4 Sampling Distributions of the Sample Mean and Median

4.1 Sampling Distribution of the Mean
4.1.1 Normal Population

Instead of taking samples from a normal population, using rnorm(), we are going to take ONE huge
sample from a normal population, using rnorm( ), and then just treat it as our population. The main
reason for this is mostly to set the stage for something called “bootstrapping,” which we will study
later.

B <- 100000 # Let N be the populatdion siza.

pop <- roorm{N, 1, 2) # Toke o rondom sample ond treat 4t as pop.
pop.mean <- mean{pop) # This ds mu, the population mean.

pop.ed <- sd(pop) # This is sigma, the pop standard deviation.
pop.median <- median({pop) # Get the population median, for later.
c{pop.mean, pop.sd, pop.median) # Print them for comparisom, below.

[1] 0.9358 2.0070 1.0022

hist{pop, breaks = 400) # This shows that the population is preitiy normal.
# Experiment underlying the saompling distribution.

n.trial <- 10000 # Take 10000 samples of

eanple.size <~ 10 # size 10 (d.e., small) from the j
gample.stat €- mmeric(n.trial} # Creaie space te store

= ok
[1-]
[

0000 sample means.
for (i in 1:n.trial) {

gamp <- sampla(pop, eamplae.eize, replace = T} # Taoke o sample (with replacement).
pample.etat[i] <- mean(eamp} # Compute each sample’s mean.

J}J’Jean(sampla.statj # Compare mean of sample means

[1] 1.002

pop.mean # with the population mean.

[1] 0.9958

ed{sample.stat) # Compare the standard deviation of sample means
[1] 0.8333

pop.ed # with the pop siandard deviation.

[1] 2.067

pop.ed / sqrti{eample.eize} # But compare with (pop sid dew)/sgri(n)

[1] 0.6347
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According to the Central Limit Theorem (CLT), the sampling distribution of the sample mean

should be normal. To confirm:

hist({sample.etat,breaks = 40)
qquorm(sample . stat)

Histogram of sample.stat
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Theoretical Quantiles

Ag the rample size increases, the mean of the sample means gets pretty close to the population
mean, and the standard deviation of the sample means gets pretty close to the EEEEI. So, the CLT

15 confirmed.

4.1.2 Non-normal Population

¥ <- 100000
pop <- rgamma(N, 1, 1)



pop.mean <- mean(pop)
pop.ed <- sd(pop)

pop.median <- median(pop)
c{pop.mean, pop.sd, pop.median)
[1] 0.9368 0.9952 0.6955

hist{pop, breaks = 400) # The distribution of sample means looks non-nermal.

n.trial <- 10000 # Take 10000 samples of
pampla.siza <- 10 # sdize 10 (di.e., small) from the population.
pample.stat <- mmeric(n.trial} & Space for storing the 10000 sample means.

for (i in 1:n.trial) {
gamp <- sampla(pop, Bample.eize, replace=T) # Take a sample (with replacement).
gampla.etat[i] <- mean(eamp) # and compuie cach sample's mean.

}

mean{gampla.stat) # Compare meagn of sample means with population mean.
[1] 0.93985

pop.mean

[1] 0.9%68

ed(semple.stat) # Compare the sd of sample meons with population sd.
[1] 0.3143

pop.ed

[1] 0.8552

pop.ed / sqrt(eample.eize) # Compare with (pep sd)/roet(n).

[1] 0.3147

hist{sample.stat, breaks = 40)
qgnorm(sample.stat, cex = 0.5)
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When the population i NOT normal, for small samples (10) the sampling distribution of the
sample mean resista looking normal; but with larger samples (100), it is normal even though the
population is not normal.

