Ragiduale:
1 2 3 4 &
=-1.46 &K.11 11.54 -30.31 15.11

Coefficients:

Estimate Std. Error t walue Pr{>|tl)
(Intercept) -7B5.11 272,83 2. 77 0.070 .
X 13.29 3.95 3.37 0.044 =

Signif. codes: O "##%' 0,001 '+%' Q.01 '+" 0.0b '.' 0.1 ' ' 1
Residual standard error: 20.9 on 3 degrees of freedom

Multiple R-squared: O0.731,Adjusted R-equared: 0.721
F-statistic: 11.3 on 1 and 3 DF, p-valua: 0.0436

160 200

120
|

Example: Regression on Hail Data

In practice, two quantities called “divergence” and “rotate” are measured by Doppler radar, while
hall sige 18 measured directly, Le., on the ground. But if we can relate haill size to divergence and
rotate, then we can predict hail size from Doppler radar. In regression lingo, size is the responsze (or
dependent) variable, and the others are predictors (or independent variables, or covariates).

dat <- read.table("hail_dat.txt", header=T)

plot{dat)

TF o} . + P i al " - i Tr + F ! ¥ T -
cor(dat) # This shows the correlations between ALL the vars in the hail deta

Divergence Rotational_ velocity Hail_=size

Divergence 1.0000 0.5496 0.5214
Rotational welocity 0.5436 1.0000 0.5386
Hail size 0.5214 0.5386 1.0000
eize <- datl, 3] # Nome the 3 columns in dat. Size is in 100th-of-on-inch.



rotate <- dat[, 2]
diverg <- dat[, 1]

medel.1 <- lm(size = diverg)
plot{diverg, size)
abline(modsl. 1)

rotata)

model.2 <- lm{=ize
plot{rotate, siza)
ablina{modal.2)

o
m
2
8
i ¢ S
N o™
& 7
i 38
&) g &
=
Hall sze |~
o - 8
rri1 =
20 50 80 100 400

size
300

100

Note that it looks like the line is not really going “through” the data; it seems like the line's slope
ghould be larger. The fit is in fact correct. The line that intuitively (or visually) goes “through” the
scatterplot ia NOT the regression line, but something elze called the “=d line.”
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3.5 Analysis of Variance (ANOVA) in Regression
ANOVA decomposes SST (total sum of squares) into SS.zplained 80d 5 Sunezplained (SSE).

SSerplained = ¥ (i —8)°

88T = E{y‘- — yjﬂ
i=1

: (1)
Zfﬂi — i) (2)
(3)

58, zplained 18 converted to a proportion called R-squared (aea. coefficient of determination). It
measures the proportion of the variability in y that is explained by z. It's a measure of poodness-of-

fit.

x <- c(72, 70, 66, 68, TO) # Enter data inio R

y <= c(200, 180, 120, 118, 190) # See 1.1 for alternative ways to enier data
plot{x, yJ # Plet the scatterplot.

cor(x, y) # Correlation between T and y.

[1] 0.8892
model.l <- Im(y ~ x) # Fitting the regression

ancva(model.l} # Note that SS_exzplained = 4942 and SSE = 1309
Analysis of Variance Table

Responsa: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 4542 45432 11.3 0.044 =%

Residuale 3 1308 435

Signif. codeg: O '"##4' 0,001 '#++' 0.01 's' .05 '.' 0.1 ' ' 1
punmaryfmodel.1) # R-squared = 0.7908

Call:

Im(formula = y ~ x)
Residuals:

1 2 3 4 5]
-1.46 &.11 11.84 -32.31 15.11
Coefficients:
Estimate Std. Error t walue Pr(>|tl)

(Intercept) -7565.11 272.63 -2.77 0.070 .
x 13.28 3.856 3.37 0.044 =
Signif. codeg: O "##s' 0,001 "#&' D01 '#' 0,06 '.' 0.1 ' " 1
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Residual standard error: 20.23 on 3 degrees of freadom
Multiple R-squared: O.731,Adjusted R-equared: 0.721
F-statistic: 11.3 on 1 and 3 DF, p-valua: 0.0436

¢ TF D= do &z ot ad mo Wy T+amTe Do e Ao dq®
¥ I'ne A 2 13 reported as |'.r-\.!-l.--\. P Le8 R-Squarad

# Note that the R-squared from summary() agrees with 1-(55E/S5T)
1 - (1308.9 / (4842.3 + 1308.9))
[1] 0.7306
(=]
Ej = [#]
8]
- o
L=
> O
—
Ej -0 [}
= L L L™

S Sunerplained (S5E) is converted to a standard deviation (of errors), and denoted as se. This

standard deviation of errors is also called standard deviation about regression. FEither way it is
reported as “Residual standard error: 20.9". Note that it is equal to g3%.

n-Z"
eqrt(1308.9 / (6 - 2))
[1] 20.89
In sum, R-squared and se together tell you how good the model is. R-squared tells you what

percent of the variance in y can be attributed to z, and se tells you the typical error, i.e., deviation
of data from the line.

