2 Distributions

2.1 Binomial and Poisson Distribution

The format is dbinom(z, n, pi), where ¢ = number of heads out of n tosses of a
coin, and pi = prob of head. For example,

dbinom(0, 100, 0.006) # returns the value of the distribution (pmf) itself.

[1] 0.6058

dbincm(Q:3, 100, 0.005) # runming dbinom({) for multiple values of © in one sweep.
[1] 0.60577 0.30441 0.07572 0.01243

pum{dbinom{0:3, 100, 0.005)) # summing up the above probabilities.

[1] 0.%383

2.1.1 Plotting

x < D0:3

¥y <- dbinom{D:3, 100, 0.005)

plet{x, y, type = "b")} # "b" (for "boith") connects the points with lines.
See fplot for more options for lime types

0.6
5

0.0

Plotting the mass function for different values of n and pi.

Note the n ond p? values that produce normal-looking distributions,
and those that produce Poisson-looking distributions.

par{mfrow = c{3, 4)) # 4 3 by 4 matriz of figures.

I < 0:20

plet{x, dbinom(x, 5, 0.01}, type = "b"} # n=5, pi=0.01

plot(x,

plot(x,
plot{x,

plotix,
plot(x,
plet{x,
plot(x,

plot(x,
plotix,
plot(x,
plotix,

daoinom{x, 10, 0.01) dasinom{x, 5, 0.01)

dbinomix, 20, 0.01)

00 02 04 05 08

0.8

dbinom(x,

dbinom(x,
dbinom(x,

dbinom(x,
dbinom(x,
dbinom(x,
dbinom(x,

dbinom(x,
dbinom(x,
dbinom{x,
dbinom(x,

0 5 10 20
X
g——————

o
0 5 10 20
X

0 5 10

20

B, 0.1}, type = "b") # n=5, pi=0.1. Use UP-ARROW to get
most recent run commend
B, 0.5), type = "b") # n=5, pi=0.5
B, 0.8}, type = "b") # n=5, pi=0.39
1¢, 0.01}, type = "b") # n=10, pi=0.01 USE UP-ARROW
10, 0.1}, type = "b"} # n=10, pi=0.1
14, 0.5}, type = "b"} # n=10, pi=0.5
10, 0.9}, type = "b"} # n=10, pi=0.9
20, 0.01}, type = "b") # n=20, pi=0.01
20, 0.1}, type = "B"} # n=20, pi=0.1
20, 0.5}, type = "b"} # n=20, pi=0.5
20, 0.9}, type = "B"} # n=20, pi=0.9
s 8 =
: . s s
- v & v 3
: = ;o -]
§ o § e § o
8 e o
a Te a g o
o | = =]
=] e =]
0 &5 10 20 0 5 10 20
X X b4
- -
] ﬁ =] M ﬁ ﬂg
s 9 8 § oo g ol
g g "] g
o4 2}
{ o gw i = | 0@ i o L
5]l s{ |
a eQ o
g 2 B i
0 &5 10 20 0 &5 10 20 0 5 10 20
X X X
= 9 oS a0 & o
S | g W 4 J'
g 39 el 1% | &8 °
2 0% | £°| oo e | 4
§°]F I 14| §°1
8 g R
0 5 10 20 0 &5 10 20 0 5 10 20
X X X

Note that we can approximate the binomial distribution with the Poisson distriution (when w is
small and n is large) or the normal distribution (when 7 is mid-range and n is large).
The shape of the Poisson distribution depends on the parameter A.

par{mfrow = c{l1, 1)) # One figure on whole page
<= 0:10
plot (x, dpois(x, 1), type

"b") # "B" siands for "boih”

M a na o
¥ POLRLE ana

lines(x, dpois(x, 4), type = "b", col=2, main = 'lambda = 4') # USE U e
lines(x, dpois(x, 6), type = "b", col=3, main = 'lambda = 6') # lines() adds lines
on axisting plot

legend('topright', clexpression(lambda == 1), expression(lambda == 4},
expression(lanbda == €}), text.col = c(1, 2, 3), bty = 'n')

Simélarly, dnorm(x, mu, sigma) produces the demsity function Normal (mu,sigma)
See Fdnorm() for required format
o-0
9 A=1
R - h=4
T
¥ 0N
S
= P @
#] . '-’3\
(= o }1 2
o — o
o a *
o o
n; % e
o - o. '
S - 0:-0-0-0:8:0
| I I I I I