4.2  Sampling Distribution P@J.Faglév]rﬁ | d 1
4.2,1 Non-normal Population rp e m e | a n

B <- 100000

pop <- rgamma(N,1,1)

pop.mean <- mean(pop)

pop.ed <- sd(pop)

pop.median <- median(pop)
cl{pop.mean, pop.sd, pop.median)



(1] 1.0014 1.0009 0.8937

hist{pop, breaks = 400}

n.trial <= 10000 # Toke 10000 samples of
ganple.size <- 10 # size 10 (d.e., small) from the population.
pample.stat <- mmeric(n.trial} # Space for storing the 10000 sample medians
for (i in 1:n.trial) {
gamp <- sample(pop, samplae.eize, replace = T) # Taok
sample.etat[i] <- median(samp) # Compute each sampl

1

mean({gample.stat) # Compore the MEAN of sample MEDIANS with pop MEDIAN

1 . 173 1
a aamnla i +h  eon i~ an ¥ J
3 SampLe (WiA repLacement.).

[1] 0.7469
pop.madian
(1] 0.6837

ed{semple.stat) # Compare the sd of sample MEDIANS with population sd.

[1] 0.3094

pop. ed

[1] 1.601
i Al g +F F h oz W Tm fi 1 ¥ T4z T +ha =« Tz ME AN
# Note that the formula sigmasroot (n) applies only to the sample MEAN

hist(sample.stat, breaks = 40)
qqnorm{sample.stat, cex = 0.5)
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Normal Q-Q Plot
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The sampling distribution doesn’t look too normal. But if the sample sige is relatively large, the
distribution of a bunch of sample medians, taken from even a non-normal population, i= still normal.
Most. statistics (e.g., sample mean, sample median, sample standard deviation, ...) ultimately end up
having a normal distribution, but some require a larger sample size.



5 Confidence Interval

Now, we're going to move on from the sampling distribution, and develop the notion of a Confidence
Intervals (CI). First, we will show that the formula for the CI for the population mean actually does
what it is designed to do. Recall that the formula for the confidence interval (CI) for the population
mean is given by: -

T+z*. " (4)
and it is designed to cover the population mean in 35% of samples taken from the population. One
nontrivial part of this formula is the "n, algo called the standard error (std err) of the sample mean.
It's nontrivial because, first we have to approximate the population std (7) with sample std, but more
importantly, we have to use math to derive it. For many statistics (other than the sample mean), the
std error is difficult to derive mathematically. The other nontrivial part of the CI formula is the z*,
because it 15 based on the fact that the sample mean has a normal distribution. Some statistics do
not.

The second task is to show that we can actually get similar answers, WITHOUT using the formula
for the atd err of the mean, nor the assumption of normality. This i= important when simple formulas
for the std err do not exist, e.g., for sample median. The main idea i= called The Bootstrap: We
basically treat the single sample that we have in a realistic situation as if it were the population!
So, instead of sampling from the population (i.e., what we did above), bootstrap re-samples from the
*zample.* It's like magic, but vou'll see how it works below.

There are different kinds of CI, e.g., 1-sample, 2-sample, 1-sided, 2-sided, large-sample, small-
sample, ete. And yet other kinds of CI will be covered as we proceed forward into chapters &8, 9, 10,
and 11. In the following, you will also come acrosa words like " p-value,” or “hypothesis.” For now,
you may simply ignore them. Ch® will introduce that method, which is equivalent to the CI method.

5.1 Confidence Interval for Population Mean

As explained at the start of the section on Sampling Distribution, instead of taking samples from a
normal population, using rnorm(), we are going to take ONE huge sample from a normal population,
using rnorm(), treat it as our population, and then use the R function sample() to take samples from
it. The main reason for this is to set the stage for something called “bootstrapping.” which we will
study later.

rm{liet = 1e{all = TRUE))
gat. Bead(1)

N <= 100000

pop <- ronormfW, 1, 2}

pop.mean <- mean{pop)
pop.ed <- sd(pop)

pop.median <- median(pop)
c{pop.nean, pop.sd, pop.median)
(1] ©.9965 2.0070 1.0018
hist{pop, breaks = 400)

gampla.size <- 200 8 81E
pample.trial <- sample(pop, sample.size, replace = T)
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5.1.1 Calculating CI Using Formula
pample.stat <- mean(sample.trial) # Sample mear
gtd.err <- sd({sample.trial) / uqrt(sampla 51291 # Caleulate the standare
gample.stat - abs(gnorm(.05 / 2)) % std.err # Note z_star
[1] D.7777
gample.stat + abs(qnorm(.05 / 2)) # gtd.err # Sign is correct!
[1] 1.368
X 5 i L 3 5 5 £ i

