
The Stat 390 R Primer

Christopher G. Green

cggreen@stat.washington.edu
http://www.stat.washington.edu/cggreen/

Copyright c© 2003 by Christopher G. Green. All rights reserved.

Permission is granted to make, store, and distribute verbatim copies of this book.

Revision date: September 12, 2003

Contents

Preface v

Legal Notice vi

0.1 Disclaimer . vi

1 Installing R on your home computer 1

1.1 Installing R . 1

1.1.1 Windows . 1

1.1.2 Mac OS 8.6-9.2, OS X (without Darwin) . 2

1.1.3 Mac OS X (with Darwin) . 2

1.1.4 Linux . 3

2 Getting Started 4

2.1 Running R . 4

2.1.1 Starting R . 4

2.1.2 File Management . 5

2.1.3 Ending Your R Session . 5

2.2 How to Find Help in R . 5

2.2.1 What To Do When You’re Lost... 6

2.3 The Rules—R Conventions . 7

3 Computation 9

3.1 Variables . 9

3.1.1 Assignment . 9

3.2 Data Structures . 9

3.2.1 Vectors . 10

3.2.2 Other Data Structures . 13

3.3 Mathematical and Statistical Functions . 13

3.3.1 Basic Mathematical and Statistical Functions . 13

3.3.2 Probability Distributions . 13

3.4 Programming Constructs . 15

3.4.1 Logical Operators . 15

3.4.2 Control Statements—If-Else . 15

3.4.3 For Loops . 16

i

CONTENTS ii

4 Visualizing Data—Graphics in R 18
4.1 High-Level Graphics Commands . 18

4.1.1 Scatterplots . 18
4.1.2 Boxplots . 20
4.1.3 Histograms . 20
4.1.4 Visualization in More Than Two Dimensions . 22

4.2 Low-Level Graphics Commands . 23
4.3 Interactive Graphics Commands . 24
4.4 Graphics Parameters . 24

4.4.1 Making an Array of Plots . 24
4.4.2 Other Useful Plotting Options . 24

4.5 Other Graphics-Related Commands . 25
4.6 Getting Plots into Word, Powerpoint, etc. 25

5 Odds and Ends 26
5.1 Input and Output . 26

5.1.1 Reading Commands From a File . 26
5.1.2 Redirecting Output to Text Files . 26
5.1.3 Reading and Writing Data Files . 27

5.2 Managing Your Workspace . 27
5.3 Files and Directories . 28
5.4 Options . 28

5.4.1 Changing the Number of Digits Printed . 28
5.5 Printing . 28

6 Regression and ANOVA 29
6.1 Simple Linear Regression with lm . 29
6.2 Multiple Linear Regression with lm . 32
6.3 ANOVA . 33
6.4 Other Models . 34

A Table of Common Distributions in R 36

Further Reading 37

Index 38

List of Figures

4.1 Example Scatterplot . 19
4.2 Scatterplot of Dice Rolls . 19
4.3 Boxplot of data from dice rolls experiment. 20
4.4 Histogram produced using hist(z) . 21
4.5 Histogram produced using hist(z,prob=TRUE) . 21
4.6 Histogram produced using an explicit breaks command. 21
4.7 Histogram of dice roll data using br=5 option. 22
4.8 Relative Frequency Histogram Produced Using R . 24

6.1 Scatterplot of Regression Example. The Fitted Line is shown in blue. 31
6.2 Q-Q Plot of Regression Example. 31
6.3 Q-Q Plot from ANOVA. 35

iii

List of Tables

3.1 Basic mathematical functions. 13
3.2 Basic statistical functions. 14
3.3 Example Probability Distribution . 14

A.1 R Commands for Common Distributions . 36

iv

Preface

This book is based upon material from many sources. My primary reference was the introductory R manual
included with the R distribution (An Introduction to R, W. N. Venables, D. M. Smith, and the R Development
Core Team). Other sources include the excellent help files built into R, the R-Help mailing list, and some
notes from Garrett Hellenthal, my predecessor as 390 TA.

My intended audience for this book is students in introductory statistics classes, primarily Statistics 390.
The initial inspiration for this book was the lack of R material devoted to students with little or no computing
background. I have written this book with these students in mind.

Acknowledgements

I would like to thank David Rose, for whom I TA’d Stat 390 for four great quarters. He gave me the freedom
to work on this book, and readily adopted it as the official R manual for the class. I would also like to thank
Garrett Hellenthal, from whose notes I picked up many R tips.

I must, of course, thank the developers of R for producing such a useful piece of software and giving it

away.
Finally, I would like to thank all the 390 students for using the manual and offering helpful suggestions

(and catching my mistakes!).

v

Legal Notice

0.1 Disclaimer

This book contains information derived from on-line instruction manuals, newsgroups, mailing lists, and
other outside sources. This book is provided as a convenience to assist students enrolled in Statistics 390
at the University of Washington (the “students”) in installing the R programming environment (“R”) on the
students’s home computers. Chris Green adds information to this book whenever he deems it necessary.
Chris Green provides no guarantees that this book will contain up-to-date information. The date listed in
the front of the book as “Last updated” is the last date on which Chris Green modified this book.

Chris Green has access to a limited number of computers, operating systems, and configurations. Chris
Green therefore does not and cannot guarantee or certify the accuracy of this information. The information
may contain errors and omissions, including, but not limited to, technical inaccuracies and typographical
errors. The information in this book is provided “as is” without representations or warranties of any kind,
either express or implied. Each person obtaining information from this resource assumes full responsibility
and all risks arising from the use of and reliance on the information contained on this book. In particular,
Chris Green assumes no responsibility for any losses and/or damages to computer equipment incurred by
following the instructions on this book.

Chris Green reserves the right to make additions, deletions or modifications to the information contained
on this book.

If you do not accept these terms, then you must not use this book.

vi

Chapter 1

Installing R on your home computer

R is available for free on the Comprehensive R Archive Network (CRAN) website. For most systems, the
base R package is available in a single, ready-to-install file.

1.1 Installing R

First, open your favorite web browser and make your way to the R Project homepage (http://www.r-project.org/).
Click on the “CRAN” link on the menu on the left-hand side of the page. This will take you to a page list-
ing servers from which you can download R. You should pick the server that is (geographically) closest to
you. (If you are a Statistics 390 student here at the University of Washington, the CRAN mirror at UCLA
(http://cran.stat.ucla.edu/) is probably the best one for you.)

Once you have clicked the link for your mirror of choice, you will be greeted with a page listing “Pre-
compiled Binary Distributions” and “Source Code”. You should find your operating system (Windows, Mac,
Linux, etc.) under “Precompiled Binary Distributions”. These are the ready-to-install files containing the
base R package, and are the easiest way to get R up and running on your machine.

(The “Source Code” contains all the computer code used to create R. It must be assembled into a
executable file before it can be used. Do not download the source code unless you are absolutely sure you
know how to compile and set up a package from a tarball.)

Now follow the platform-specific instructions below.

1.1.1 Windows

1. Click on the “Windows (95 and later)” link.

2. Click on “base”.

3. Click on “rw1071.exe”. Save it to a file on your hard drive. Note: the installation file is about 21
Megabytes. If you are on a slow Internet connection, ask your professor to loan you an installation
CD.

4. Find “rw1071.exe” on your hard drive. Although the maintainers of R regularly scan their software for
viruses, it is a good idea to scan this file with your virus scanning software, just to be safe.

5. Close all other programs before beginning the installation. You should also disable your virus-protection
software now, as it may interfere with the installation.

1

http://www.r-project.org/
http://www.r-project.org/
http://cran.stat.ucla.edu/
http://cran.stat.ucla.edu/

1.1. INSTALLING R 2

6. If you are using Windows 95, 98 or ME, you may simply double click on the“rw1071.exe”, and follow the
directions. If you are using Windows NT 4.x, 2000, XP, or later, you will need to run the installation
program as “Administrator”. If you do not have administrative privileges on your computer, ask your
system administrator to install R for you.

7. After you have installed R, don’t forget to reenable your virus protection software!

For additional assistance read the file “ReadMe.rw1071”, also located under the “base” directory on CRAN.

Installation Notes

• Caution. You only need the file “rw1071.exe” to install R. You do not need the “mini*” files. These
are designed for making a set of R installation floppies. Installing R from floppies is really slow. We
have made installation CD’s for those of you on slow Internet connections; you should borrow one of
these from your professor if you find yourself in this situation.

• The current version of R, as of this writing, is version 1.7.1. It is still relatively new, so there may still
be minor problems with the installation procedure. The developers of R only have access to a small
number of machines, and cannot test the software on every possible platform. If you encounter any
difficulties installing R, contact your TA.

1.1.2 Mac OS 8.6-9.2, OS X (without Darwin)

NOTE: According to the README file on CRAN, Mac OS Versions 8.6-9.2.2 will not be supported from
R version 1.8.0 onward.

1. Click on the “MacOS (System 8.6 to 9.1 and Mac OS X)” link.

2. Download the “stuffed” file “rm171.sit”. It contains the base distribution and several recommended
packages. Save it to a file on your hard drive. Note: the installation file is about 11 Megabytes. If
you are on a slow Internet connection, ask your professor to loan you an installation CD.

3. Find“rm171.sit”on your hard drive. It is a good idea to scan this file with your virus scanning software,
just to be safe.

