quantile{x, probs = 0.1)

10%
-10

2.4 Distribution (Quantile

In this section. we will review the notion of distribution quantile. Recall Table 1 in the textboolk,
which gives us the area under the standard normal distribution to the left of some number. For
example, z = 1.285 has about 90% of the area to its left. That means that about 90% of the values
of z (ranging from —oo to +oo) are less than 1.285. In other words, the D0th percentile (or 0.0th
quantile) of the standard normal distribution is about 1.285. Table 1 is more precisely encoded into
the R function gnorm():

7]

qnurml{ﬂ.'-:d, mean = f), Bd = 1, lower.tail = TRUE}

[1] 1.282

gequence <- seq(0.1, 0.9, by = 0.1)
gonorm{sequence, mean = 0, sed = 1, lower.tail = TRUE )

[1] -1.2816 -0.8416 -0.5244 -0.2633 0(.0000 0.2633 0.5244 0.8416 1.2818

2.5 Q-Q Plots

A g-q plot is a plot of sample quantiles versus distribution quantiles for some specified distribution.
If the result is a relatively straight “line,” then there is some evidence that the data have come from
that distribution. More intuitively, there is evidence that the histogram of the data is consistent with
the specified distribution. Most often when people talk about a q-q plot, they are assuming that the
distribution = the standard normal distribution. So one plots sample quantiles (along the y-axis)
versus quantiles of the of the standard normal (along the x-axis). The R corresponding function is

gqnorm( ).

Example

Now we take a sample from a standard normal distribution and use ggnorm() to make the g-q plot
for the sample. Then, we will make the g-q plot “by hand:”
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n <- k0O
x <- rnorm(n, 0, 1)

qqnorm(x, cex = 0.5)

I <-geq(.5 /mn, 1-.5/n, length = n)

Q <- gnorm(X, mean

=0, sd = 1)
plet(Q, sort{x}, col =

2, car = {0}

ablina(0, 1)

Normal Q-Q Plot
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Note that the two q-q plots are the same. Make sure you understand what's done here: When
we have 500 observations, each one is associated with a percentile; e.g., the smallest observation has
nothing less than it, and so its percentile (rank) is 0. Meanwhile, the largest obs has everything less
than it, and so, its percentile (rank) is 100%. In terms of quantiles (instead of percentiles), these two
limits are () and 1; and that’s why we have X go from 0 to 1. In fact, the numbers go from a number
close to 0 to a number cloge to 1, namely from .5/n to 1 —.5/n; this is mostly a matter of convention
for handling the lowest and the largest element in the sample. Then, Q) = qnorm(X,0,1) returns the
quantiles of the standard normal dist.

It's not obvious but {e.g., see the book) the slope of the “line” is the ¢ parameter of the normal
distribution from which the data have come, and the y-intercept of the line is equal to the y parameter
of the distribution. In this case, we can see that the slope is around 1, and the y-intercept is around 0.
We have confirmed this by drawing a line with slope = 1, v-intercept = (. Note that the line we have
just drawn 18 NOT the “best fit" line to the g-q plot. When we talk about the slope or the intercept
of the g-q plot. think of them as the “visual slope” and the “visual y-intercept” instead.

Now, let’s consider data coming from a normal distribution with g =8, ¢ = 2 (i.e., not standard).
If we continue using the quantiles of the standard normal along the x-axis, it turns out the slope will
then be 2. and the intercept will be 8. In other words, the interpretation of the g-q plot is still the
same - the slope is going to be close to the o of the distribution from which the data were drawn, and
the intercept will be approximately the p of the distribution.
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n <- k0O
x <- rnorm(n, B8, 2)
hist(x)

qqnorm(x, cex = 0.5)
ablina(8, 2) # Add o

Histogram of x Normal Q=-Q Plot
uw
4 T Q | g
s - Ie:
5 F - 2 © -
o - o -
§ o -
A T T B R R 2 T F T T T
246 8 12 -4 7-1 1 23
X Theoretical Quantiles