5.1.2 Calculating CI Uzsing Built-in Function

6]
=
]

t.test(sample.trial, alternative = "two.sided", conf.leve 0.85])

One Sample t-test

data: sample.trial
t=7.1, df = 189, p-value = Ze-11
alternative hypothesie: true mean i= not equal to O
95 percent confidence interwval:
0.7758 1.3702
gample estimates:
mean of x
1.073
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t.test (sample.trial)$conf. int [1:2]
[1] 0.7759 1.3702

Note that answers from the two methods (by formula and by computer) are very similar. The
interpretation of C.I. is that we can be 05% confident that the true mean resides in this interval.

5.2 Coverage of a Confidence Interval

In practice, you will have only one sample (samp) (and not the population (pop)), and so you will
build only one CI. But here we want to confirm that the CI, the way we compute it {i.e.. with our
formulas or with t.test()) covers the population mean the correct percentage of time. This is what
a CI is designed to do: to have the correct coverage.

To do so, we will draw n.trial = 100 samples of size sample.sige = 90 from the normal population,
above. For each sample, we will construct the 35% CI and we will make a plot that shows all 100 Cls
then count how many of them cover the population mean.

rn{list = 1s{all = TRUE))
get.eead(1)

B <- 100000

pop <- roormfW, 1, 2}

pop-mean <- mean(pop)

pop.&d <- sdipop)

pop-median <- median(pop)
cl(pop.mean, pop.sd, pop.median)

[1] 0.9955 2.0070 1.0018

hist{pop, breaks = 400, main = 'Histogram of Population')
n.trial <- 100 # Number of samples dray from population

= 80,

-F

L.

s

gampla.size <- 80 # Size of each sample

CI <- matriz(orow = n. 'l:rlal ncol = 2) # Create space fo store m.trial CIs.

for (i in 1:n.trial) {
sample.trial <- sample(pcp, sample.size) # For each sample/trial,
CI[i, ] <~ t.test(sample.trial)$conf.int[1:2] # compuie (and keep) only CI

1

count <- 0 # Count number of CIs that cover mu
for {i in l:n.trlal} {
if (CI[i, 1] <= pop.mean k& CI[i, 2] >= pop.mean) {
count <- count + 1

1
1

count

[1] 87



plet{e(l, 1), CI[1, 1, ylim = (0, 2), xlim = c(f, 101), ylab = "CI", xlab = '',
type = mymy
for (i in 2:n.trial) {
lines(cfi, i), CI[1, 1) # Draw CIs (veridcally)
}

ablina(h = pop.mean, col = "red", lwd = 3) # The populaiion mean (horizontally)
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5.3 Two-Sample, Two-Sided Confidence Interval

The following is data from a Statistics class, when students were asked their gender, and what per-
centage of time they attend class. We will assume percentage i normally distributed, although it is
not.

dat <- read.table('attend_dat.txt', headar = T)

attendance <- dat[, 1]

gendar <- dat[, 2]

pa.boy <- attendance[gender == 0] # Perceni of time attending class for boy:
pa.girl <- attendance[gender == 1] # Percent of time aifending class for girls

n.boye <- length(pa.boy) # Number of boys. Same as sum(y == 0)
n.girle <- length(pa.girl) # Number of girls. Same as sum(y == 1)

# The sample mean of these attendance rates is higher for boys than girls
mean(pa. boy) -

[1] BT.ET

mean{pa.girl)

[1] 86.4

Suppose you wonder if the two true/population means (of attendance rate) are different, then,
you need to build a 2-sample, 2-sided CI. We will first start by computing 1-sample, 2-sided Clzs for
each mean:



