7 Chi-squared Tests for Proportions (and Independence)
The chi-squared test (chisg.test() in R) can be used in the following 3 situations:
1. Testing whether k& proportions in one population are equal to k specific (NULL) values
2. Teating homogeneity of r populations with respect to & categories

3. Teating whether two categorical variables are independent

7.1 Chi-squared test of k& proportions in 1 population
Example: Tornados and El Nino

The data are az follows:
Number of tornadic days during El Nino years: 14
Number of tornadic days during La Nina years: 28
Number of tornadic days during Normal vears: 44
Total number of days: 86

Number of years classified as El Nino: 12
Number of yvears classified as La Nina: 17
Number of years classified as Normal: 25
Total number of years: 54

We will first assume the following:

1. The proportion of tornadoes occurring in El MNino vears is equal to the proportion of El Nino
VEars.

2. The proportion of tornadoes occurring in La Nina vears 18 equal to the proportion of La Nina
VEears.

3. The proportion of tornadoes occurring in Normal vears is equal to the proportion of Normal
Vears.

If the above conditions are NOT supported by data, then we can say that “Data suggests that climate
has an effect on tornadic activitv.,” To answer the question, we set up the following hypothesis:

12 17 a6
HD: P1=54-.F2=54:P3=54

Hy: At least one of the three specifications in Hy is false

obe.counte <- c(14, 28, 44)
p0 <- c(12/54, 17/54, 25/54)
chisq.test(obe.counts, p = p0 )

Chi-equared test for given probabilities

data: obs.counts
I-squared = 1.8, df = 2, p-valus = 0.4
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The exact p-value is 0.3988. At o = (.05, since p-value > o, we camnot reject the null hypothesis
(that climate has no effect on tornadic activity) in favor of the alternative (that it does). In short,
there 1= no evidence that climate effects tornadic activity, at o = 0.05.

chisq.test{obe.counts, p = plli$p.valus
[1] ©0.3988

chisg.test(obe.counts, p = pl)$expected

[1] 19.11 27.07 39.81

chisg.test(obe.counts, p = pO)$reeiduals™2

[1] 1.36693 0.03167 0.43993

In this example, we can see that the biggest residual is from El Nino. Le., the biggest difference
between observed tornadic counts and the expected counts (if there were no effect between tornadoes
and climate) is in El Nino years.

7.2 Testing homogeneity

The chisq.test() function can also be used to test homogeneity of r populations with respect to k
categories In each. What that means is whether the & proportions in population 1 are equal to the k
proportions in population 2. are equal to the k proportions in population 3, etc. A mathematically
equivalent test is whether two categorical variables are independent. In other words, let us consider
the contingency table. The question can be translated to whether the column and the row variable
are iIndependent. In the following example, the two variables are education level and religiosity. The
first one 18 measured by the highest degree earned: Jr. College, College, and Grad School, and the
second one is whether the subject declares him/herself as Fundamentaliat or Moderate. Note that the
first variable has 3 levels, and the second variable has 2 levels. That's a 2 x 3 (or 3 x 2) contingency
table.

The question we want to answer is the following: Do the data provide evidence that religiosity
and education are independent? (Equivalently, do the data provide evidence that religion is not ho-
mogeneous with respect to education?) To answer the question, we will set up the following hypothesis:

Hy: Religiosity is independent of education. (Religion is homogeneous with respect to education. )
H: Religicsity is dependent on education. {Religion is not homogeneous with respect to education.)

obe.counte = matrix(c(728, 1304, 495, 1072, 2800, 1193), ncol = 3, byrow = T)
chisq.test(obs.counts)

Peareon'e Chi-squared test

data: obs.counts
I-squared = 58, df = 2, p-value = 3e-13
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# The rows are religious belief: Fundamentalist, and Moderais.

Conclusion: Given that p-value < o, we can reject the null hypothesi= in favor of the alternative. Le.,
there is evidence from data that religiosity is dependent on education. (Equivalently, religion is not
homogeneous with respect to education. )
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chisg.test (obe.counts) $expected

1 L2 [,3]
[1,] 599.1 1386 G561.9
[2,] 1200.9 2738 1126.1

chisq.test{obs.counts)$reeiduals"2

11 2 [,3]
[1,] 27.72 2.816 7.954
[2,] 13.83 1.405 3.968

We can see that the bigpest discrepancy between expected and observed is in the first category,
ie., in Jr, College. The next higgest discrepancy is in Graduate school. Inm “English:” There is a
relationship between religiosity and education level, and the relationship i=s strongest in Jr. College
and Graduate school. But what is that relationship? Nothing in chi.sq answers that question. For
that we need to look at the data itself. For example, we can look at the proportion of Moderates
within each of the education levels:

obs.counts[2, ] / apply(cbe.counts, 2, sum)
[1] 0.5986 0.8823 0.7068

Ome can describe the relationship by saying that Moderateness increases with education level.
There may be many different explanations for this pattern (e.g., parental factor, income level, ete.),
but it certainly says that there is a positive relationship between moderateness and education.