To get B* (and nothing else), use the following command:

punmary (model. 1337 . squarad

(1] 0.7508

& .- +h 2 PauTT # +n nhank +hadt D Fc ala nl ¥ 77 | o, F = I -

# Do the following to check that R's S5E really is Sum of Sguared Errors
1 Thi 1 3 s Al A a7t a4

y_hat <- predict{model.l) # This is a quick way of geiiing y_hat

4 T -F-F: ol T e o [-
:f_hﬂt # To sea the pradiciions.

1 2 3 4 h
201.5 174.9 108.6 148.3 174.8

W



sun({y - y_hat) = 2) # 1308.914 = S5E abov:

[1] 1308

3.6 Visual Assessment of Goodness-of-Fit

One way to access the goodness of fit is to examine the scatterplot of predicted v versus actual y.
y_hat <- predict(model.l)

y_hat <- mndalilﬁ itted.valuss

plot(y, y_hat, cex = 0.5)

abline(@, 1, col = "red") iagonal I
ablina(h = mean(y)) # Add a horizontal line

y_hat
160 200
|

120
|

120 160 200

If the model were good, this scatterplot would be symmetrically spread about the red line. But,
clearly our model &8 not good. This scatterplot (of predicted vs. actual) & often a great way of
visualizing how well the model is doing. For example, we see that for smaller hail size (Le., small r
value), the predictions of size are all above the diagonal indicating that the model over-predicts the
size of small hail. Looking at larger x values, it's clear that the model under-predicts the size of large
hail.

If a model i completely useless, then the predictions will be symmetrically spread about the
horizontal line at the mean of y. Here, we can see that our model is nearly (but not completely)
useless. This kind of model diagnosis can help in coming up with a better model.

Another visual assessment tool is the residual plot. This plot checks different facet of “goodness™
(or quality) than the above plot.

3=



plot{y_hat, model.l$residuals, cex = 0.5}
abline(h = 0}

10
|

=10

model.1$residuals

— 1 7 a1
120 160 200

y_hat

In a good fit, these residuals (or errors) should NOT display any relationship with the predicted
values. Ome way to confirm that there is no relationship is to compute the correlation:

cor (y_hat, model.l$residuals)

[1] -1.237a-16

The fact that the correlation is zero is not a direct reflection of the goodness of fit, because that
correlation is zero by construction. If it's not zero, one has a bug! In fact, it is the identically-zero
nature of this correlation which makes a plot of the residuals vs. ¢ a useful plot to examine. The
correlation between the residuals and the observed y values is not identically zero; and for that reason
the corresponding scatterplot s not readily interpretable.

3.7 Nonlinear Fits (Linear Regression with Higher Order Terms)

Linear regression 8 actually NOT linear when it comes to allowing nonlinear relationships between &
and y. (The term “linear” refers to the parameters of the model, i.e., the regression coefficients.) This
5 good news, because linear regression can fit any nonlinear data. But it’s also bad news, because
the abilit¥ to fit nonlinear data also allows for overfitting., In developing regression models of data it
5 important to assure that the model is not overfitting the data, because such a model will have poor
predictive capability, Toward the end of this book we will see how to assess the predictive capability
of a regression model. Here, let's first confirm that linear regression can overfit (memorize) data.

gat.saad(12)
x <- seg{0, 0.9, D.1)

¥y <- x 4 rnorm(10, 0, 0.3)
plot(x,y) # Look e d

lm.1 <- Im(y = x)
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linee(x, lm.1$fitted.values)

Imn.2 <- Im(y = x + I{x"2)) # Fit a regression model incl

Im.3 <- Im{y - x + I{x"2) + I[(x"3)) # ddd a cubi
lines(x, 1mn.3$fitted.values, col = 3) # Note tha

o

e fit is geiting more curvy.