2.2 Simulation from Mass and Density Functions

In this section, we will present how to generate data that follow the binomial distribution; i.e., simulate

the tossing of a coin, without actually tossing coins. For example, shown below iz a way to generate
200 numbers from a binomial:

rbinom({200, 10, 0.5) # format = rbinom(number of fosses, n, pil

[, 2 o a " S +F oo)
See Trbinom jor more

Effectively, vou just tossed 10 fair coins, 200 times, each time noting the number of heads out of 10.
This way, you can do a lot of experiments on the computer, without actually doing the experiment!
If the coin is not fair, then just change the parameter .

10

Putting an "r" before the name is R's way of generating the nt
For emample, consider the Possion disiribution, which

modal the number of some event, per unit time, or space,

rpois(100,4) generates 100 numbers from the poisson distr
100 numbers could be the "number of people arriving ot a

=
e
t

O O W H
=+
kel
(L
B

if the asverage number of people orriving per hour i

g 4.
rpoie(l100, 4) # generafes 100 mumbers from the Poisson distribution.

Similarly, the following draws a single somple of size 10000 from o normal
distribution with mu=0 and sigma=1.

X <- rmnorm{10000, 0, 1)

hist{x, breaks = 200) Checks the histogram and if looks preity normal

2.3 Boxplots

A boxplot of data is a way of summarizing the data into five numbers that capture the shape of
the histogram. The five numbers are the minimum, 25th percentile, median, 7ith percentile, and
maximum.

X <- rmorm(10000, O, 1)

parimfrow = c{1, 23)

boxplot{x, cex = 0.7) # Circles at the end of bozplet are outliers according to some
criterion.

boxplot(x, range = 0) # Suppresses outliers.

Example 1

Now, recall the bimodal histogram we saw before in hist data. It was bimodal because two separate
data filea were joined, each one with 100 cases in it. We can separate the two and boxplot them,
separately:

1

dat <- read.table('hist_dat.txt', header = F)

x <- dat[, 11 # 411 of m.

x_1 <- x[1:100] & Pui the 1si 100 cases of = in m_1,
2 2 <- x[101:200] # Put the remainder in z_2.
parf{ofrow = c(1, 2})

hist(x, breake = 20) # Draw a hi
bexplot(x_1, x_2) # Draw boxzplot

vy
stogram
8

Histogram of x

_ H -]
> = W Sk —o-
2 =7 {4l] 5 ==
g - AL T O
Em—rl-[| =4
o . o] W%
I | | | | | |
20 2 4 6 1 2
X

Example 2: Attendance Data

The variable of interest is the “percentage of time student attends lectures”, and the two groups are
boye and girls.

dat <- read.table('attend_dat.txt', headar = T)
x <- dat$attendance
y <- dat$Gender

par(mfrow = c(2, 2))

4 way of selecting cases in ¢ that correspond to some value of y
hist(x[y == 0], main = "Boys' Attendance", xlab = 'Attendance')
hist{x[y == 1], main = "Girle"' Attendance", xlab = 'Attendance')
boxplot(xly == 01, xz[y = 11)

Look at the fwo sample means to see if there 45 o difference between
boys and girls with respect to their aitendance.

mean(x[y == 0]) # Sample mean attendance for girls

[1] BT.ET

mean(x[y == 1]) # Sample mean attendance for boys.

[1] 86.4

12

100

The y=0 gro1 he y=1 group (boys
(87.6 vs. 8 352
median(x([y ==
[1] 92.5
median(z[y == 1]1) # Sample median atiendonceand for boys
[1] 95
Boys' Attendance Girls' Attendance
& g
g o .
™
¢ e ¢
-
L L
o _
=
W —
—— =T P71 |
Qo - o -
| T | | | | T T | | |
0 20 40 60 60 100 20 40 60 80
Aftendance Attendance
8 4
- |=|
= |
o [l [
o |
2 a |
[a] P
g - o
a
ﬁ =
_ a
% T T
1 2

There are several sources of complexity in comparing two groups:
1. Sample mean or median measure only “center” or “location” of data.

2. They measure 2 different notions of “center;” and there are many others.

13

3. Measures of location (e.g., mean, median) do not capture all characteristics of the sample. The
spread 1s equally important.

