plet{e(l, 1), CI[1, 1, ylim = (0, 2), xlim = c(f, 101), ylab = "CI", xlab = '',
type = mymy
for (i in 2:n.trial) {
lines(cfi, i), CI[1, 1) # Draw CIs (veridcally)
}

ablina(h = pop.mean, col = "red", lwd = 3) # The populaiion mean (horizontally)
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5.3 Two-Sample, Two-Sided Confidence Interval

The following is data from a Statistics class, when students were asked their gender, and what per-
centage of time they attend class. We will assume percentage i normally distributed, although it is
not.

dat <- read.table('attend_dat.txt', headar = T)

attendance <- dat[, 1]

gendar <- dat[, 2]

pa.boy <- attendance[gender == 0] # Perceni of time attending class for boy:
pa.girl <- attendance[gender == 1] # Percent of time aifending class for girls

n.boye <- length(pa.boy) # Number of boys. Same as sum(y == 0)
n.girle <- length(pa.girl) # Number of girls. Same as sum(y == 1)

# The sample mean of these attendance rates is higher for boys than girls
mean(pa. boy) -

[1] BT.ET

mean{pa.girl)

[1] 86.4

Suppose you wonder if the two true/population means (of attendance rate) are different, then,
you need to build a 2-sample, 2-sided CI. We will first start by computing 1-sample, 2-sided Clzs for
each mean:



t.teet (pa.boy)$conf.int [1:2]
[1] 78.86 85.19
t.test{pa.girl)$conf. int [1:2]
[1] 81.83 80.87

Given the huge overlap between these two confidence intervals, (and given that the two groups -
boys and girls - are independent), we can conclude that the data does not provide sufficient evidence
to conclude that the attendance rates of boys and girls are different.

Comparing two Cls is not the most elegant way of answering the question. If the comparison of
two means (or proportions) is all we care about, then we should compute the CI for the difference
between the population means (or proportions), L.e., a 2-sample CI for the difference between means.

t.teet(pa.boy, pa.girl, alternative = "two.2ided")

Welch Two Sample t-test

data: pa.boy and pa.girl
t =0.2F, df = 51, p-value = 0.8
alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwal:
-7.b5E 9,891
gample estimates:
mean of X mean of y
87.5T B6.40

There are two interpretations:

1. We can be 05% confident that the difference between the true/population means is between
-7.550 and 9.801.

2. There iz a 95% probability that a 95% CI for the difference between the true means, computed
from a random sample, will include the difference between the true/pop means.

Corollary:

The fact that the 2-sided CI, (-7.558, 0.801), includes zero implies that we CANNOT tell if there
is a difference betwesn the two proportions. We just cannot say anything. Note, it would be WRONG
to conclude that there i8 NO difference between the true/population means.

5.4 Two-Sample, One-Sided Confidence Interval

Suppose you are NOT interested in whether there i2 a difference between the attendance rates of
boys and girls. Instead you are interested in a “wealer” question, namely, is the attendance rate for
boys higher than that of girls? Denote gy = true/pop mean attendance rate for boys. ps = true/pop
mean attendance rate for girls. Then you must build the lower confidence bound for p; — go. (Or
equivalently an upper confidence bound for gy — 1y ).

t.test(pa.boy, pa.girl, alternative = "greater")
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Interpretations:
1. We are 05% confident that g, — pg is larger than -6.11.

2. There is a 95% probability that a random 95% lower confidence bound for the difference will be
lower than the true difference.

Corollary: This “interval” still includes zero. So, there is no evidence for p; being greater than ps.
Recall that you can compute a lower confidence bound for each of p; and pg separately:

t.test(pa.boy, alternative = "greater")$conf.int [1:2]
[1] 81.24 Inf
t.test(pa.girl, alternative = "greater")$conf.int[1:2]

[1] 82.67 Inf

Example

We will compare the grades on a statistics midterm of those who pick up their tests within the first
one or two weeks after the test to those who do not pick it up in that period of time. We use this as
a proxy for attendance. The following analysis is conducted to see if there is a statistically significant
difference between the means of the two groups.

