = n1/3 = ropt
n .
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7. Rates for MLEs: examples, cont’d.

• (Ghosal and van der Vaart, 2001): normal location mixtures
on R. log N[ ](ε,P , h) ≤ (log(1/ε))2r+1.

rmle
n = rnpbayes

n = n1/2/(log n)1/2+r∨1/2.

• k−monotone densities on R+: ropt
n = nk/(2k+1)?

rmle
n = nk/(2k+1)?
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8. Problems and challenges

• Characterization of consistency of MLE’s (dominated case)?
• Characterization of rate of convergence of MLE’s?
• Is the MLE always rate-supoptimal when γ ≤ 1/2?

• Exact bounds for N[ ](ε,Pmonotone,d, h)?
Exact rates for MLE over Pmonotone,d?

• More entropy results for N[ ](ε,P , h)?

• Beyond consistency and global rates:
◦ Tools for local rates? (No unifying method yet!)
◦ Algorithms for computation?

(Iterative Convex Minorant; Support reduction; ... ?)
◦ Non-dominated case: characterization of consistency?
◦ Methods for global rates when model assumptions fail?

(Kleijn and van der Vaart (2005) treat nonparametric
Bayes estimators)
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