4. Drag the archive“rm171.sit” from where you downloaded it and drop it on the Alladin Stuffit Expander
(TM) icon.

5. When the expander has finished you should move the folder to where you prefer to put R.

You should be ready to go. It is a good idea to read the User’s Guide“rmac-FAQ.html” (which is also located
on CRAN in the same directory as the installation file) before you start.

1.1.3 Mac OS X (with Darwin)

At the time of this writing, the Mac OS X Darwin version of R is only available in source code form, so there
is a bit more work involved in installing R here. Luckily, the configuration scripts have been extensively
tested, so installation should proceed smoothly.

1. From the starting page, go to the “Source Code for the Latest Release” link. Download the tarball
“R-1.7.1.tgz” to a directory on your computer. (A tarball is a group of files that have been collected
into one big file (a “tape archive” or “tar” file) and then compressed (usually with the gzip program).
If you’ve never seen these before just think of them as the equivalent of a “zip” file or a “Stuffit” file.)

1.1. INSTALLING R 3

2. Decompress the file by typing “gzip -dc R-1.7.1.tgz | tar xf - ” at the prompt. The gzip com-
mand will decompress the “tar” file, and the tar command will extract the files from the archive.

3. Run the configuration script by typing “./configure” at the prompt. This will create a “Makefile”
containing the commands needed to automatically build R from the source code.

4. Assuming the configure script did not run into any errors, you should now build R using the command
“make”. This will process the Makefile you made in the previous step and assemble the source code
into a working program.

1.1.4 Linux

1. Click on the “Linux” link.

2. Click on your distribution.

R has been ported to several popular distributions. If you don’t see your distribution, you may be able to get
one of the listed ones to work. Otherwise, you’ll have to get the source tarball and build it on your machine.
This is not terribly hard, as the configuration scripts have been tested on many platforms. The instructions
for this are identical to those given in the Mac OS X Darwin section above. Be sure to run the installation
procedure as the “root” user; otherwise, some parts of the installation may fail. If you do not have “root”
priviledges on your system, ask your system administrator to install R for you.

Chapter 2

Getting Started

Now that you’ve got R installed on your machine, let’s talk about how to do the simple things in R.

2.1 Running R

2.1.1 Starting R

Under Windows you will probably have an entry for R somewhere on your Start Menu or an icon on your
desktop. Double-clicking on this icon will start the R GUI (Graphical User Interface) and bring up the R
console.

Under UNIX you should be able to start R by typing ‘R’ at the command prompt. (If you are not
sure what the exact command is, ask your system administrator.) This doesn’t provide the fancy GUI like
Windows does, but you can accomplish all the same tasks.

In either case, you should see the R console, the command-line interface to R. This is where you will type
commands, and where R’s textual output will appear.

After starting R, you should see a startup message followed by the R prompt, “>”:

R : Copyright 2002, The R Development Core Team

Version 1.5.0 (2002-04-29)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.

Type ‘q()’ to quit R.

[Previously saved workspace restored]

>

4

2.2. HOW TO FIND HELP IN R 5

The exact message you see may be different that the one above (it is from the version of R installed on the
UNIX system used in the production of this manual); this is no cause for concern.

2.1.2 File Management

You should create a directory to hold your R files, data, etc. R will prompt you to save your workspace upon
exiting, so it is best to keep this workspace separate from your files for other classes. You may even want to
create separate directories for each homework, project, etc.

It will be easier to keep things organized if you always remember to start R in the directory you have
chosen to hold all your R-related files. This is easy under UNIX: simply change to that directory using cd,
then start R as you would normally.

Under Windows, it’s a tad more complicated.

1. First, find your shortcut to R. This could be an icon on your desktop or an entry on your Start Menu.

2. Right-click on the icon or entry (this should work even for an entry on your Start Menu). You should
get a “context” menu.

3. Find the “Properties” entry and left-click on it. This will bring up a dialog box.

4. Find the line that says, “Start in”. There will be a text box next to this line.

5. Change the entry in the text box to your R directory. Be sure to type the full path to the directory.

6. Click “Apply”, then “Ok”.

7. Start R, and at the prompt type getwd(). You should see the path of your R directory. If not, go back
to Step 2, and double-check what you typed in the “Start in” text box.

You can also change directories while in R. From the command line, the commands getwd() will print the
current directory, and the command setwd(<directory>) will set the current directory to <directory>.1

Under Windows you can also use the menu: go to “File”-> “Change Dir...”. You will be prompted to enter
a directory or to select one using the browser (click “Browse”).

2.1.3 Ending Your R Session

To quit R, use the quit() or q() commands. R will ask you if you want to save your workspace. Your
workspace contains all the variables you have used so far. This is helpful if you want to come back to an
assignment later.

2.2 How to Find Help in R

Now that you’ve started R, you’ll need to know how to find help. You can get help on a specific command
by typing help(command) at the R prompt. For instance, to find out what the median function does, try
the following.

> help(median)

(median computes the median of a set of numbers.)
A synonym for the help command is the “?” operator. Use it by prefixing the name of the function on

which you seek help:

1Be careful when entering directories in R. Under Windows backslashes need to be escaped, so you should type

“C:\\foo\\bar.txt” instead of “C:\foo\bar.txt”.

2.2. HOW TO FIND HELP IN R 6

> ?(median)

To get help on special characters, enclose them in quotes and use help. For example:

> help("<-")

will tell you what the <− operator does (it is an assignment operator).
On most systems you can type help.start() at the R prompt to call up help pages in your web browser.

(On Windows this will typically work correctly after installation (note that it defaults to calling Internet
Explorer); on other systems you might need to set an environment variable for this to work.)

Another useful function is the example command. It runs the examples listed in the help file for a given
function.

example(<command name>)

will give you examples of <command name>. Continuing with our above example, let us see some examples
of median.

> example(median)

median> median(1:4)

[1] 2.5

median> median(c(1:3, 100, 1000))

[1] 3

It is important to note that the example command can only give you the examples found in the help files.

Not all commands have examples.
Finally, if you forget what the arguments to a command are, try the args command.

> args(median)

function (x, na.rm = FALSE)

NULL

Hence median takes 2 arguments. To see what each argument represents, refer back to the help page for
median.

2.2.1 What To Do When You’re Lost...

Sometimes you don’t know the exact command for what you are trying to do. Fortunately, the developers
of R have built some search capabilities into R that you can try out. The function help.search() can be
used to find commands by keywords. Enclose the keyword in quotes; for example, to find the R command
to compute the standard deviation, you might try

> help.search("standard deviation")

This will bring up a list of R commands containing the keywords “standard deviation” in their description.

Help files with alias or title matching ‘standard deviation’,

type ‘help(FOO, package = PKG)’ to inspect entry ‘FOO(PKG) TITLE’:

sd(base) Standard Deviation

pooledSD(nlme) Extract Pooled Standard Deviation

2.3. THE RULES—R CONVENTIONS 7

Here we see that the command for the standard deviation is sd(). The “base” in parentheses means that
sd() is part of the base R distribution, i.e, it is not located in an add-on package. (In Statistics 390, we
will rarely make use of functions in add-on packages. Hence when you are searching for a command you can
restrict your search to functions in the “base” package.)

Now we look up sd() using the ordinary help utility to find the actual syntax for the command

sd package:base R Documentation

Standard Deviation

Description:

This function computes the standard deviation of the values in

‘x’. If ‘na.rm’ is ‘TRUE’ then missing values are removed before

computation proceeds. If ‘x’ is a matrix or a dataframe, a vector

of the standard deviation of the columns is returned.

Usage:

sd(x, na.rm = FALSE)

Arguments:

x: a numeric vector, matrix or data frame.

na.rm: logical. Should missing values be removed?

See Also:

‘var’ for its square, and ‘mad’, the most robust alternative.

Examples:

sd(1:2) ^ 2

A word of advice: your search is only as good as the keyword you use, so be sure to choose a good one!

2.3 The Rules—R Conventions

Now let us move on to the day-to-day use of R.
Like any computer package, R has certain syntactical rules. It is important that you know these—it will

save you many headaches!

1. R is case-sensitive, i.e., “a” and “A” are different.

2. Variable names, function names, etc., should contain only alphanumeric characters (A-Z, a-z, 0-9) and
the period “.”. Take note, a name cannot start with a digit.2

3. Unlike other computing packages (MATLAB, for instance), R does not print the results of an assign-
ment. Hence, if you assign the value 2 to the variable x (we’ll talk about how to do this shortly), R
will do the assigment, but will not print anything to reflect its action.

2You should also avoid using the name of a built-in R function as the name of a variable. So that means you should avoid

variable names like mean, data, etc.

2.3. THE RULES—R CONVENTIONS 8

4. Commands are separated by semicolons (“;”) or by a newline. You can group commands using curly
braces (“{ }”).

5. R is an interpreted language. This essentially means that your code will be executed one line at a
time. (See the “R versus C” document for more information on this.) It is possible to extend R using
C/C++/Fortran, but this is beyond the scope of this document.

6. Lines starting with “#” are comments. This is useful for documenting your code, which you should

always do. (If you’re new to programming, you’d be surprised how quickly you can forget what a piece
of code does.)

7. If a command is not complete at the end of a line, R will give a continuation prompt, “+”, on subsequent
lines until the command is complete. This is especially useful when you are typing a really long
command or a command with several parentheses.

8. You can recall previous commands you have entered using the up and down ARROWS.

Now that you know the rules of the game, it’s time to play. In the next chapter we will discuss how to
do basic computations in R.