Now, let’s get a sense of what a standard normal g-q plots look like for data from non-normal
digtributions. Recall that if the data come from a normal distribution, their g-q plot should look like
a straight line, at least in the bulk of the plot; the tails nsually deviate from a straight line, becanse
there are usually few cases there anyway. A normal g-q plot s a visual method for checldng whether
data are normally distributed. Also, if linear, then the intercept and slope of the line can be uzed as
estimates of the p and & of the normal distribution, respectively.

x <- rexp(m, 1)

hist{x)
qquorm(x, cex = 0.5)
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Histogram of x

Frequency

Normal @-Q Plot

0 100 250

Sample Quantiles

0 2 4 6

Theoretical Quantiles

As we can see, a non-normal sample will not produce a linear pattern because ggnorm| ) checls the
data against the standard normal distribution. But how do we identify if some data come from some
other distribution, say, from the exponential distribution? The solution is to use analog of ggnorm
for the exponential distribution. For example, we can plot quantiles of data versus quantiles of the
exponential distribution. In R, the corresponding function is gqgmath(), which allows for a large

number of theoretical distributions.

library(lattice) # Load the library that
x <- rexp(b00, 1) #Sample of size 500 from a

hist(x)
qquath(x, dist = gexp, cex = 0.5)
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dat <- read.table('hiet_dat.txt' , header

qqnorm(dat[, 1], cex = 0.5)
# You can see that there are two
¥
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2.6 Jargon

As explained in class, in statistics, we use distributions to represent populations. In fact, we can
think of distributions and populations as one and the same thing. Specifically, when we talk about
“a sample from a population,” what we really mean i5 “a sample from a distribution.” That jargon
can be confusing for some of the distributions (especially, Binomial), but it will help if every time you
hear "a sample from a distribution,” you translate that into what the actual data in the sample would
lock like. Consider the following examples, and their translation:

“A gample of size n from a Bernoulli distribution with parameter 7." Translation: n numbers,
each either 0 or 1, and the proportion of 1's is around .

“A sample of size n from a Normal distribution with parameters pp and ¢." Translation: n numbers,
each between oo, with most around g, and a typical deviation around o.

“A sample of size m from a Binomial distribution with parameters n and 7." Translation: m
numbers, each an integer between 0 and n. (Later, you'll see how 7 affects the sample.)
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The last one i3 particularly confusing because of the names R uses to refer to the parameters of the
Binomial distribution. Specifically, what we call the n and 7 parameters of the Binomial distribution
are called “size™ and “prob.” And, to make matters worse, take a look at the help pages for rbinom;
you'll see “rbinom(n, size, prob),” and so the n that appears in there is NOT what we call the n
parameter of Binomial. I did say that it’s confusing!
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3 Regression

3.1 Scatter Plots

The best way of visualizing the relationship between two continuous random variables is through a
scatterplot. (Just in passing, the analog for two categorical variables is the Contingency Table, also
called the Confusion Matrix.) It can convey a great deal of information, including whether or not
the relationship linear, and the extent of the strength of the relationship. Here, strength refers to
the sldnniness of the scatterplot. Let's illustrate through an example: Pick 100 random r values,
and corresponding y values that have some linear association with ¢ and change the amount of linear
association by adding different amounts of “error™ to .

par(mfrow = c(1, 2))
I <- Tunif(100, -1, 1} # Take 100 peoinis from o uniform distribution beiween

hist(x) # The shape and looks uniform

error <- roorm(100, 0, 0.1} # Generate o normal variable (the errer), with mu=0,

# odama= 1
¥ stgma=t). 1

hist{arror) # The shape looks 1

Histogram of x Histogram of error
e = ——

—] ___ o™ dil
.1 AV, -
g . 3 i
8 v A g 2-
[T — LL ]

= [ - _|_==

| | | [ | 1 1 1
=1.0 00 05 10 02 02 04

X emaor

.1 <= 2w x # Parfect linear relatl

¥.2 <= 2w x + arror # With some err

y.3 €- 2 » x 4 roorm{100, O, 0.5) y

y_4 <= 2 » x + rnorm(100, 0, 1.0)

par{mfrow = c(2, 2))

plet{x, y_1, cax = {.5]

plet(x, y_2, cex = 0.5)

plet{x, y_3, cex = 0.5)

plet{x, y_4, cex = 0.5) # Note that too much noise makes hard to see
# the linear relationship i and
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3.2 Correlation

To quantify the strength of the association between two continuous variables, Pearson’s correlation
coefficient (i.e., correlation), can be computed. It measures the ‘amount of scatter’ (i.e., skinniness)

in a linear sense (but NOT about “the fit").

cor(x, y_1)
(1] 1
cor(x, y_2)
[1] 0.99&
cor(x, y_3)

y_2

y_4
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[1] D.%321

cor(xz, y_4)

(1] 0.7744

cor(y_4, x) # r is symmeiric.