Ona measura of spread is the sample sfandard deviation:
ed(x[y == 01} # Sample standard deviation of attendence for girls

[1] 20.41
ed(x[y == 11} # Sample standard deviation of attendance for boys
[1] 1s.02

We can see that the spread 15 a bit wider for girls than for boys. In statistics, some interpretation
i= alwaye important. For example, one might say that boye are more “consistent” across the sample.

Orwerlaying two histograme:

dat <- read.table('hist_dat.txt', header
x <= dat[, 1] # Herz is all of «

x_1 <- x[1:100] & Put the Ist 100 cases of
x_2 <- x[101:200] # Put the remainder in z_2
a <- hist(x_1, plot = F)

b <- hist(x_2, plot = F)

x.1im <- range(c(afnids, b¥mids))

plot(a$mids, a$counts, type = "h", xlim = x.1lim, xlab = 'mids', ylab = 'counts')
lines (bfmids + 0.1, b§counts, type = "h", col = "red") # The shift of 0.1 avoids

F)

30

counts
|

0 10
|

mids
That was the hard way! But it shows the inner-workings of hist(). The easy way is:

hist(x_1, breaks
hist(x_2, breaks

20, add = T, border = 2}

14

20, xlim = range(x_1, x_2), xlab = 'mids', ylab = 'coumts', main = '')

counts
15

5

mids

2.4 Binomial Distribution

Recall that the mean and variance of the binomial distribution are given by nr and nw(1 — 7). Note
that thev grow linearly with the sample size n. For example, if NG = number of girls in a random
sample of size n, then as n increases the typical value of NG increases (obviously), and the variability
(across samples) of NG also increases (not obvious). We will confirm this mathematical result with a
simulated coin toss example.

Example 1

Toes n fair coing and count the number of heads, Then, repeat 1000 times. You'll get 1000 numbers,
each of which is the number of heads out of n. What’s the sample mean of these 1000 mumbers?
What's their variance (spread)? How do these values vary with n?

n.triale <- 1000 # Number of repeats.

n <= 1:100 # Values of n io emplore

pample.mean <- mmeric(100) # Generate a wector to store the resulis

gample.var <- mumeric(100)

for (i in n) {
head.counte <- rbinom(m.trials, i, 0.5) # Number of heads in each repeat.
gample.mean[i] <- mean(head.counts) # Mean number of heads in 1000 repeats
gemple.var[i] <- var(head.counte) # Variance of the 1000 repeats
}

plet{n, eample.mean, cex = 0.5) # cer controls the size of poinis

pointa(n, sampla.var, col = 2, cex = 0.5) # points() adds mew values on an

legend('topleft', c('Sample Mean', 'Variance'), text.col

15

sample Mean
Variance

sample.mean
10 20 30 40 50

0
|

0 20 40 60 80 100

From the example above, we can see that mean and variance grow linearly with n. This is
consistent with the n-dependence in the results E[z] = nr and Var[z] = nr(1 — 7). It makes senze
for the mean to grow linearly - the expected number of heads out of 10 tosses i about 5, while that
for 20 tosses is about 10, etc. Now, recall that standard deviation is the square root of the variance.
Therefore, standard deviation grows at rate \.-"'ﬁ, which is slower than the mean. In other words, the
spread /uncertainty of the number of heads out of n grows slower than the mean itself does. This
is one of those breaks that nature has given us, because it allows us to effectively “reduce error” (Le.,
atd. dev.), relative to the “signal” (i.e.. mean) by simply increasing sample size.

2.5 Sample Quantile

Suppose our sample/data consists of the following 11 numbers:
1 < c(-10, 50, 30, 20, 0, 40, 70, 60, -20, 80, 10)

TF a0 F 43 I - - i g3
Thao madaam A Foa o Ao 90 = e F A g o Fag
f e MEdEdR O eto GEbED b IV, s CURTETIRES VY
J S ;

nedian(x)

(1] 30

gort{x)

[1] -20 -10 © 10 20 30 40¢ 50 60 70 BO

16

Thare are three other ways of stating this rasult:
- 50% of the cases are less than 30.
- The 50th percentile of the data 15 30.