Chapter 3

Computation

Now let’s talk about how to compute with R. First, a brief discussion of how to declare variables and assign
values to them. Then, we will talk about vectors, the simplest data structure in R. Most of our work in
Statistics 390 will be done with vectors. Finally, we will present the mathematical and statistical functions
you will need for Statistics 390.

3.1 Variables

3.1.1 Assignment

As we noted earlier, you may only use alphanumeric characters in the names of your variables. Furthermore,
a name cannot start with a number. Thus, x, price.total, and foobar1 are all legal variable names in R,
while 3x, price_total, and foobar! are not legal and will result in a “syntax error”.

To set the value of a variable, use one of R’s assignment operators. In more recent versions of R, you can
use the equals sign “=” for assignment. This may be easiest for those of you coming from other languages.
You can also assign values using the “<−” operator for assignment. The value goes where the arrow points!
For example, both x = 3 and x <- 3 will set x to 3. It would also be okay to write 3 -> x, although this
is not a common practice (and can have rather unpleasant consequences if you are not careful).1

Previous versions of R also allowed one to use the “ ” operator for assignment, as in x_3. The “ ” operator
is now depreciated (i.e., it will not be supported in future versions of R), so don’t use it. We mention it here
only so that you can decipher any old R code you run into.

3.2 Data Structures

R is an object-oriented language. Essentially, this means that certain concepts (such as vectors and matrices)
and the relationships among them (for instance, a matrix can be thought of a row vector of column vectors)
have been encapsulated in abstracts called objects. (This is admittedly a poor definition, but a precise
definition of “object-oriented” is best left to a computer science class.) In R it is often useful to adopt the
viewpoint that “everything is an object”—from data vectors to complicated data structures to functions. It
is this viewpoint that makes R well-suited for statistical computations.

The data structure you will use most frequently in Statistics 390 is the vector. The vector is the simplest
data structure in R. You will become very familiar with basic vector operations in this class.

1Even though = and <- accomplish the same thing, the <- is preferred. The reasons for this are rather technical; we refer

the interested reader to http://developer.r-project.org/equalAssign.html.

9

http://developer.r-project.org/equalAssign.html
http://developer.r-project.org/equalAssign.html

3.2. DATA STRUCTURES 10

3.2.1 Vectors

A vector is an ordered collection of elements of the same type. Many of R’s functions are designed to be
used with vectors (i.e., they are vectorized). Not only does this make programming in R a bit more natural
(instead of writing a for loop to add two vectors you can just type “x+ y”), it also makes your code slightly
faster, as the vectorized routines have been optimized for your particular computer.

As we mentioned above, all the elements of a vector must be of the same type (mode, in the R parlance).
The available modes in R are character, complex, logical, and numeric.

• The character mode is for strings, such as ”one”.

• The complex mode is for complex numbers. We won’t have much use for complex numbers in this
class, so this is the last time we’ll mention them.

• The logical mode is for TRUE/FALSE expressions, such as the results of comparisons (“is x > 4?”).

• The numeric mode is for integers and real numbers.

Creating Vectors

The most general way to create a vector in R is to use the concatentation operator, c(). For example,

> x <- c(1,2,3,4,5)

creates a numeric vector of 5 entries, {1,2,3,4,5}, and assigns this vector to x. Type x at the prompt to see
the values of x (remember, R won’t print the result of an assignment).

> x

[1] 1 2 3 4 5

The“[1]” on the left-hand side of the output means that the entry “1” is the first element of the vector. When
a vector is too long to fit on a single line its entries are continued on subsequent lines; the index of the first
entry on each line is printed in brackets (as “[1]” was above) as handy reference.

To create a character vector, use c() with quoted strings.

> ord <- c("one","two","three","four","five")

> ord

[1] "one" "two" "three" "four" "five"

R also has an easy way to generate numeric sequences: the colon operator “:”. We could generate the
previous example more succinctly as

> x <- c(1:5)

More generally, one can use the sequence command seq() and the repeat command rep() to generate
arbitrary sequences. Here are some examples.

> seq(from=1,to=10,by=0.1)

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

[12] 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

[23] 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

[34] 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3

[45] 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4

[56] 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5

[67] 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6

[78] 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7

[89] 9.8 9.9 10.0

3.2. DATA STRUCTURES 11

produces a vector containing the numbers 1 through 10, incremented by 0.1. Note once again the indices of
the first entries on each line of the output are printed for your reference.

> rep(c(3,4,5),4)

[1] 3 4 5 3 4 5 3 4 5 3 4 5

repeats the vector (3,4,5) four times to yield the vector (3,4,5,3,4,5,3,4,5,3,4,5). On the other hand,

> rep(c(3,4,5),c(1,2,1))

[1] 3 4 4 5

repeats the elements of (3,4,5) according the elements of (1,2,1), i.e., “3” occurs once, “4” occurs twice, and
“5” occurs once. So the output is (3,4,4,5). We can furthermore combine seq() and rep.

> rep(seq(0,20,2),seq(0,20,2))

[1] 2 2 4 4 4 4 6 6 6 6 6 6 8 8 8 8 8 8

[19] 8 8 10 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12

[37] 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14

[55] 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

[73] 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

[91] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

[109] 20 20

Note that seq() and “:” can only be used for numeric sequences, while rep() can be used for character and
logical vectors.

Indexing Vectors

You can extract data from a vector with a subscript. In R subscripting is performed using square brackets
(“[” and “]”) and an index vector. (Note that in R vectors are indexed starting with 1, i.e., the first element
has index 1.)

For example, to access the fifth element of a vector x, we would type x[5] at the R prompt. To access a
range of entries, use the colon operator “:” to specify a range of indices:

> x <- c(0,1,2,3,4,7,8,9,10)

> x[3:6]

[1] 2 3 4 7

The index vector need not be contiguous; you can select any subset of a vector with indicies:

> x[c(1,2,5,7)]

[1] 0 1 4 8

You can also exclude elements from a vector using a set of negative indices:

> x[-(2:4)]

[1] 0 4 7 8 9 10

The negative indices specify the elements to be left out of the result.
More general and powerful subsetting of vectors can be accomplished using logical vectors. For example,

if x is the numeric vector used in the above examples, x[x < 5] yields a vector containing those elements
of x that are less than 5. This is because the “x < 5” is a logical vector: for each entry in x the condition
“< 5” is evaluated as true or false, and the result is a vector of TRUE’s and FALSE’s.

3.2. DATA STRUCTURES 12

> x

[1] 0 1 2 3 4 7 8 9 10

> x < 5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

Indices must be numeric, though, so the logical values TRUE and FALSE are coerced into 1 and 0, respec-
tively. The “1”’s indicate which elements to keep, while the “0”’s indicate the elements to omit. Thus we
have

> x[x < 5]

[1] 0 1 2 3 4

Logical indices can be quite complicated, as in the following code snippet:

> x[(x >= 3) & (x <= 9) & (x != 7)]

[1] 3 4 8 9

Here we have used the elementwise “and” operator, &, to combine multiple logical conditions. Each logical
expression is applied to x to produce a logical vector. The logical “and” function is then applied elementwise
to each vector to produce the final index vector. (Recall that X AND Y is TRUE if and only if X and Y are
TRUE.)

The next example illustrates one of the more common uses of logical indices in Statistics 390.

Example 3.2.1 (Estimating Probabilities). Suppose Z is a standard normal random variable. What is
the probability that Z > 2? While this could be calculated directly, let us try to estimate the answer using
R. First, we draw a large random sample from the standard normal distribution.

> z <- rnorm(1000)

Next, notice that a logical vector could be used to select the entries in z that satisfy our condition of interest,
“> 2”:

> y <- z[z > 2]

Now we must compute the observed frequency of numbers greater than 2. This is simply the number of
elements in z that are larger than 2, divided by our sample size (1000):

> length(y)/1000

[1] 0.022

A slick way to do this is to sum the logical vector z > 2. If you list the vector z > 2, you will see it consists
of TRUE and FALSE values. The R function sum operates on numeric vectors, so the logical values TRUE and
FALSE in the vector z > 2 will be coerced to 1 and 0, respectively. The sum of the logical vector, therefore,
is precisely the number of entries of z that satisfy the condition “z > 2”. The sample mean of z > 2 is
therefore the observed frequency of number greater than 2:

> mean(z > 2)

[1] 0.022

For comparison, the true probability P(Z > 2) can be found using pnorm:

> pnorm(2,lower.tail=F)

[1] 0.02275013

3.3. MATHEMATICAL AND STATISTICAL FUNCTIONS 13

+, −, ∗, / Arithmetic operators.
ˆ Exponentiation.
>, <, >=, <= Comparisons.
==, ! =
&, |, ! Elementwise logical operators.
log(), exp() Natural log/exponential.
sin(), cos(),
tan()

Trigonometric functions.

sqrt() Square root.
abs() Absolute value.
sum() Computes the sum of the entries in a vector.
cumsum() Cumulative sum.
prod() Computes the product of the entries in a vector.
length() Length of a vector.
sort() Sort a vector.

Table 3.1: Basic mathematical functions.