7.3 Chi-squared using basic formulas

obs. counts <- matrix(c(435, B8, 89, 375, B0, B4}, ncol = 3, byrow = T)

total <- sum(obs.counts)

rowsum <- apply(obe.counte, 1, sum) # If unfamiliar with apply(?), look-up help. Here,
coleum <- apply(obe.counte, 2, sum) # it simply finds row ond column marginals
expected <- (matrix(rowsum) ¥} t(matrix(colsum})) / total

expacted

,u [,z [,3]
[1,] 432.1 57.61 92.29
[2,] 377.9 50.38 80.71
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residuale <- (obe.counts - expected) / sqrt(expected)
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df <- prod{dim(cbe.counte) - 1} # This df is just the product (mrow-1)#(ncol-1).
I2 <- sum(reeiduale™2) # = observed X-squared.
1-pchisq(X2, df)

[1] 0.8614

# p-value = area under the chi-squared distribution to the right of the b
# observed X-squared.
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8 F-test for 1-way ANOVA

Recall that the main question that can be addressed by 1-way ANOVA iz whether the means of &
samples are equal. Thus, we have the following hypothesis:

Hy: gy =g =ps = - =iy
Hy: At least two of the p’s are different.

Example: Table 9.1 Vibration (in microns) in five groups of electric motors with each
group using a different brand of bearing

Brand 1 Brand 2 Brand 3 Brand 4 PBrand?5
13.1 16.3 13.7 15.7 13.5
15.0 15.7 13.6 13.7 13.4
14.0 17.2 12.4 14.4 13.2
14.4 14.0 13.8 16.0 12.7
14.0 14.4 14.0 13.0 13.4
116 17.2 13.3 14.7 12.3

Mean: 13.68 15.05 13.67 1473 1308
St. dev: 1.104 1.167 816 040 A79
ANOVA Table

Source df a5 MS F

Factor 4 20.88 7.72 8.45

Error 25 22.83 013

Total 20 53.71

Note that the data provided by the following link are entered in a form that makes ANOVA look like
regression: i.e., the 1st column i8 = and the 2nd column is y. Although lm() i= capable of handling
situations where z is discrete/categorical (in which case that r is referred to as a dummy variable),
generally when one speaks of regression it is assumed that r is continmous. Hegardless, in regression
the reponse y is continuous, but in ANOVA it's discrete/categorical.

dat <- read.table("8_1_dat.txt", headsr = TRUE)

aov.1l = aov(Vibration = as.factor{Brand), data = dat)
gunmary {aov.1)

Df Sum 8q Mean 8q F value Pr(>F)
ag.factor (Brand) 4 30.9 7.7l B.44 0.00019 s«
Residuale 26 22.8 0.51

Signif. codem: O 'wes' 0,001 '#&' 0,01 ' 0,06 0. QLD " "D

Since the p-value {00018 < most o's) is really small, we reject the null in favor of the alternative.
Le., the data suggest that at least 2 of the means are different. One way to identify which two means
are different s to at the following boxplots. This plot shows the 5-number summary at each level of
T, 1.e., something about the spread of the data.
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boxplot(Vibration ~ Brand, data = dat)
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This allows for a visual comparison of the distribution of the 5 populations. The p-value sugegests
that at least 2 of the means are different. It's evident, for example, that the population means of
brand 2 and 5 are probably different. But to quantify this observation, we need to do a “post hoc”
analysis, an example of which is Tukev’s.

8.1 Tukey's Test

The following performs Tukey's method (section 9.3 of the textbook) for identifying the different
means. It gives confidence intervals and p-values for pairwise testa of population means. Recall that

if the confidence interval does NOT include zero. then we conclude that the two means being tested
are different.

library(etate)
tuk.1 <- TukeyHSD(aov.l, conf.level = 0.93)
tuk.1

Tukey multiple compariscns of means
99Y family-wize confidence level

Fit: aov(formula = Vibration ~ as.factor(Brand), data = dat)

% as.factor (Brand) "
diff lur upr p adj

2-1 2.26667 0.2535 4.2738 0.0032
J=1 -0.01667 -2.0238 1.8906 1.0000
4-1 1.06000 -0.8571 3.05671 0.3418
5-1 -0.60000 -2.6071 1.4071 0.8113
3-2 -2.28333 -4.2806 -0.2762 0.0029
4-2 -1.21667 -3.2238 0.7906 0.2107
5-2 -2.B6667 -4.8738 -0.85556 0.0002
4-3 1.068667 -0.5406 3.0738 0.3268
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For a 1-way ANOVA test, we will first compute the mean and standard deviation for the data in

Table 9.1, then use the hasic ANOVA equations to show that we get the same answers as above.

8.2 1-Way ANOVA using basic formulas

If only means and standard d

formulas.



dat <- read.table("%9_1 dat.txt", header = TRUE)

attach(dat) # The attach function leads in all variables in the data sei.
k <- 5 # Number of categories.
O <~ m <- B <~ mmeric(k) # Space for meon and sd in each category.
for(i in 1:k) {

n[i] <- € # Sample size in esch calegory.

m[i] <- mean({dat[Brand = i, 2]} # Mean in each category.

g[1] <- sd(dat[Brand == i, 2]} # Stondard deviation in each cafegory.
} # Ignore B warnings, if any.

# To do ANOVA by haond, we need n, m and 5:
i

[l1 66666

m

[1] 13.68 15.95 13.67 14.73 13.08

B

(1] 1.1940 1.1675 0.8165 0.9395 0.4792

# ANOVA using basic anova equations:

df.1 <- k = 1 # Numerator degrees of freedom.

df .2 <- k ® € = k # Denominaior df.

S2B <- sum(n * (m - mean(m)) = 2) # Sum of squares between groups.
S3W <- sum{(n - 1} ® g = 2 ) # Sum of squares within groups.

M3B <- 88B / df.1 # Mean-squared betfween groups.

MSW <- BSW f df.2 # Mean-squared within groups.

FF <- M3B/M3W # F-ratio.

p.value <- 1-pf(FF, df.1, df.2) # p-value.

df.1; 4f.2; S8B; S5&W; MESE; MBW; FF; p.value

[1] 4

[1] 25

[1] 30.88

[1] 22.84

[1] 7.714

[1] 0.9135
[1] B.444

[1] 0.0001871

# Note that resulis are the same as the ANOVA fable above.
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9 T-test and F-test for Regression Coefficients

In multiple regression the F-teat is for testing if at least one of the regression coefficients = nonzero,
because then there s evidence that at least ome of the predictors is useful, i.e., the model has some
utility. Also, if the model has some utility, then we can try to identify which regression coefficients
are the nongero ones, because then the corresponding predictors are the useful ones. The latter step
is done with a sequence of t-tests, each on a different coefficient.

Example: Problem 11.39 (in 2nd edition)

Snowpacks contain a wide spectrum of pollutants which may represent environmental hazards. The
article “Atmospheric PAH Depesition: Deposition Velocities and Washout Ratics” (J. of Environ-
mental Engineering, 2002: 186777195) focused on the deposition of polyaromatic hydrocarbons. The
authors proposed a multiple regression model for relating deposition over a specified time period y to
two rather complicated predictors z; and ry defined in terms of PAH air concentrations for various
species, total time and total amount of precipitation. The data is on the web at:

dat <- read.table("11_39_dat.txt", header = TRUE)

plot{dat, cex = 0.5) # Look ai the dais, ond note the collinearity
medel.l <- Im(y 7 x1 + x2, data = dat) # Fif a linear model
summary (model. 1)

Call:
In(formula = y ~ x1 + x2, data = dat)

Residuale:
Min 10 Median 30 Max
=111.6 =18.F 18.2 27.4 44.9

Coefficients:

Eetimate Std. Error t value Pr(=|t|)
(Intercapt} =33.463810 14, 898258 =2.2b6 0.041 =
xl 0. 002055 0. 000295 6.98 0.0000085 ®&*
x2 29835.665532 13653.728296 2. 18 0.046 =

Signif. codeg: O "#&&' Q,001 's&' 0.01 "#' Q.06 '.' 0.1 ' " 1
Residual standard error: 44.3 on 14 degrees of freedom

Multiple R-squared: 0.5923,Adjusted R-equared: 0.912
F-statistic: 84.4 on 2 and 14 DF, p-valua: 0.0000000165
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Note that the F-ratio tests for “model utility”, 1.e., if at least one variable is a significant predictor
of y. The way it's done in practice is to compare the so-called “full model” (y = infercept + r; + z3).
againat the so-called “null model” (y = intercept). The appropriate statiztic is the F-ratio, which is
returned in summary( ):

summary(model.1)$fatatistic # Returns the F-ratic and degrees of freedom

valus mumdf dendf
84.39 2.00 14.00

pummary(model.l)$fstatistic[1] # Selects only F-r

valua
84.39

The 3 p-values appearing in the table test the full model against a model without one variable.
These are based on the t-tests for testing whether the respective regression coefficient 5 nonzero. In
this case, at o = 0.01, it looks like x1 is the useful predictor and at o = 0.05, both x1 and x2 are
useful. We can also compute a confidence interval for each of the regression coefficients:

confint{modal.1, lewvel = 0.93)

.6 % 89.5 %
{(Intercept) =77.807627 10.880008
xl 0.001178 0.002932
x2 -1080%9.336342 T0480.667406

0.1 Confidence Interval vs. Prediction Interval

Recall that the confidence interval is a confidence interval for the population mean of y given = and the
prediction interval is not a CI at all because 1t I8 not referring to a population parameter. Instead, it
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