- The 0.5th quantile of the data 45 30, as confirmed By
quantile{x, probs = 0.5)

BOY
an

Note: 50th percentile = 0.5th guantile,

Similarly, 10th percentile = 0.1th quantile, and S0tk percentile = 0.3th
gquantile.

Instead of focusing om "50% of the cases," we can ask about 10) of the cases.
That would be the number in the daofa that has 10¥ of the 11 cases below it,
#1i.e., =10, becouse there is 1 case below -10, as confirmed by

quantile(x, probs = 0.1)

10%
-1¢

2.6 Distribution (Quantile

In this section, we will review the notion of distribution quantile. Recall Table 1 in the textboolk,
which gives us the area under the standard normal distribution to the left of some number. For
example, z = 1.285 has about 00% of the area to its left. That means that about 90% of the values
of z (ranging from —oo to +oo) are less than 1.285. In other words, the 00th percentile (or 0.9th
quantile) of the standard normal distribution is about 1.285. Table 1 is more precisely encoded into
the R function qnorm():

Finding the 0.9 quantile of a standard normal distribuiion
gnorm(0.9, mean = 0, d 1, lower.tail = TRUE)

[1] 1.282

Similarly, we cen find the 0.1th, 0.2ih, 0.3th, ..., 0.2ih quantila:
gequence <- seq(0.1, 0.9, by = 0.1)
quorm{sequence, mean = 0, sd = 1, lower.tail = TRUE }

[1] -1.2816 -0.8416 -D0.5244 -0.2633 0.0000 0.2633 0.5244 0.8416 1.2B16

:a.

'a;, we can compuie any guantile of the standard normal distribuidon.
1

This
In ;, e can find any quantile of any distr
L = | J b

an
b

L

10N,

T,
4

T
d b

17

2.7 Distributions in R

R has a family of functions that allow you to analyze the properties of various known probability
distributions easily. In this explanation, we will focus on this family of functions for the normal
distribution, but note that these commands analogously exist for most distributions, including (but
not limited to) the Exponential, Binomial, Poisson, and T distributions. You may simply substitute
the suffix norm with the appropriate abbreviation of the desired distribution. Please refer to https://
cran.r-project.org/web/views/Iistributions.html for a full list of the probability distributions
included in base R and their abbreviationa.
The four functions we will go over are dnorm, pnorm, gqnorm, and ronorm.

2.7.1 dnorm

This function returns the value corresponding to the probability density (mass) function for continuous
(discrete) diatributions. For the normal distribution, it returns the y-value on the bell curve when
given a value for r and parameters g and . In other words, it plugs x into the following density
function for the normal distribution, given values for p and o:

)= zon (- (552)
HE) = —amp == —
Irat 2\ o

Ag a result, dnorm has 3 main inputs: x, mean, sd. x must be an array of numerics corresponding
to the values you want plugeed into the density function. In discrete distributions. x must be an array
of integers. Mean corresponds to p above, and sd corresponds to o above, both numerics. Note that,if
gd i less than or equal to 0, you will get an error. In R, the defanlt values for mean and ad are (0 and
1 respectively, in all of the norm functions. This corresponds to the standard normal distribution.
The output for dnorm is an array of the same size/shape as the input .
Let's find the density value for = 0 in the standard normal distribution:

fa,1(0) = dnorm(z = 0,mean = 0,8d = 1)
= 0.30804

2.7.2 pnorm

This function returns the value of the cumulative distribution function for a probability distribution.
For continuons distributions, this is the definite integral taken from the minimum of the density
function's support to a point x. For discrete distributions, the integral is replaced with a summation.
More specifically, for the normal distribution, this is:

Foo@= [; fuolz)dz

As vou may remember from calenlus, this computes the area under the curve of the density function
f, and this area is found from the minimum up until the point . We refer to this area as the quantile
for the point x. For some intuition, a return of 0 indicates that input corresponds to the minimum of
the distribution. Similarly, a return of 1 indicates that the input corresponds to the maxdmum of the
distribution.

Similar to dnorm, the three inputs to pnorm are an array of numerics ¢ (integers for discrete
distributions), the mean (u), and the sd (). The output is similarly an array of the same shape /size
of the input =, where the values are always numerics between 0 and 1.

Let’s find the quantile value for * =0 in the standard normal distribution:

Fi1(0) = pnorm(0, mean = 0,8d = 1)
=05
The value 0.5 means that 0 13 the median of the standard normal distribution.