3.2.2 Other Data Structures

Vectors are not the only data structure offered in R. R also provides matrices and arrays (higher-dimensional
versions of matrices) for your computational needs. Matrices and arrays, like vectors, can only contain
elements of the same mode. For those times when you need to group dissimilar types of data, R provides
lists. The elements of a list can be vectors, matrices, or even other lists. Lists are used in R to return
multiple values from a function. A specialized type of list, called a data frame, is available for representing
data sets. A data frame can hold numerical and character data, complete with variable names.

For the moment, we don’t have much use for these other data structures in Statistics 390. We will say
more about them in later chapters as appropriate.

3.3 Mathematical and Statistical Functions

3.3.1 Basic Mathematical and Statistical Functions

See Tables 3.1 and 3.2. These commands are pretty self-explanatory. Also, all of these commands work on
vectors, i.e., mean computes the mean of the entries of a vector. For the exact syntax of each command,
consult the on-line help.

3.3.2 Probability Distributions

R contains functions for dealing with many common probability distributions. All of these functions follow
a specific naming convention: a one-letter keyword (r,p,q,d) followed by an abbreviated name of the distri-
bution. The abbreviations are usually pretty obvious; we’ve already seen “norm” for the normal distribution.
The keywords have the following meanings.

• “r” denotes the random number generator for the distribution;

• “p”denotes the probability function (or cumulative distribution) for the distribution (e.g., pnorm(1,0,1)
is P(Z ≤ 1) for a standard normal random variable Z;

3.3. MATHEMATICAL AND STATISTICAL FUNCTIONS 14

mean() Computes the mean of a vector.
weighted.mean() Weighted mean.
max() Computes the maximum entry in a vector.
min() Computes the minimum entry in a vector.
median() Computes the median of a vector.
sd() Computes the standard deviation of a vector.
var() Computes the variance of a vector.
range() Computes the range of a vector.
IQR() Computes the interquartile range.
quantile() Computes quantiles.
table() Makes a small frequency table.
summary() Returns the minimum, maximum, median, mean, and 1st and 3rd quartiles of the

data.

Table 3.2: Basic statistical functions.

• “q” denotes the quantile function, i.e., given 0 ≤ p ≤ 1 it returns the quantile x such that P(X ≤ x) = p;
and

• “d” denotes the density or mass function for a distribution.

A complete list of the R functions for the distributions we will use in this class can be found in Appendix
A.

The above commands work well for commonly encountered distributions, but what about those pesky
“unnamed” distributions? Well, in this class, we wouldn’t ask you to do any computations with a continuous
distribution not found in R. But occasionally we will give you discrete distributions that do not correspond
to an available R command. With a little thought, these are no more difficult to handle in R than the built-in
distributions.

The simplest way to handle an arbitrary discrete distribution is to form two vectors: one to hold the pos-
sible values, and one to hold their corresponding probabilities. For example, suppose we have the distribution
given in Table 3.3. In R we would create two vectors, one for “X” and “p(X)”.

X 0 1 2 3
p(X) 1/2 1/3 1/12 1/12

Table 3.3: Example Probability Distribution

> x <- c(0,1,2,3)

> px <- c(1/2,1/3,1/12,1/12)

We can do now computations with this distribution by going back to definitions.

> x.mean <- sum(x*px) ; x.mean # mean

[1] 0.75

> weighted.mean(x,px) # same thing

[1] 0.75

> x.sd <- sqrt(sum((x^2)*px) - (x.mean^2)) # standard deviation

> x.sd

[1] 0.9242114

3.4. PROGRAMMING CONSTRUCTS 15

The cumulative distribution can be obtained using the cumsum function:

> cumsum(px)

[1] 0.5000000 0.8333333 0.9166667 1.0000000

Quantiles can be read off the probability vector. To get random numbers, use the sample command:

> sample(x,100,replace=T,prob=px)

[1] 0 1 2 0 0 0 1 0 0 2 0 1 0 0 0 1 0 0 3 2 0 1 1 3 1 1 0

[28] 0 1 1 1 0 0 1 0 0 2 0 1 1 0 2 1 1 0 1 1 0 1 2 0 1 2 1

[55] 0 3 1 0 0 0 1 2 0 2 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0

[82] 0 0 1 0 0 0 0 1 0 0 3 0 0 0 1 2 1 0 1

Take note of the arguments to sample:

• the first argument is the vector from which to sample;

• the second argument is the number of samples to take;

• the third argument specifies that we want to sample with replacement; and

• the fourth argument specifies the weights (probabilities) to use.

We will make extensive use of the sample command in this class. As a parting example, let us simulate 100
rolls of a fair die:

> z <- sample(1:6,100,prob=rep(1/6,6),replace=T)

> z

[1] 5 3 4 3 6 4 5 4 6 1 5 4 4 4 4 4 2 6 5 4 2 5 5 6 2 4 2

[28] 5 4 6 1 4 5 5 6 6 5 4 6 1 3 3 1 1 4 4 5 4 4 4 4 4 1 3

[55] 2 1 1 2 6 1 2 3 2 5 6 5 4 6 1 3 1 3 2 3 3 2 3 6 2 1 1

[82] 3 3 1 2 4 4 1 6 3 6 1 2 2 4 5 1 4 3 4

One more example before we move on: sample(1:100) produces a permutation of the integers 1,2, . . . ,100.
Thus z[sample(1:100)] permutes the elements of z according to this permutation.

3.4 Programming Constructs

3.4.1 Logical Operators

The logical operators for R are && (and), || (or), and ! (not). These are short-circuited, i.e., they stop
evaluating an expression as early as possible. For instance, if x is FALSE and y is TRUE, then in the
expression x && y only x will be evaluated, since A AND B can only be TRUE if both arguments are TRUE.

Be careful not to use && and || when you mean & and |. The former are short-circuited while the latter
are not. Also, && and || only look at the first entry of a vector. Thus the vector c(0,1) will be seen as
FALSE by && and || but as the vector (FALSE, TRUE) by & and |.

3.4.2 Control Statements—If-Else

Like most programming languages, R has an if-else construct for building conditionals. It takes the form

> if (expr) action else action

when typed all on one line, and the form

3.4. PROGRAMMING CONSTRUCTS 16

> if (expr) {

+ action

+ } else

+ {

+ action

+ }

The braces are useful (though not necessary) when the action consists of more than one statement. (If the
braces are missing, else is attached to the most recent if statement lacking an else clause.) Also note that
in the second form of the if-else construct, the else statement must appear on the same line as the closing
brace of the if statement; otherwise, R will evaluate the if statement immediately. 2

The expr is evaluated first; if it is TRUE, the related action is performed; otherwise, if there is an else
clause, its action is performed. When there is no else clause and expr is false, as in the construction

> a <- FALSE

> if (a) print(a)

no action is taken, and the return value of the whole expression is defined to be NULL.
expr should only produce one logical value.

3.4.3 For Loops

As we’ve mentioned earlier, R is vectorized. That is, many R commands will implicitly loop over the elements
of a vector. Sometimes, however, we want to do explicit looping. R provides the for construct to do this.

The for construct has the form

> for (<index variable> in <index vector>) {

+ action

+ }

The index variable is the “loop counter”, while the index vector contains the values over which we want to
loop. For example, to loop over the values 1 to 100, you might use the construct

> for (i in 1:100) {

+ # do something

+ }

The index vector need not be contiguous, however; we can loop over any vector.

> for (i in c(3,7,12,4)) {

+ # some action

+ }

You can loop over any type of vector:

> for (car in c("Ford", "Chevy", "Toyota", "Nissan")) {

+ print(car)

+ }

One of the most important uses for the for loop construct in Statistics 390 is the investigation of sampling
distributions via the bootstrap. This is illustrated in the following example.

2This has to do with how R parses commands. R evaluates commands as soon as they are syntactically complete, i.e., as

early as they can be executed. Thus, if you hit <ENTER> immediately after typing the closing brace of the if block, you have

created a command that could be fully executed, so R does just that.

3.4. PROGRAMMING CONSTRUCTS 17

Example 3.4.1 (The Bootstrap). Suppose we want to investigate the properties of the sample median
of a particular distribution, say, the standard normal distribution. While this can be done analytically, it is
a fairly advanced calculation and we do not expect you to be able to do it. You can, however, investigate
the sample median experimentally using R.

To bootstrap the distribution of the sample median, we will repeatedly sample from the given distribution,
compute the sample median of the sample, and store the result. The resulting vector of sample medians can
be used to investigate the properties of the sample median of the original distribution.

First, we start by initializing a vector to hold the results from each trial. Let us suppose we will perform
1,000 trials.

> x.stat <- rep(0,1000)

This creates a vector x.stat that is large enough to hold our results.
Next, we set up a for loop to perform the trials. At the R prompt we would type

> for (i in 1:1000) {

Hitting <ENTER> after the opening brace gives us a continuation prompt (“+”).
Now we enter the body of the for loop. The first step is to draw a random sample from the distribution

under investigtion:

+ y <- rnorm(10000)

This gives us a random sample of size 10000 from the standard normal distribution.
Finally, we compute the sample statistic, and store the result:

+ x.stat[i] <- median(y)

}

Don’t forget the closing brace for the body of the for loop!
After you hit <ENTER>, R will execute the for loop. When it is done, the vector x.stat will contain

the sample median for each of the 1000 trials.