(1] 0.7744

cor(y_4, x + 10) # r ds invariant under shifits.
(1] 0.7744

cor(x, 10 * y_4) # r is invariant under scaling.

[1] 0.7744

3.2.1 Defects of Correlation

Pearson’s correlation coefficient, r, can become misleading in several situations.

pet.eoed(123) # Set a seed to get reproducable results.
I <- runif(100, €, 1}

errcor <- rnorm(100, 0, 0.5}

¥4 L+2w%1x+ arror

x_1 <- roorm(100, O, 50)

y_1 <- roorm(100, 0, B0}

1_2 <- 1000 + rnorm(100, 0, 5O)

y_2 <- 1000 + rnorm(100, 0, 5O)

plot{x, y, main = 'Without Outliers', cex = 0.5}

cor(x, ¥}

[1] 0.7662

# Effect of outliers:

x[101] <- 0.2 # Adding one ouilier can aridificially reduce r.
y[101] <- 8.0

plet{x, y, main = 'With Outlier (0.2, 8.0)', cex = 0.5)

cor(x, ¥y

[1] 0.518

x[101] <- 2.0 # 4 different outlier can artificially incresse r.
y[101] <- 8.0

plet{x, y, main = 'With Outlier (2.0, 8.0)', cex = 0.5)

cor(x, ¥}

(1] 0.8129

# Clusters can alse make T megningless.
plet{x_1, y_1, main = 'Cluster 1', cex = 0.5)
cor(x_1, y_1) # No correlation between z ond y in cluster 1
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[1] 0.05E9T

plot{x_2, y_2, mai
cor(x_2, y_2)

[1] -0.006664

¢ clx_1, x.2)
¥y <= cly_ 1, 7.2)

n = 'Clustar ', cax = &.5H)

plot{x, y, main = 'Combined Clusters', cex = 0.5)
cor(x, y) j A : bat
[1] 0.991
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The moral is this: Use r to measure linear correlation, but always examine the data (e.g. with a
scatterplot) to make sure things are okay.

Example: Ecological Correlation

The following example lllustrates another way in which the value of r can be “artificially” increased,
i.e., by averaging over things before computing r. For similar reasons, regression results (disscussed
in later sections) can be misleading as well.

dat <- read.table('3_17_dat.txt', header = TRUE)

x <~ dat[, 1]

y <- dat[, 2]

z <- dat[, 3]

plot{x, yJ # A er plot

cor(z, y} #X ation of 0.733 between the 9 poirs

(1] 0.7329

Ibar <- numaric(3) # Allocating space for storing the fdme-averaged values of ¢
ybar <- numaric(3} # ond of y

xbar[1] <- mean(xz[z == 1]} # This averages = values only when fime = I
ybar[1] <- mean(y[z == 11}

zbar[2] <- mean(x[z == 2]} # USE UP-ARROW

ybar[2] <- meaniy[z == 2])

xbar[3] <- meani(z[z == 3])

ybar[3] <- meaniy[z == 31}

plot(xbar,ybar) # Scatterplot of the 3 a pairs,

cor (xbar ,ybar} # and their exireme corre of 0.588

(1] 0.93985
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You can see clearly how it is that averaging tends to increase r, by reducing the number of points
and their scatter about a line. Looking at the last scatterplot of the original data, but with the three
times colored differently, you can see why this magnification of r is happening: Averaging the three
pairs for each time, replaces the three points with a single point located in the "middle” of the three.
In general, then, averaging tends to reduce the scatter, and hence the resulting r (called the ecological
correlation ):

plot{x[z == 1], y[z == 11, xlim = range(x), ylim = ranga(y)} # Scaiierplot for time 1
peinta(x(z == 2], ylz == 2], col = 2) # time 2 (USE UP-ARROW)
pointa(x(z == 3], ylz == 3], col = 3) # time 3