In.4 <- Im(y - x + I{x"2) + I{x"3} + I[{x74) + I{x°6} + L[{x76) + I(x"7) + I(x"8)
+ I(x"9))

# Fit a 9th order polynomial.

linee(x, 1m.4$fitted.values, col = 4)

punmary(lm.4)$r.equared # Ezomine the RE-squared.

i g

legend('bottomright', c('Linear’, 'Quadratic', 'Cubic', '9th Order'),
tart.col = c(1, 2, 3, 4, bty = 'n')

# Note thai the last model will have no pradictive power since it owverfits the daia.

@
o
=4 &
> If H
o A% | Linear
S < Quadratic
. Cubic
o |5 9th Order
T 1 | | | |

00 02 04 06 08

3.8 Model Comparison
Example: Hail Data

Note that the closer B? is to 1, the “better” the fit and the closer it is to 0, the worse. But do
recall that because of overfitting concerns, higher A? does not necessarily mean better predictions on
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new (future data.

dat <- read.table("hail_dat.txt", header = T)

x_1 <~ dat[, 11 # Divergence.

x_2 <- dat[, 2] # Rotfate.

¥y <- dat[, 3] # Hail size. Size is in 100ih-of-an-inch.
# Renaming the colums in dat:

colnames{dat} <- c("xz_1", "x_2", "§")

Im.1 <- Im{y = x_1} # Predicting size from divergence (simple regression).
gummary{1lm. 1)

Call:
Im(formula = y ~ x_1)

Ragiduale:
Min 10 Median 20 Max
-126.1 -k0.9 -19.8 4.8 262.6

Coafficients:

Estimate Std. Error t walue Pr(>|t])
(Intercept) 43.673 13.361 2.62 0.012 =
G i | 3.417 0.334 10.23 £3a-16 #4*

Signif. codeg: O '"##s' 0,001 "w«' D.01 's' 0.06 '.' 0.1 ' " 1

Residual standard error: 76 on 280 degress of freadom
Multiple R-equared: O.272,Adjusted R-equared: 0O.269
F-statistic: 1056 on 1 and 280 DF, p-value: <2e-16

Im.2 <- Im(y = x_2)} # Predicting size from rotation (simple regression).
gummary {1m. 2}

Call:
ln(formula = y ~ x_2)

Ragiduale:
Min 10 Median 20 Max
-180.9 -k6.1 -11.6 36.6 268.4

Coafficients:

Estimate Std. Error t walue Pr(>|t])
(Iﬂtercap‘t) a7 .268 12.5608 2.88  0.0031 ==
b 7.858 0.735 10.70 £2a-16 #w4*

Signif. codeg: O "##s' 0,001 'w«' 001 "#' 006 '.' 0.1 ' "D

Residual standard error: 75 on 280 degrees of freadom
Multiple R-squared: 0.23,Adjusted R-squared: O0.288
F-statistic: 114 om 1 and 280 DF, p-value: <2e-16
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In.3 <- Im(y = x_1 + x_2) # Predicting size from both (multiple regression).
pummary (1m.3)

Call:
Im(formula = y

Ti1 & x93}

Ragiduale:
Min 10 Median 30 Max
-1R7.4 -R2.0 -12.2 35.5 261.8

Coafficiente:

Estimate Std. Error t value Pri>|t])
(Intercept) -1.178 13.684 -0.08 0.93
x_1 2.117 0.375 5.65 0.0000000401 #&
I 2 5.268 0.835 G.31 0.0000000011 #«

Signif. codeg: O "##s' 0,001 'w«' 001 "s' 006 '.' 0.1 ' "D

Residual standard error: 71.2 on 279 degreses of fresedom
Multiple R-squared: O.363,Adjusted R-equared: 0O.358
F-statistic: 79.b on 2 and 279 DF, p-value: <2e-16

Im.4 <- Im{y = x.1 + 2.2 + x_1:x 2} # Multiple regression with interaction.
gummary (1m.4)

Call:
In(formula = y ~ x_1 + x 2 + x_1:x_2)

Residuale:
Min 10 Median 30 Max
=1k¥.1 =E0D.8 -=14.2 3E6.6 2641.0

Coefficients:

Estimate Std. Error t wvalue Pr(>|t|)
EIﬂtErCEpt) Ti.6091 34.7693 2.06 0.040 =

-1 0.1983 0.8217 0.22 0.823
x_3 1.0612 2.0263 0.52 0.601
x 11 2 0.1030 0.0453 2.37 0.024 *