> x.stat

[1] 0.0262186806 -0.0018468265 -0.0104944919 0.0276343065

[5] -0.0102339605 -0.0046865152 0.0069701374 -0.0007195085

[9] -0.0267888755 0.0041114397 0.0168158083 -0.0060680072

[13] 0.0076626434 -0.0023256773 -0.0069791640 0.0158987440

[17] -0.0160878824 0.0018203985 -0.0167052135 0.0076035924

[21] -0.0073469931 -0.0202203678 -0.0089333843 0.0022119175

[25] 0.0156723709 0.0068493387 -0.0146437820 0.0011926394

[29] 0.0092101143 0.0260376860 0.0051305362 0.0075694974

[33] 0.0306138884 -0.0037979060 -0.0006837109 0.0001682163

[37] 0.0148673917 0.0005019140 0.0035311870 -0.0024472341

[41] 0.0220545558 0.0134181848 0.0116971681 -0.0046658552

[45] -0.0099204343 -0.0199975575 0.0025972221 0.0074276502

[49] 0.0087353238 -0.0015801124 -0.0010855275 -0.0097489003

[output trimmed to save space]

We can then compute statistics of the sample median, estimate its distribution, etc.

Chapter 4

Visualizing Data—Graphics in R

Graphics commands in R come in three flavors: high-level, low-level, and interactive.

4.1 High-Level Graphics Commands

High-level graphics commands are plotting commands that can stand on their own—given data, they can
produce a plot complete with axes and titles. High-level graphics are used to produce common types of plots,
such as histograms, scatterplots, boxplots, and stem-and-leaf plots.

The most commonly used high-level graphics command is the plot command. The plot command is
actually an interface to more specialized plotting commands; plot automatically chooses the correct type of
plot based on the input data. For example, given two vectors x and y, plot(x,y) will produce a scatterplot
(see the next section for an example of this). Similarly, given a single vector x, plot(x) plots the values of
x against their index.

We will discuss more specialized applications of the plot command in later chapters.
Other useful high-level plotting commands include

• boxplot, which produces a boxplot;

• hist, which produces a histogram; and

• stem, which produces a stem-and-leaf plot.

In this class we will not have much use for stem-and-leaf plots, so we will say no more about them. The
boxplot and hist commands will be discussed in the sequel.

4.1.1 Scatterplots

Scatterplots can be made with the plot command. The ideal way to do this is to put your data into two
vectors, x and y. Then to plot x versus y, use the command plot(x,y). For example

> x <- seq(0,10,0.1) # making some data

> x <- x[sample(1:length(x))] # randomize for fun

> y <- -1.5 + 4*x + rnorm(length(x),0,2)# linear function + noise

> plot(x,y) # make a scatterplot

The resulting figure is shown in Figure 4.1.
If you provide only one vector to plot, the entries of the vector will be plotted against their indices. For

example, let us plot the results of 100 rolls of a fair die.

18

4.1. HIGH-LEVEL GRAPHICS COMMANDS 19

0 2 4 6 8 10

0
1
0

2
0

3
0

4
0

x

y

Figure 4.1: Example Scatterplot

0 20 40 60 80 100

1
2

3
4

5
6

Index

z

Figure 4.2: Scatterplot of Dice Rolls

> z <- sample(1:6,100,prob=rep(1/6,6),replace=T)

> z

[1] 5 3 4 3 6 4 5 4 6 1 5 4 4 4 4 4 2 6 5 4 2 5 5 6 2 4 2

[28] 5 4 6 1 4 5 5 6 6 5 4 6 1 3 3 1 1 4 4 5 4 4 4 4 4 1 3

[55] 2 1 1 2 6 1 2 3 2 5 6 5 4 6 1 3 1 3 2 3 3 2 3 6 2 1 1

[82] 3 3 1 2 4 4 1 6 3 6 1 2 2 4 5 1 4 3 4

> plot(z)

Figure 4.2 shows the resulting scatterplot.
The plot command has plenty of options. You can see them all by typing help(plot) at the R prompt.

Some of the more common options you’ll see in this class:

type type of plot—change the type of plot. Possible values include “p” to plot points, “l” to plot lines, “b”
to plot both points and lines, and “n” to draw the axes for the plot without plotting the input data.

pch plot character—can be used to change the plot symbol.

cex character expansion—allows you to change the font size used in the plot.

xlab x-label—allows you to label the x axis.

ylab y-label—allows you to label the y axis.

xaxs x-axis—by default, R leaves some space around the limits of a plot; thus, the “true” x-axis is actually
slightly above the labelled x-axis. Use the option xaxs="i" to disable this behavior. This is useful if
you want to shade the area under a graph, for instance.

yaxs y-axis—similar to xaxs, but for the y-axes.

col color—specify the color to use for plotting.

Most of these options are actually general plotting options. More will be said about these later in this
chapter.

4.1. HIGH-LEVEL GRAPHICS COMMANDS 20

4.1.2 Boxplots

Boxplots are useful for comparing related sets of data. For example, if we are running a clinical trial to test
whether Drug A is significantly better than Drug B, a boxplot of the data from Drug A and Drug B is a quick
way to see if there is a difference. A hypothesis test can then be performed to verify that the difference is
significant. Finally, the boxplot also serves as a sanity check—if the result of our hypothesis test contradicts
what the boxplot indicates, this alerts us to a possible error in our computations.

To make a boxplot, use the boxplot() command. In Figure 4.3 we see a boxplot of the data in the vector
z used in the above example.

> boxplot(z,col="grey")

1
2

3
4

5
6

Figure 4.3: Boxplot of data from dice rolls experiment.

4.1.3 Histograms

Histograms in R are created using the hist command. For example, a histogram of the dice roll data can
be produced by the command:

> hist(z)

This produces the graph shown in Figure 4.4. Note that this is a frequency histogram: the height of each
bar is the number of occurences of the corresponding value or class. To get a density histogram, in which
the area of each bar is the relative frequency of the corresponding value or class, use either the prob=TRUE

argument or the freq=FALSE argument to hist:

> hist(z,prob=TRUE)

> hist(z,freq=FALSE) # these do the same thing

We will obtain the graph shown in Figure 4.5. We should point out that hist defaults to putting the

4.1. HIGH-LEVEL GRAPHICS COMMANDS 21

Histogram of z

z

F
re

q
u
en

cy

1 2 3 4 5 6

0
5

10
15

20
25

Figure 4.4: Histogram produced using hist(z)

Histogram of z

z

D
en

si
ty

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 4.5: Histogram produced using
hist(z,prob=TRUE)

Histogram of z

z

F
re

q
u
en

cy

1 2 3 4 5 6

0
5

10
15

20
25

Figure 4.6: Histogram produced using an explicit
breaks command.

4.1. HIGH-LEVEL GRAPHICS COMMANDS 22

Histogram of z

z

F
re

q
u
en

cy

1 2 3 4 5 6
0

10
20

30

Figure 4.7: Histogram of dice roll data using br=5 option.

actual data points on the right side of the interval (except the first data point, which is placed on the left).
Usually, when we make histograms, we put the actual data point in the middle of the interval. Thus, if your
hand-constructed histogram looks very different from your R-constructed histogram, this behavior may be
the culprit.

One way to force R to plot histograms in the traditional fashion is to explicitly specify the breakpoints
using the breaks option to hist (abbreviated here as br):

> hist(z,br=c(0.5,1.5,2.5,3.5,4.5,5.5,6.5),col="grey")

The result of this is shown in Figure 4.6.
You can also use the breaks option to stipulate the number of bins that R should use.

> hist(z,br=5,col="grey")

The above code instructs R to construct a histogram of the dice roll data using 5 bins. The resulting figure
is shown in Figure 4.7. A synonym for this use of the breaks option is the nclass option. The command

> hist(z,nclass=5,col="grey")

will produce the same plot as the above code.
Another quirk about hist: you cannot make a relative frequency histogram using only hist. The

developers of R are of the opinion that a density histogram is a more favorable alternative to a relative
frequency histogram. If you are really set on constructing a relative frequency histogram, however, it can
be done using a combination of the hist command and the axis command. We will illustrate this after we
discuss the axis command.

4.1.4 Visualization in More Than Two Dimensions

When several variables are involved, it is often useful to investigate the relationships between them. R
provides several commands to do just this.

4.2. LOW-LEVEL GRAPHICS COMMANDS 23

• The pairs command will produce a matrix of all pairwise scatterplots: if x is a data frame with three
variables A, B, and C, pairs(x) will produce a 3x3 matrix containing scatterplots of A versus B, A
versus C, and B versus C.

More general multivariate plotting capabilities are provided by the powerful Trellis graphics package (in
the lattice package).

We will return to higher-dimensional data sets in a later chapter on Regression.

4.2 Low-Level Graphics Commands

Low-level plotting commands are used to add information to an existing plot.

• points adds points to an existing plot. Its syntax is identical to that of plot; it even accepts many of
the same arguments.

• lines adds connected lines to an existing plot. It works similarly to plot.

• title(main="<your title>" adds the title <your title> to a plot.

• abline adds a straight line to a plot. abline accepts a slope and intercept, or a linear model object
(see the chapter on regression)).

The following are some other low-level graphics commands that you may occasionally encounter in demon-
strations in this class. They are mostly for making fancy plots and annotations; as such, we do not expect
you to use them in your homework.

• text adds text at a specified location to a plot.

• legend adds a legend to a plot.

• axis adds an axis to a plot.

• segments adds disconnected lines to a plot. Use lines for a connected sequence of lines.

• polygon shades regions of a plot.

• rect draws a rectangle with specified coordinates.

• arrows add arrows to a plot (to point to something of interest, for example).