18

2.7.3 qgnorm

This returns the value of the guantile function at a given quantile value. This can be thought of as the
inverse of the pnorm function, where you have the quantile value and you want to know what value
of z corresponds to that quantile. The input iz an array of quantile values (numerics between 0 and
1) and the output is an array of numerics (integers for discrete distributions) of the same size/shape
as the input.

Let’s say we didn't know what the median of the standard normal distribution was. We can nse
gnorm to help us find it:

F,:,'Ill (0.5) = gnorm(0.5, mean = 0,sd = 1)
=0

We've confirmed that (1 is indeed the median of the standard normal distribution, but we already knew
that from our previous pnorm example. Note that pnorm and gnorm are great "by R” substitutes
for the tables you commonly use when working on your homeworks!

2.74 rnorm

Thia is the most unique of the functions. rmorm generates a random sample from a normal distribu-
tion. The mean and sd inputs remain the same, but the primary input n i3 an integer that represents
the size of the random sample desired. The output is thus an array of length n.

This function generates random samples from the normal distribution using a technique called
Markov Chain Monte Carlo. For a reasonably large n, if you were to produce the histogram of =, it
would look like the shape of the normal distribution (density) curve. That is what we mean when we
gay “take a sample of sige n from & normal distribution.”

Let’s see this in action with the standard normal distribution. We'll first plot the true density
curve by using the dnorm function.

X <- seqf-3, 3, length = 100)

true_density <- donorm(x, mean = 0, sd = 1)
plot{x, true_density, ylab = "f(x)", main = "3tandard Normal Density", type = "1")

Standard Normal Density

T
=
L
(2]
> e
= o
= 2
e T 1T 1T 1T 1T 1T1

Now let's compare random samples generated by rnorm with varving sizes:

19

eet.eeed(123) # IMPORTANT for reproducing the same resulis shoum here
gample.l <- rocrm(100, mean = O, sd = 1) # Sample sdze 100

hist{sample.l, prob = TRUE, ylim = c{0, 0.5}, breaks = 10)
linee(x, true_density)

Histogram of sample.1

w._ _—
5 _
= o
8 o
<
< Y T N
-2 i 1 =2
sample.1
gample.2 <- roorm(1000, mean = 0, ed = 1) # Sample size 1,000
hist{sample.2, prob = TRUE, ylim = c{0, 0.5}, breaks = 20)

lines(x, true_density)

Histogram of sample.2

Density

00 02 04

sample 2

gample.3 <- rnorm(10000, mean = 0, &d = 1) # Sample size 10,000
hist(sample.3, prob = TRUE, ylim = c{0, 0.5), breaks = 50)
lines(x, true_density)

20

Histogram of sample.3

Density
00 02 04

— T T T 1
-4 -2 0 2 4

sample.3

Thus we see that the greater n is, the more closely it approxdmates the density curve. As vou may
have realized, the output of rmorm i=s different with each run. It i= best to set a seed so that vour
results are reproducible, which is especially important when publishing results that rely on a random
number generator, or even when debugeing yvour code.

2.7.5 Other Distributions

Note that in the normal distribution, the mean (u) and standard deviation (o) uniquely define the
digtribution. However, in other distributions, other parameters must be specified which then uniquely
define the distribution (such as p and n for the Binomial distribution). The parameters that define the
distribution are the always inputs, in place of mean and ad in the examples above. If you're curious
about a specific function, please use the R help pages. These can eagily be accessed by inserting a
question mark before a function, such as " Tpnorm®.

2.8 Q-Q Plots

A g-q plot is a plot of sample quantiles versus distribution quantiles for some specified distribution.
If the result i a relatively straight “line.” then there is some evidence that the data have come from
that distribution. More intuitively, there i= evidence that the histogram of the data i= consistent with
the specified distribution. Most often when people talk about a g-q plot, they are assuming that the
distribution & the standard normal distribution. So one plots sample quantiles (along the y-axis)
versus quantiles of the of the standard normal {along the x-axis). The R corresponding function is

qqnorm ().

Example

Now we take a sample from a standard normal distribution and use ggnorm() to make the g-q plot
for the sample. Then, we will make the g-q plot “by hand:”

n <= 500
I <- rnorm({n, 0, 1)

qgnorm(x, cex = 0.5)

2