Signif. codeg: O "was' 0,001 "w«' D.01 's' 0.06 '.' 0.1 ' " 1

Residual standard error: 70.7 on 278 degrees of fresadom

Multiple R-squared: O0.375,Adjusted R-equared: 0.368

F-statistic: 55.56 on 3 and 278 DF, p-value: <2e-16

Im.B <- Im{y = x_1 +x_ 2 + I(x. 1"~ 2) # I(x_.2 ~ 2)} # Multiple guadratic regression.
gummary{1lm.5)

Call:



In(formula = y © x_1 + x 2 + I{x_1°2) + I(x_2°2})

Residuale:
Min 10 Median 20 Max
-180.8 -48.6 -16.1 38.1 268.0

Coefficienta:
Estimate Std. Error t wvalue Pri>|t])
(Iﬂtercap't} 858.49681 38.1671 2.32 0.021 =

1 0.4783 1.6626 0.29 0.774
x 2 =1.5982 3.3287 -0.60 0.543
I{x 172) 0.0176 0.0186 0.54 0.346
I{x_2°2) 0.20563 0.0318 2.24 0.026 =

Signif. codag: O '"wd' 0.001 "4 0,01 "' Q.05 *." 0.1 ' " 1

Residual standard error: V0.5 on 277 degrees of fresdom
Multiple R-squared: 0.38,Adjusted R-squared: 0.371
F-statistic: 42.4 on 4 and 277 DF, p-value: <2e-16

In.6 <~ Im(y = x.1 + 1.2+ I(x1~2) + I(x.2" 2) + 1_1:x_2)
gummary (1m. 6}

Call:
In(formula = y ~ x 1 + x 2 + I{x 1°2) + I(x_272) + x_1:x 2)

Residuale:
Min 10 Median 20 Max
-178.7 -48.9 -16.1 3B.0 265.7

Coefficients:
Eetimata Std. Error t wvalue Pri>|t])
fIﬂtEI'capt] 89.0739 38.4006 2.32 0.021 w

x_1 0.4874 1.6695 0.30 0.766
x_3 -2.0870 3.3784 -0.62 0.637
I{x_172) 0.0145 0.0264 0.55 0.b84
I{x_2"2] 0.1521 0.1228 1.56 0.119
x_1:x 2 0.0137 0.0843 0.16 0.872

Signif. codes: O "##%' 0.001 '+%' 0.01 's' 0.0 '.' 0.1 ' " 1

Residual standard error: 70.6 on 276 degrees of fresedom
Multiple R-equared: 0.38,Adjusted R-squared: 0.3863
F-statistic: 23.8 on & and 276 DF, p-value: <2e-16

# Plotting a surface that goes through the cloud of points in 3d.
# Suppose we decided that the best model is the most compler model, above:
Im.e <- Im(size " diverg + rotate 4 I{diverg~2) + I(rotate™2) + I(diverg * rotate})

x <- seq(min(rotate), max(rotate), length
y <- seq(min(diverg), max(diverg), length

100 # z and y simply define a
100) # grid in the z-y plane.
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f <- function(x, y) {
r <- lm.e$coeff[1] + lm.e$coeff[2] * x + lm.efcoaff[3]*y
+ Im.efcoeff[4] * x = 2 + Im.efcoeff(5] # y = 2 + lm.e$coeff[E] * x * y

1

y.fit <- ooter(x, y, IJ * values of the surface,

o
(2"
hat 's what outer() does. Look it up.

library{lattice) # Loading the library thai comtains the function cloud().
# Making o 3d plot of the points of ri
cloud(y.fit, type = "p", ecreen = list{z = 10, x = =70, y = 0))

# Note that in spite of the nonlinearity of the regression funciion
# itself, i.e. with quadraiic and an interaction terms, the surface is
# mostly planar in the range of our data (i.e., = and g/

o ———
row

Here is a discussion of all of the above results based on the R? values: It seems like
1. Rotate is a better predictor of size than diverge.

2. The two of them together make for an even better model.

3. Quadratic terms for each, make the model even better, but not by much

4. R? pgoes from 0.3620 to 0.3800.

5

. An interaction term, without quadratic terms, gives a model that is comparable to what we got
from a quadratic model with no interaction.