As an illustration of these “fancy” commands, we now demonstrate how to construct a true relative
frequency histogram in R. The resulting figure is shown in Figure 4.8

> xx <- rep(c(1:6),c(34,56,22,10,4,5))

> histout <- hist(xx,br=seq(0.5,6.5,1),axes=FALSE,

+ ylab="Relative Frequency",main="Relative Frequency Histogram of xx")

> axis(1)

> ticks <- seq(0,max(histout$counts),1)

> labels <- ticks/length(x)

> labels <- round(labels,2)

> axis(2,ticks,labels)

4.3. INTERACTIVE GRAPHICS COMMANDS 24

Relative Frequency Histogram of x

x

R
el

at
iv

e
F
re

q
u
en

cy

1 2 3 4 5 6
0

0.
08

0.
18

0.
27

0.
37

Figure 4.8: Relative Frequency Histogram Produced Using R

4.3 Interactive Graphics Commands

At the moment, we will not have much use for interactive graphics. You may see your TA use these commands
in a demonstration, though, so we’ll just mention a few.

• locator gets the coordinates of a point.

• identify identifies points on a plot.

4.4 Graphics Parameters

4.4.1 Making an Array of Plots

It is often useful to place several plots side by side. This is quite easy to do with R, using the mfrow and
mfcol plotting options.

The mfrow option to par specifies the size of the plotting array. It is used as follows. Suppose we want
to plot 6 graphs in 2 rows and 3 columns. We set this up using the call

> par(mfrow=c(2,3))

We then make our plots as usual. The plot array will be filled from left to right, top to bottom. When the
last cell is reached, the next plot will appear in the first cell.

The mfcol option to par works like mfrow, but you specify the columns first.

4.4.2 Other Useful Plotting Options

pch plot character—can be used to change the plot symbol. To see the available plotting symbols, use ex-

ample(points) and check out the last graph. Example: pch=1 uses open circles as plotting characters.

4.5. OTHER GRAPHICS-RELATED COMMANDS 25

cex character expansion—allows you to change the font size used in the plot. Specify a multiple of the
default size. Example: cex=1.2.

lwd line width—change the thickness of the plotting lines. Specify a multiplier of the default line width.
Example: lwd=2.

lty line type—change the type of line. Available types are 0 (blank), 1 (solid), 2 (dashed), 3 (dotted), 4
(dotdash), 5 (longdash), and 6 (twodash). Example: lty=5.

xlab x-label—allows you to label the x axis. Example: xlab="foo".

ylab y-label—allows you to label the y axis. Example: ylab="bar".

xaxs x-axis—by default, R leaves some space around the limits of a plot; thus, the “true” x-axis is actually
slightly above the labelled x-axis. Use the option xaxs="i" to disable this behavior. This is useful if
you want to shade the area under a graph, for instance.

yaxs y-axis—similar to xaxs, but for the y-axes.

col color—specify the color to use for plotting, either by number or by name. Example: col="red".

4.5 Other Graphics-Related Commands

Normally, graphics commands send their output to the currently open graphics windows. Sometimes, though,
you would like to send a graph to a new window. To launch a new graphics window, use the one of the
following commands:

1. X11() if you are on UNIX;

2. windows() if you are on Windows; or

3. macintosh() if you are on Macintosh.

To move between the windows, click the top border of a window or use the “Window” menu. (On UNIX,
you can use the dev.cur() and dev.set() commands.) To close a window, click the “x” in the upper right
corner (or use dev.off() on UNIX).

The colors() function will give a list of the colors available on a system.

4.6 Getting Plots into Word, Powerpoint, etc.

On Windows, if you right-click on a plot, you will be given some options to copy or to save the graph. “Copy
as Metafile” works well with Microsoft Word and Powerpoint. Just paste the graph into an open Word or
Powerpoint document.

There are also functions for writing graphics output directly to various file formats, such as Postscript,
PDF, JPEG, bitmap, etc. Your TA can help you with these if you are interested. For the most part, though,
the cutting-and-pasting method described above is sufficient for your homework. In this class we are not
looking for publication-quality graphics, so you shouldn’t spend all your homework time trying to make fancy
plots. A simple plot that conveys your point is just fine.

Chapter 5

Odds and Ends

There are some additional commands which will be handy for this class. They didn’t really fit into the
previous chapters, though, so we’ve collected them together here.

5.1 Input and Output

5.1.1 Reading Commands From a File

Sometimes it is easier to write your code in a separate file all at once, and then run all your commands at
once. To read commands from a file, say “foo.txt”, use the source command:

> source("foo.txt")

Here the file “foo.txt” is assumed to be in the current directory. If it is not, change directories using setwd()

(or the menu under Windows) or provide a full path to the file “foo.txt”. Remember that on Windows,
backslashes must be escaped:

> source("A:\foo.txt")

Error in file(file, "r") : unable to open connection

In addition: Warning message:

cannot open file ‘A:foo.txt’

> source("A:\\foo.txt")

Hello from foo.txt!

The source command is also available under Windows on the File menu.

5.1.2 Redirecting Output to Text Files

Another useful thing to do is to redirect R output to a file. To redirect output to a file, use the sink

command:

> sink("bar.txt")

To restore normal output to the screen, use sink().
Note that sink is only for capturing text output. To write out a data set use one of the formatted

methods (such as write.table). To write out graphics, use one of the graphics drivers (see the Graphics
chapter). On Windows, right-clicking on a plot will give you some options to save a plot to a file.

26

5.2. MANAGING YOUR WORKSPACE 27

5.1.3 Reading and Writing Data Files

To read data from a file into a variable, use the scan command:

> x <- scan("foo.txt")}

This command will read the data in the file “foo.txt” into the variable x. It is assumed that “foo.txt” contains
values delimited by spaces. Remember to give the full path to “foo.txt” if it is not in the current directory.

If you using the GUI version of R, you can use the file.choose() function to call up a dialog box instead
of giving an explicit filename:

> x <- scan(file.choose())

This is often easier to use for beginners.
We will generally provide data sets that can be read with a simple scan() command, so you shouldn’t

have to worry about argument to scan().
The functions read.table and write.table are designed to be used with formatted data sets. (They

are just wrappers for the scan() command.) In this class we tend to keep things simple, so usually the
scan() command is the easiest way to read in your data.

5.2 Managing Your Workspace

To see what variables are in your workspace, you can use either the ls() command or the objects()
command.

> ls()

[1] "Pex" "dd" "f1" "f2" "fun"

[6] "histout" "i" "ipch" "ix" "iy"

[11] "k" "labels" "last.warning" "np" "op"

[16] "ord" "pc" "pch" "pu" "px"

[21] "r" "rx" "ry" "theta" "ticks"

[26] "u" "x" "x.mean" "x.sd" "x.stat"

[31] "xx" "y" "z"

Use the all=T option to ls() or objects() to see all objects include those whose names begin with a
period ’.’. (These are usually internal R objects.)

Try not to let your workspace get too big, however, as this will slow R down. To delete a variable from
your workspace, use the rm() command:

> objects()

[1] x

> rm(x)

> objects()

character(0)

To remove multiple variables from your workspace, use the list option to rm. To remove all variables from
you workspace, you can use list=ls():

> rm(list=ls(all=T))

(The all=T option is present to make sure we match files beginning with a period.) Use this with care! Once
your data is gone, you will not be able to restore it.

5.3. FILES AND DIRECTORIES 28

5.3 Files and Directories

To see what files are in the current directory, use dir(). You can use the pattern argument to dir to match
only certain files.

> dir(pattern="*.R")

[1] "Rcommands.R" "regress1.R" "regress2.R" "relhist.R"

5.4 Options

5.4.1 Changing the Number of Digits Printed

To view the current setting, use getOption("digits"). To change the setting, use options(digits=nn),
where nn is a number between 1 and 22.

5.5 Printing

From the command line you can print the value of a variable or object simply by typing its name and hitting
<ENTER>. Inside of a script, you must explicitly call the print() function or use the echo=TRUE option
to source.

For formatted printing à la C’s printf() statment, try formatC().

Chapter 6

Regression and ANOVA

6.1 Simple Linear Regression with lm

Suppose we have a data set of the form (Xi,Yi), where the Xi’s are the predictor variables (i.e., the independent
variables) and the Yi’s are the response variables (i.e., the dependent variables). We hypothesize a linear
relationship between Xi and Yi of the form Yi = a+bXi for some unknown parameters a and b. We would like
to “fit” this linear model to the data. (Here “fitting” the model means calculating the parameters a and b of
the model.)

The hypothesized model is more accurately

Yi = a+bXi + εi, (6.1)

where Xi is the independent variable, Yi is the dependent (random) variable, a is the intercept, b is the slope,
and εi is a random variable with a Normal(0, σ) distribution for some unknown σ. Linear regression involves
computing the “line of best fit” to the data, where “best fit” means minimal residual sum of squares error

n

∑
i=1

|Yi − (a+bXi)|
2 (6.2)

with respect to a and b.
A linear model is defined in R using the ∼ (tilde) operator. Thus

Y ~ X

tells R that Y is an unknown linear function of X . (Here X and Y are vectors.)1

This only specifies the model, however; it does not compute anything. The actual computation of the
least-squares estimates of a and b is done with the lm command:

lmobj <- lm(Y ~ X)

lm returns an object (simply called “an lm-object”). You should store its value for future use.
Here is a simple (albeit contrived) example of how to use lm.