attend <- c(9.0, 14.0, 15.0, 12.5, 13.5, 14.5, 12.5, 8.5, 17.5, 9.5, 12.0, 11.0,
14.0, 14.5, 14.0, 21.5, 12.5, 10.5, 17.5, 6.0, 10.6, 17.5, 16.5, 19.0,
18.0, 16.5, 13.5, 71.5, 10.5, 17.0, 18.5, 12.0, 15.0, 17.5, 11.E,
15.6, 17.0, 17.0, 20.0, 15.5, 12.0, 13.0, 23.0, 11.5, 14.0, 13.0, 22.5,
B.E. 110 8.6, HLE, AT:0: 11,8, 17:5; T.5, 2.0, 14 E;B.E, 18.0,
16.5, 18.5, 10.5, 16.5, 14.5, 13.5, 14.6, 12.0, 17.0, 13.0, 11.0, 12.5,
9.0, 18.0, 16.0, 16.0, 11.0, 7.0, 23.%, 13.0, T.H, 14.5, 13.0, 18:E,
13.0, 18.5, 10.0, 20.5, 10.5, 17.5, 13.0, 19.5, 10.0, 13.0, 18.5, 10.5,
14.5, 11.0, 14.5, 7.0, 7.0, 8.0, 16.0, 13.0, 18.6, 16.0, 17.0, 18.0,
10.5, 15.0, 8.5, 10.0, 14.0, 16.0, 12.5, 13.5, 17.0)

non.attend <- ¢(3.0, 12.5, 8.5, 18.5, 5.5, 18.5, 7.5, 13.5, 6.5, 17.0, 11.5, 13.0,

13.0)

To see if the data provide evidence for the claim that g1 = mean of attend is higher than gz = mean
of non.attend, the appropriate C1 iz a lower confidence bound for gy —pig, which is equivalent to testing

Hg:py—pa <0
Hy @y —pg >0

t.test({attend, non.attend, alternative = "greater", conf.level = 0.95)

Welch Two Sample t-test

data: attend and non.attend
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t=1.8, df = 14, p-valus = 0.05
alternative hypothesie: true difference in means ie greater than 0
956 percent confidence interval:
0.04545 Inf
gample estimates:
mean of x mean of y
13.58 11.42

This means that we can be 95% confident that the true (ie. population) mean grade of the
attending students is higher than that of the non-attending students by at least 0.045. Because 0 is
not included in the CI, the “corollary™ conclusion is that the mean grade of attending students is
higher than that of the non-attending students. One often says that the difference i= “statistically
gignificant.” (The same conclusion follows from the p-value; it's smaller than o = 0.05, and so we can
reject Hy @ g < pp in favor of Hy @ gy > ps.)

The result i= statistically significant, but is it physically significant? That’s a different question!
In other words, how much higher is the mean of the attendees, and do we care? To answer that,
look at the sample means of the two groups (last line of the output). The attending students’ grade
= % + 100 == 22% higher than that of the non-attending students. That’s big enough to be
considered physically significant.

It's important to note that statistical sipnificance and physical significance are two different
concepts. The difference between the two means may be statistically significant. but it may be so
small that no one really cares about it, i.e., it may be physically non-significant.

5.5 The t-distribution

All confidence intervals require knowing areas under distributions in order to get the correct z* and
t* in the CI formulas. Table 1 in the book gives areas under the standard normal to the left of any
mumber. Table 6 in the book gives areas under the t-distribution to the right of any number. Note
that z* and ¢* themselves are NOT given in these tables. z and ¢ (not starred) are what we compute
in the p-value approach.

In R, the analogs of pnorm(), gnorm{ ), and dnorm(), for the t-distribution are pt(), qt(). and dt().
For example,

poorm(l.645, 0, 1, lower.tail = T)
[1] ©.95
pt(1.645, df = B, lower.tail = F)

[1] 0.08044

qonorm{0.08, 0,1, lower.tail

= T:I
[1] -1.84K
qt(0.06, df = 5, lower.tail = T)
[1] -2.015
x <- egeqgf{=5, 5, .1} # z going from -5 ito +5 in |
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y_1 <- doorm(x, 0, 1} # Siondard normal densii

y_2 <- dt{x, 2} lans i th df =

y_3 <- dt{x, 5} [ty with

plet{x, y_1, typa = "1", ylab = 'y'}

linee(x, 7.2, col = 3}

lines(x, y_3, col = 4)

legend('topleft', c('standard normel', 't with df = 2', 't with df = 4'},
text.col = c(1, 2, 4), bty = 'n"}

w el
= standard normal
o t with df =2
o | twithdf=4
> g 1l
il
L= et
< I I | I I
—4 —2 0 2 4
X

5.6 Confidence Interval When ¢ is Unknown (Small Sample)

We know that the sampling distribution of the sample mean is the normal distribution with parameters
poand o //n. And so, Ef% has a standard Normal distribution. However, if o, is unknown, then it
has to be approximated with the sample standard deviation s; which is fine, if the sample size is large.
However, for small samples, the approximation i poor, and so the sampling distribution of f__::_: does
not follow the standard normal, but rather the t-distribution with n — 1 degrees of freedom where
n is the sample size. To find the confidence interval, all we need to know is how to compute areas
under the t-distribution between two numbers, just like we what did with the normal distribution.
In R, we can replace gnorm(.05 / 2) with qt(0.05 / 2, sample.size - 1). The results will be
very similar if the sample size i= large since the t-distribution converges to normal as the sample size
n — oo, But for small samples (e.g., 20), the confidence interval caleulated using a t-distribution
will cover the population mean the correct number of times (if the population is normal), while the
normal confidence interval will not. For small samples taken from non-normal populations, we do not
have any formulas. We should use the bootstrap method instead; see below.
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5.7 Bootstrap: CI without formulas