6. Quadratic and interaction terms, together, “seem” to give the best model.

Note that R” increases as the complexity of the model increases (adding more terms). The main
question (which can be addressed only qualitatively at this point) is this: is the gain in R® big enough
to warrant the new term, lmowing that a new term can lead to over-fitting. In thi=s example, the gain
from R? = 0.3629 to R® = (.3800 is probably NOT worth the risk of overfitting. So, we should keep
the simpler model. That's called the principle of “Occam’s Razor," which posita that one should go
with simpler things.



anova(lm.&)

Analysis of Variance Table

Hesponsa: y

Df Sum Sq Mean Sq F value Pr(>F)
G 2l | 1 6038253 603828 121.06 < 2e-16 %%
x_2 1 202084 202064 40.51 0.00000000081 s+
I{x 12} 1 13086 13086 2.562 0.108
I{x 2°3) 1 24838 24838 4.98 0.026 *
b 2k [ caar' 1 131 131 0.03 0.872

Residuale 276 1376731 4388

Signif. codeg: O 'wes' 0,001 'ee 0,01 ‘& 9.06 . G100 "D

In the anova() output, there is an S8 term for each term in the regression equation, followed by
an 55 term for “Residuals.” The latter is what we have been calling SSE (or SSMP;M-H;]; g0, where
8 85 zplained! It can be obtained by adding the other 55 terms. The reason R produces separate
terms for each term is because R performs what is called sequential analysis of variance, which
i= a bit different from what we do. In fact, these 55 terms will change depending on the order of the
terms in the regression equation!

It's important to realize that all of these S8 terms are measures of variability. Specifically, 55T is
the numerator of the sample variance of the ¥'s, 55.:pqined 18 the numerator of the sample variance
of the predictions, and SS,nerplained (SSE) I8 converted to variance when it's divided by n— (k+1),
where k i the number of parameters in the regression model. You can confirm these:

y_hat <- predict(lm.8) # From 2.3
o <- nrow{dat)
{n - 1) » var(y_hat) # 843948 = 603829 + 202064 + 13086 + 24838 + 131 = 55_explained

[1] 843348

3.8.1 Prediction on New Data

The best way to do prediction on new data is to just attach the new data to the bottom of the old
data. Suppose the new data consista of the following 2 case:

Iy =33, T--_-;:E
I 235, 1-3:14

Then we can do the following:

n <- nrow{dat} # number of cases ir
new_1 = c(33, 8, NA) # y = NA
new_2 = c(36, 14, FA)

new.dat = rbind(dat, new_1, mew_32) # Using row-bind to attach new data fo old data

# Tm +ha mnamrt Tdang L A e al e Tm JF Fai* Am *ha Fasod N =y oD
- ¥ e Rext Lina ue ragaveLap M.4, DUE ON TAE J2TSs e GoIED

Im.7 <- Im{y ~ x.1 + 2.2 + x 1:x 2, dat = new.dat(1:n, 17 & NOTE: dat=new.dat[1:n,]
pummary{lm.7) # Same as Im.4

45



Call:
ln(formula = y ~ x_1 + x_2 + x_1:x_2, data = new.dat[1:n, 1)

Residuale:
Min 10 Median 30 Max
=16¥.1 =E0.8 -=14.2 38.6 261.0

Coefficients:
Estimate Std. Error t wvalue Pr(>|t|)
fIﬂtarcapt) T1.6091 34,7693 2.08 0.040 =

e 1241 | 0.198% 0.8217 0.22 0.829
x_2 1.0812 2.0263 0.52 0.601
x l1:x 2 0.1030 0.0453 2.37 0.024 =

Signif. codeg: O "wss' 0,001 'w«' 0.01 "#' 0.06 '.' 0.1 ' " 1

Residual standard error: 70.7 on 278 degrees of fresedom
Multiple R-squared: O0.375,Adjusted R-squared: 0.368
F-statistic: 55.6 on 3 and 278 DF, p-value: <2e-16

colnames{new.dat) <- c("x_1", "x 2", "x_1:x_2")
predict(Im.7, newdata <- new.dat[(n+1): (m+2}, 1} # Predict the last 2 cases.

-

283 284
113.8 143.9

3.9 Collinearity

Another distressing issue that arises in multiple regression 5 collinearity, i.e., a linear association
between the predictors themselves. One reason collinearity is distressing is that it renders the re-
gression coefficients uninterpretable; le., a given beta can no longer be interpreted as the average
rate of change of y with respect to a unit change in ¢ with everything else held fived. Insisting on
that lind of interpretation, in the presence of collinearity, can lead to wrong (or even absurd) conclu-
sions. Collinearity also makes the predictions more uncertain, but here we will focus on the effect of
collinearity on the regression coefficients.