R> X <- sort(runif(100, -10, 10))

R> Y <- -5 + 1.6 * X + rnorm(100, 0, 3)

1You should read the ∼ operator as “is modeled by”. Technically, the ∼ operator asserts that the left side of the ∼ is an

unknown linear combination of the terms on the right side of the ∼.

29

6.1. SIMPLE LINEAR REGRESSION WITH LM 30

R> lmobj <- lm(Y ~ X)

The object returned by lm (which we have stored in the variable lmobj) contains a great deal of useful
information. To see a summary of this information, use the summary command.

R> summary(lmobj)

Call:

lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-5.7414 -1.8281 -0.1790 2.0010 6.0346

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.92879 0.26956 -18.29 <2e-16 ***

X 1.56094 0.04911 31.78 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.666 on 98 degrees of freedom

Multiple R-Squared: 0.9116, Adjusted R-squared: 0.9107

F-statistic: 1010 on 1 and 98 DF, p-value: < 2.2e-16

Let us walk through the output of the summary command line by line.

• The “Call:” line of the summary output reminds us how we called lm.

• The “Residuals:” line gives us some summary statistics of the residuals of the model.

• The “Coefficients:” section gives us estimates of a and b plus their associated statistics. Take note of
R’s notation: a is called “(Intercept)”, and b is called “X”. Thus, instead of referring to the coefficient,
R refers to the model term. This is true of most statistical packages, so be aware!

The column labeled “Estimate” contains the computed values of a and b. The “Std. Error” column
contains the standard errors of a and b, respectively. “t value” is the value of the test statistic for
testing the hypotheses

H0 : a = 0 H0 : b = 0 (6.3)

HA : a 6= 0 HA : b 6= 0. (6.4)

Finally, “Pr(>|t|)” contains the p-value associated with the test statistic.

• The “Signif. codes:” line is merely a legend for the p-values. The number of asterisks (*) tells you how
significant the p-value is.

• The “Residual standard error:” line gives the estimate of σ, the standard deviation of the residuals.

• The “Multiple R-Squared:” line tells us the value of R2, the coefficient of determination.

• The“Adjusted R-Squared:” line tells us the value of the adjusted R2. (You should consult your statistics
text if you do not know the difference between the two statistics.)

6.1. SIMPLE LINEAR REGRESSION WITH LM 31

−10 −5 0 5 10

−
20

−
15

−
10

−
5

0
5

10

X

Y

Regression Example 1

True Regression Line Y = −5 + 1.6X
Computed Regression Line Y = −4.93 + 1.56 X

Figure 6.1: Scatterplot of Regression Example.
The Fitted Line is shown in blue.

−6 −4 −2 0 2 4 6

−
2

−
1

0
1

2

sort(resid(lmobj))

x.
no

rm

Q−Q Plot of Residuals from Regression Analysis 1

Figure 6.2: Q-Q Plot of Regression Example.

• The“F-statistic:” line gives us the value of the F-statistic associated with the model, and the “p-value:”
line gives the p-value of the F-statistic.

Often we do not need so much information, so there are other regression commands you should know.
The coefficients command, which may be abbreviated as coef, returns the computed coefficients a and
b.

R> coef(lmobj)

(Intercept) X

-4.928787 1.560943

We can use coef with abline to add the fitted line to a scatterplot of the data (Figure 6.1).

R> plot(X, Y)

R> abline(-5, 1.6, lty = 1)

R> title("Regression Example 1")

R> abline(coef(lmobj), lty = 2, col = "blue")

R> legtxt1 <- "True Regression Line Y = -5 + 1.6X"

R> legtxt2 <- paste("Y = ", format(coef(lmobj)[1], digits = 3))

R> legtxt2 <- paste(legtxt2, " + ", format(coef(lmobj)[2], digits = 3),

+ "X")

R> legtxt2 <- paste("Computed Regression Line", legtxt2)

R> legend(-5.5, -19, c(legtxt1, legtxt2), lty = c(1, 2), cex = 0.85)

The residuals command, which you can shorten to resid, gives us the residuals of the model. We could
use this, for instance, to create a Q-Q plot of the residuals (Figure 6.2).

R> q.s <- ((1:length(resid(lmobj))) - 0.5)/length(resid(lmobj))

R> x.norm <- qnorm(q.s)

6.2. MULTIPLE LINEAR REGRESSION WITH LM 32

R> plot(sort(resid(lmobj)), x.norm)

R> abline(lsfit(sort(resid(lmobj)), x.norm), lty = 2, col = "blue")

R> title("Q-Q Plot of Residuals from Regression Analysis 1")

Finally, we should mention the anova command. The anova command is for performing an Analysis of
Variance on a model. In the context of a simple linear regression, anova will compute the sums of squares
associated with the model and with the residuals.

R> anova(lmobj)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 7178.2 7178.2 1010.1 < 2.2e-16 ***

Residuals 98 696.4 7.1

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The table contains the sums of squares, means square errors, and F statistics associated with both the model
and the residuals.

This concludes our discussion of simple linear regression in R. In the next section we will discuss multiple
linear regression.

6.2 Multiple Linear Regression with lm

Now suppose we have several predictors X1, . . . ,Xk. We again hypothesize a linear relationship between the
response variable Y and the predictors of the form

Yi = β0 +β1X1i + · · ·+βkXki + εi. (6.5)

This model can be fit in R as easily as the simple linear model. We once again define the linear model
using the ∼ operator. For concreteness, let us suppose k = 3 and our variables are called X1, X2, and X3.

Y ~ X1 + X2 + X3

To fit the model (i.e., compute the coefficients β1, β2, and β3), we simply use lm as before.

lmobj <- lm(Y ~ X1 + X2 + X3)

The “+” operator here should be read as “and”, not as “plus”.2

The statistics are computed using the same commands as in the simple linear case (summary, anova, coef
and resid).

Visualization in the higher-dimensional cases is more complicated than in the simple linear case. The
pairs command takes a matrix and produces all pairwise scatterplots of its columns (i.e., column 1 versus
column 2, column 1 versus column 3, etc.)

More powerful visualization functionality can be found in the Trellis graphics packages; Trellis graphics,
however, are beyond the scope of this document. See the books in the Appendix “Further Reading”.

2Note that the order of the terms might be important: X1 + X2 evaluates the effect of X1 by itself and X2 given X1, while

X2 + X1 evaluates the effect of X2 by itself and X1 given X2. This matters to some of the R modeling facilities, most notably

anova. The reasons for this beyond this document, so we will say no more about this.

6.3. ANOVA 33

6.3 ANOVA

ANOVA, or ANalysis Of VAriance, can also be performed in R. Since ANOVA is really just a fancy form of
linear regression, you might guess that the ∼ operator and lm are involved. Well, you are almost correct.
The ∼ operator is once again used to express a model dependence. Instead of lm, though, we now use the
aov command.

The aov function fits an analysis of variance model using the specified formula. How does it do this?
It calls the lm function! Like we stated in the previous paragraph, ANOVA essentially a regression model
(from a theoretical standpoint). You could fit the same model using lm alone. The aov function, however,
is easier to use for certain types of ANOVA’s. The summary function for aov is also specialized to produce a
traditional ANOVA table, not a regression table.

The syntax of aov is identical to that of lm. Furthermore, many of the functions you used with lm can
be applied here.

Let us now take a look at an example. We will analyze an experiment to determine the effect of Vitamin
C on tooth growth in guinea pigs. This data set (“ToothGrowth”) is one of the example data sets included
in R. You can read more about it using help(ToothGrowth).

First, we load the data set using the data command.

R> data(ToothGrowth)

The data set is now available in R as the data frame ToothGrowth. Use the names command to see what
variables are available in ToothGrowth.

R> names(ToothGrowth)

[1] "len" "supp" "dose"

The help file for the data set explains what each variable means.

> help(ToothGrowth)

ToothGrowth package:base R Documentation

The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description:

The response is the length of odontoblasts (teeth) in each of 10

guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and

2 mg) with each of two delivery methods (orange juice or ascorbic

acid).

...

We treat this as a 3×2 factorial treatment design. The interaction effects model is given by

leni jk = µ+dosei +supp j +(dose∗ supp)i j + εi jk (6.6)

, where

• leni jk is the k-th observation in the (i, j) “cell”;

• µ is an overall mean;

• dosei is the effect of the i-th level of the treatment dose;

6.4. OTHER MODELS 34

• supp j is the effect of the j-th level of the treatment supp;

• (dose∗ supp)i j is the interaction effect between the i-th level of dose and the j-th level of supp; and

• εi jk is the error term in the (i, j) “cell”.

We assume the errors εi jk come from a N(0,σ) distribution for some unknown standard deviation σ.
To fit this model in R, we will need to specify the model using ∼. We already know how to specify the

dosei and supp j terms, but how to we specify the cross-term (dose ∗ supp)i j? R has a special operator for
this, the : (colon) operator. The expression A:B in R specifies a cross term between treatments A and B.

Thus, our model in R would be

len ~ dose + supp + dose:supp

This construction occurs so frequently that R has an abbreviation for it: the * (asterisk) operator. Thus

len ~ dose*supp

can also be used to define our model in R.
We now call aov on our model.

R> aovobj <- aov(len ~ dose * supp, data = ToothGrowth)

(The data=ToothGrowth argument is necessary to tell aov where to find the variables.)
Calling summary now gives us a traditional ANOVA table.