peinta(zbar, ybar, col = 4) # and the asveraged daota

pdf{"ecol.pdf")
plot{x[z == 1], ¥[z == 1], xzlim = range(x), ylim = range(y), xlab = "x",
ylab = "y", pch = 1, cex = 3}

pointa(z[z == 2], ylz == 2], col = 1, pch = 2, cex = 3)
pointe(z[z == 3], ylz == 3], col = 1, pch = 3, cex = 3)
dav.off(}
pdf
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3.3 OLS Regression on Simulated Data

Regression (or a line that fits the scatterplot) can be used for prediction. The function Im(), which
stands for linear model, does runs a regression in R. It fits a curve through a scatterplot, or a surface
through higher-dimensional data.

rm{list = 1s(all = TRUE)) # Start from o clean slate.

pet.eeed(123} # Ensures reproducable resulis

x <- Tunif(100, @, 1) # z is uniform betuween O and 1.

error <- roorm{100, O, 1) # Error is normal with mean = 0, sigma = 1.
¥ <= 10 + 24x + error # The veal/true line is y = 10 + 2z

plot{x, yJ # Flot the scaiterplotf.

cor{z, y) # Correlation between = and y.

[1] 0.4316

medel.1 <- Im{y " x) # Fitting the regression.
h a3

model.l # Note that the estimated coefficients are prefty clese to the irue ones

Call:

ln(formula = y ~ x)

Coefficients:

(Intercept) X
g. b8 1.81

abline(model.l1} # Superimposes the fit on the scatterplot

# To see whot else is returned by Im(), use the following command:
names (model. 1)

[1] "coefficiemte" “rasiduals" "affacte" "rank"
[6] "fitted.values" "assign" e "df .reeidual"
[9] "xlevels" "call® "tarme" "model"
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e S . -
# To select one of the items returned in Im(), use the dol

model.1fcoafficients

(Intercept) x
8.991 1.810
=
=
o~
=
>

10

8

3.4 OLS Regression on “Real” Data

x - c(¥2, 7O, 66, 68, 70} # Enter data inte R

y <- c(200, 180, 120, 118, 180} # See 1.1 for alternative
plot{x, y, cex = 0.5}

cor(x, y)

[1] 0.8892

model.l <- 1m(y ~ x)
abline(modal.1} # Drauws the fit
modal.l # Refiurns the esiimated intercept and slope

Call:
Im(formula = y

-

I}

Coefficients:
(Intercept)
=765.1 13.3

gummary (model. 1)

Call:
Im{formula = y

x)
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Ragiduale:
1 2 3 4 &
=-1.46 &K.11 11.54 -30.31 15.11

Coefficients:

Estimate Std. Error t walue Pr{>|tl)
(Intercept) -7B5.11 272,83 2. 77 0.070 .
X 13.29 3.95 3.37 0.044 =

Signif. codes: O "##%' 0,001 '+%' Q.01 '+" 0.0b '.' 0.1 ' ' 1
Residual standard error: 20.9 on 3 degrees of freedom

Multiple R-squared: O0.731,Adjusted R-equared: 0.721
F-statistic: 11.3 on 1 and 3 DF, p-valua: 0.0436

160 200

120
|

Example: Regression on Hail Data

In practice, two quantities called “divergence” and “rotate” are measured by Doppler radar, while
hall sige 18 measured directly, Le., on the ground. But if we can relate haill size to divergence and
rotate, then we can predict hail size from Doppler radar. In regression lingo, size is the responsze (or
dependent) variable, and the others are predictors (or independent variables, or covariates).

dat <- read.table("hail_dat.txt", header=T)

plot{dat)

TF o} . + P i al " - i Tr + F ! ¥ T -
cor(dat) # This shows the correlations between ALL the vars in the hail deta

Divergence Rotational_ velocity Hail_=size

Divergence 1.0000 0.5496 0.5214
Rotational welocity 0.5436 1.0000 0.5386
Hail size 0.5214 0.5386 1.0000
eize <- datl, 3] # Nome the 3 columns in dat. Size is in 100th-of-on-inch.