# To that end, we'll write an B function, which is r
# of code intended to be used over and over again.
make.fit <- function(r) {

.=_.
=
=™+
=
5
=

k=]
o
(=]
o+
o
L=

=]
m
[
-
-
m
En

# The function first makes daia on ¢ 1, o.2, and gy, with collinearity
# (i.e2., correlation betueen z_1 and = 2) equal to T.
# The input of the fumciion is r (i.e., correlaiion beiween m 1 ond @ 2.
# NOT between y ond anything).
# The funciion then fits that datas using y, aond refurns some siats about
# the estimatied regression cogfficients

library(MASS) # This library contains murnorm(); see below.

i
:f m

set.seed(1} # Ensures reproducibl

n <- 100

# The R function murnorm() below takes o sample from a multivariate normal,

# which i3 a higher-dimensioncl analog of the normal distribution.

dat <- wmvroorm(n, rep(0, 2}, matrizlec(l, r, r, 1), 2, 2))
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x_1 <~ datl, 1]

x_2 <- datl[, 2]

¥<-1+2w%x1+3wx2+rnormin, 0,2) # Generate y, and add noise.
dat <- data.frame(x_1, x_2, y) # Here is the whole daia.

plot (dat)

Im.1 - Im{ 7 " x.1 + x_2) # Fit a plane through the data.

# return{im.1) returns the whole R object Im.1.

# return(summary(lm.1)) returns only the summary resulis.
return{sumary(lm.1)$coeff) # Returns only the regression coefficients.

}

# Ezamining dofa ond the regression coefficients for different amounts of
# collinearity.
make.fit(0) # No collénearity.

Estimate Std. Error t walue Pri»|t|)
(IﬂtBI‘CEP‘t} 1.081 0.2104 4,804 2.60%a-06
x-1 2.107 0.2190 9.6823 8.760e-16
TR 3.042 0.2336 13.028 4.9680-23

make,.fit(0.7) # Some collinearity.

Estimate Std. Error t walue Prir|t|)
(Intercept) 1.061 0.2104 4.954 2,.608e-06
x-1 2.161 0.30986 6.979 3.684e-10
p o 2.886 0.30898 9.310 4.141a-15

make.fit(0.8) # Exireme collinearity.

Estimate Std. Error t value Pri>|t])
(IﬂtBI‘CEP‘t} 1.081 0.2104 4,894 0.0000026081
e i | 2.261 0.5035 4,488 0.0000199248
I 2 2.783 0.5042 5.519 0.0000002837

make.fit(0.593)

Estimate Std. Error t value Pri>|t|)
(Intercap‘t} 1.081 0.2104 4.9341 0.000002609
1.1 4.412 4.8973 0.9009 0.369846805
I 2 0.830 4.8976 0.1286 0.897310878
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When collinearity is extreme, not only are the standard errors huge, but the estimated regression
coefficients themselves () are way off. As collinearity increases, the regression coefficients become
more uncertain, and so we are unable to interpret them, like we would if there were no collinearity.
The regression equation is still OK to use for predictions. But, of course, the predictions will be
less certain as well. MNote that in practice we don't control /adjust the data or the collinearity; all we
gee are the scatterplots, and based on the scatterplots between the predictors, we decide how much
collinearity there 5. For example, for the hail data:

plot{dat)
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In the scatterplots, the one for x; versus x5 (or vice versa) suggests some collinearity; it is not
extreme, but it is present. As such, we have to be cautious in interpreting the regression coefficients.
But the regression model is still olay for making predictions (as long as it does not overfit, of course).

3.10 Plotting Curved Fits on a Scatterplot

We plotted polynomial fits, but the “curves” were just the result of connecting points with straight
lines, and as a result, the “curves™ did not look smooth. Here is a way to get a smoother looking fit
on the scatterplot.

dat <- read. table("hail _dat.txt", header = T)

I_l L= 'd.at[:. 1]
I_E <= dﬂt[g 2:l

:f = dﬂt[, 3] LI E 34 g
Im.g <- Im{y = x.2 + I(x 2 = 2})
lm. g$coat g e the regressio
(Intercept) b i I{x_272}
116.3518 -2.2682 0.2827

I <- seqimin(x_2), max(x_2), .01) ¢

y.fit <- 1m.g$coeff[1] + Im.gfcoeff[2] = x + 1m. g$cueff (3] = x°
plet(x_2, y, cex = 0.5)

pointalx , y.fit, col = "red", type = "1}
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# Alternatively, o fancier way is as follows.
x <- matrix(eeq(min(z_2), max(x_2), .01}, byrow = T} # Generate a fake = .
colnames(x) <- "x_2"

plot{x_2, )

linee(x, predict(lm.g, newdata = data.frame(x)}, col=2)
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