R> summary(aovobj)

Df Sum Sq Mean Sq F value Pr(>F)

dose 1 2224.30 2224.30 133.4151 < 2.2e-16 ***

supp 1 205.35 205.35 12.3170 0.0008936 ***

dose:supp 1 88.92 88.92 5.3335 0.0246314 *

Residuals 56 933.63 16.67

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The anova command gives the same table.
We can also make a Q-Q plot of the residuals as before. (Figure 6.3).

R> q.s <- ((1:length(resid(aovobj))) - 0.5)/length(resid(aovobj))

R> x.norm <- qnorm(q.s)

R> plot(sort(resid(aovobj)), x.norm)

R> abline(lsfit(sort(resid(aovobj)), x.norm), lty = 2, col = "blue")

R> title("Q-Q Plot of Residuals from ANOVA")

6.4 Other Models

We have only seen a small fraction of the modeling and analysis capabilities of R. R is capable of fitting
and analyzing very complex experiments. If you would like to learn more about statistical analysis with R,
consult the references listed in the appendix “Further Reading”.

6.4. OTHER MODELS 35

−5 0 5

−
2

−
1

0
1

2

sort(resid(aovobj))

x.
no

rm

Q−Q Plot of Residuals from ANOVA

Figure 6.3: Q-Q Plot from ANOVA.

Appendix A

Table of Common Distributions in R

For each distribution in R, there are four commands: a d-command, a p-command, a q-command, and
an r-command.

1. The d-commands give the probability mass function (for discrete distributions) or the probability
density function (for continuous distributions). For example, dbinom(3,5,0.5) gives the probability
of getting exactly 3 heads on 5 flips of a fair coin, while dnorm(3,0,1) evaluates the density function
of the standard normal distribution at x=3.

2. The p-commands give the cumulative distribution function F(x) = P(X ≤ x). For instance, pexp(4,2)
gives P(X ≤ 4) when X has an exponential(rate=2) distribution. Note that if you want the complemen-
tary probability P(X ≤ x), you can either use 1 - <pcommand> or use the lower.tail=F argument.

3. The q-commands provide quantiles; that is, given a probability p, the quantile commands return the
value x such that P(X ≤ x) = p.

4. The r-commands produce random numbers from the given distribution.

Table A.1 provides the R commands for the distributions you will see in this class. For the exact syntax
of each command, use the help() function.

Distribution d-command p-command q-command r-command
Normal dnorm pnorm qnorm rnorm
Uniform dunif punif qunif runif
Exponential dexp pexp qexp rexp
Binomial dbinom pbinom qbinom rbinom
Poisson dpois ppois qpois rpois
Gamma dgamma pgamma qgamma rgamma
Weibull dweibull pweibull qweibull rweibull
Student’s T dt pt qt rt
Snedecor’s F df pf qf rf
Chi-Squared dchisq pchisq qchisq rchisq

Table A.1: R Commands for Common Distributions

36

Further Reading

[1] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The New S Language. CRC Press, 1988.

[2] Peter Dalgaard. Introductory Statistics in R. Springer-Verlag, 2002.

[3] Andreas Krause and Melvin Olson. The Basics of S and S-Plus. Springer-Verlag, third edition, 2003.

[4] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, fourth edition,
2002.

[5] W. N. Venables, D. M. Smith, and the R Development Core Team. An Introduction to R. Network
Theory Ltd., 2002.

37

Index

!, 13, 15
!=, 13
*, 13, 34
+ (addition operator), 13
+ (continuation prompt), 8
+ (model operator), 32
-, 13
/, 13
:, 10, 34
;, 8
<, 13
<-, 9
<=, 13
=, 9
==, 13
>, 13
>=, 13
?, 5
[], 11
#, 8
&, 13, 15
&&, 15
^, 13
_, 9
~, 29
|, 13, 15
||, 15

abline, 23
abs, 13
anova, 32
aov, 33
args, 6
arrays, 13
arrows, 23
assignment, 9

<-, 9
=, 9
_, 9

axis, 23

backslashes
escaping in Windows, 5, 26

bitmap output, 25
bootstrap, 17
boxplot, 18, 20

c, 10
changing displayed precision, 28
coef, 31
coefficients, 31
colors, 25
colors, 25
comments, 8
comparison operators

<=, 13
<, 13
>=, 13
>, 13

conditional statements, 15
continuation prompt (+), 8
copying plots, 25

”Copy as Metafile” option, 25
cos, 13
CRAN, 1
cumsum, 13

data, 33
data frame, 13
deleting variables, see rm
dev.cur, 25
dev.off, 25
dev.set, 25
digits

options, 28
dir, 28
drawing arrows, 23
drawing polygons, 23
drawing rectangles, 23

else, 15
estimating probabilities, see vectors, simulating with

38

INDEX 39

example, 6
exp, 13

file management, 5
file.choose, 27
for, 16
formatC, 28
formatted output, 28
functions

mathematical, 13
probability, 13
statistical, 14

getwd(), 5
graphics devices, 25
graphics parameters, 24

help
?, 5
args, 6
example, 6
help.search, 6
help.start, 6
help, 5
searching for help, 6
special characters, 6

hist, 18, 20

identify, 24
if, 15
installing R, 1–3

Linux, 3
Mac OS, 2–3
Windows, 1–2

interpreted language, 8
IQR, 14

JPEG output, 25

legend, 23
length, 13
linear modeling

~, 29
ANOVA, 32
coefficients, 31
lm, 29
residuals, 31
summary, 30

lines, 23
listing variables, see ls, objects
lists, 13

lm, 29
locator, 24
log, 13
logical operators, 15

!, 13
&, 13
|, 13

loops, 16
ls, 27

macintosh, 25
matrices, 13
max, 14
mean, 14
median, 14
min, 14
mode, see vector

character, 10
complex, 10
logical, 10
numeric, 10

names, 33
new graphics window, 25

object-oriented language, 9
objects, 27
options, 28

pairs, 23
par, 24
par

cex, 25
col, 25
lty, 25
lwd, 25
mfcol, 24
mfrow, 24
pch, 24
xaxs, 25
xlab, 25
yaxs, 25
ylab, 25

PDF output, 25
plot, 18, 18–19

options, 19
plots

adding a legend to, 23
adding a title to, 23
adding an axis to, 23

INDEX 40

adding arrows to, 23
adding lines to, 23
adding points to, 23
adding text to, 23
boxplot, 18, 20
by indices, 18
histogram, 18, 20
locating points, 24
pairwise scatterplots, 23
relative frequency histogram, 23
scatterplot, 18
shading regions, 23
stem-and-leaf plot, 18

points, 23
polygon, 23
Postscript output, 25
Precompiled Binary Distribution, 1
print, 28
printf, 28
probability distributions, 13
prod, 13

q, 5
quantile, 14
quit, 5

R Project, 1
R prompt, 4
range, 14
read.table, 27
reading commands from a file, see source
reading data from a file, 27

read.table, 27
scan, 27

recalling commands with arrow keys, 8
rect, 23
redirecting output to a file, see sink
rep, 10
resid, 31
residuals, 31
rm, 27

sample, 15
sampling, 15
sampling distributions, 17
saving plots, 25
scan, 27
sd, 14
searching for help, 6
segments, 23

seq, 10
setwd(), 5
simulation, see vectors, simulating with
sin, 13
sink, 26
sort, 13
source, 26, 28
starting R, 4
stem, 18
sum, 13
summary, 14, 30
syntax, 7

table, 14
tan, 13
text, 23
title, 23

var, 14
vectorization, 10
vectors, 10–12

creating, 10
indexing, 11

excluding elements, 11
logical index, 11
negative indices, 11

mode, 10
sequences
:, 10
rep, 10
seq, 10

simulating with, 12

weighted.mean, 14
windows, 25
write.table, 26, 27
writing data to a file

write.table, 27

X11, 25

	Preface
	Legal Notice
	Disclaimer

	Installing R on your home computer
	Installing R
	Windows
	Mac OS 8.6-9.2, OS X (without Darwin)
	Mac OS X (with Darwin)
	Linux

	Getting Started
	Running R
	Starting R
	File Management
	Ending Your R Session

	How to Find Help in R
	What To Do When You're Lost...

	The Rules---R Conventions

	Computation
	Variables
	Assignment

	Data Structures
	Vectors
	Other Data Structures

	Mathematical and Statistical Functions
	Basic Mathematical and Statistical Functions
	Probability Distributions

	Programming Constructs
	Logical Operators
	Control Statements---If-Else
	For Loops

	Visualizing Data---Graphics in R
	High-Level Graphics Commands
	Scatterplots
	Boxplots
	Histograms
	Visualization in More Than Two Dimensions

	Low-Level Graphics Commands
	Interactive Graphics Commands
	Graphics Parameters
	Making an Array of Plots
	Other Useful Plotting Options

	Other Graphics-Related Commands
	Getting Plots into Word, Powerpoint, etc.

	Odds and Ends
	Input and Output
	Reading Commands From a File
	Redirecting Output to Text Files
	Reading and Writing Data Files

	Managing Your Workspace
	Files and Directories
	Options
	Changing the Number of Digits Printed

	Printing

	Regression and ANOVA
	Simple Linear Regression with lm
	Multiple Linear Regression with lm
	ANOVA
	Other Models

	Table of Common Distributions in R