We have confirmed in 4.2 that the CI computed with the formula & +z* - ﬁ has the correct coverage

property (about 05% of such CIs cover the true mean). But that conclusion & based on several
assumptions:

1. We know what z* to use in the formula.

2. We can approximate & with the sample standard deviation.

But for some statistics (e.g., sample mean) we don't even have a formula for a CL One solution
to that problem is Bootstrapping.

Example: Producing the Correct CI for Mean

Instead, of using the formula ’d(?:#’:' for the standard deviation of the sampling distribution of the
sample mean, we can actually build (though approximately) the sampling distribution itself. This is
done by taking multiple samples - called bootstrap samples - from the single observed sample! The
theory behind bootstrap argues that the std dev of this “sampling distribution™ i= a pretty good
estimate of the standard dev of the sampling distribution of the sample mean. Armed with this
appraximation to the sampling distribution, we can tale its appropriate quantiles to give us CI; after
all, # + 1.06 - % mark quantiles of the true sampling distribution). 8o, that's the idea: to build a
histogram of the sample statistic of interest by treating the sample as if it were the population.

Now, when it comes to testing the coverage properties of a CI for some parameter, recall that
we take multiple samples from a population already. So, in the bootstrap approach, we will have to
take multiple (bootstrap) samples from each of the samples taken from the population. For technical
reasons that we won't go into, the bootstrap samples must be taken with replacement.

rm(list = 1s(all = TRUE))

eet.eeed(1)

B <- 100000

pop <- rgamma(N, 2, 3) # Draw from gamma instead of normal
pop.mean <- mean(pop)

pop.ed <- sd(pop)

pop.median <- median(pop)

c{pop.nean, pop.sd, pop.median)

[1] 0.e659 0.4705 0.5530
hist{pop, breaks = 400, main = 'Histogram of Population')

n.trial <- 100
gample.size <- 80
CI <- matrix{mrow = n.trial, ncol = )
for (i in 1:n.trial) {
pample.trial <- sample{pop, sample.siza) # Take o sample

n.boot <- 100 # Number of bootsirap samples, from each sample
boot .stat <- mmeric(n.boot)
for (j in 1:n.boot) {



boot .sample <- eample(sample.trial, sample.size, replace = T)
# With replacemant
boot .etat[j] <- mean(boot.sampla) # Store the means

) £ 7 . - - - -
} # End of loop over beotstrap

CI[i, 1 <~ guantila({boot.stat, c{0.06 / 2, {1 - 0.06 / 2)}}
# CIfd,] <- ! B/ L /

cCimeanisampia. tT2ade

ok

sample. trial) + gnorm{. 05/2 ¥ oD, 50

= = O 5
# Fo 5/2) with g 5 ]
T L Creirhs cl
X L% L 00T + .-"I T 4] i ] i kg EE EYE
} # End of loc
count <- 0

for (i in 1:n.trial) {
if (CI[i, 1] <= pop.mean k& CI[i, 2] >= pop.mean)
count <- count + 1

]

count
[1] 95

plot{e(1, 1), CI[1, 1, ylim = c(&.3, 1.2), xlim
type = myny
for (i in 2:n.trial) {
lines(c(i, i}, CI[i, 1) # Draw CIs (veridically)

}

ablina(h = pop.mean, col = "red", lwd = 2) # Draw the population mean

{0, 101), ylab="CI", xlab = '',

Histogram of Population
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It may seem like the bootstrap method makes no assumptions, and that it will work all the time.
However, it turns out that it does have some problems. Some of the problems are addressed by
Schenker (1985). For example, he shows that the particular version we use above (called percentile
bootstrap) gives CIs which cover the population parameter less frequently than they should, especially
for small samples. For example, with a sample size of 20, a 90% CI will cover the pop mean around

G6



T8, of the time.

5.7.1 Confidence Interval for Sample Median

on.trial <= 100
gample.size <- 80
CI <- matrix(0D, n.trial, 2)
for (i in 1:n.trial) {
gample.trial <- =ample(pop,sample.size,replace=F)
n.boot <- 100
boot .stat <- mmericin.boot)
for (j in 1:n.boot) {
boot.sample <- sampleisample.trial, sample.size, replace = T)
boot.etat[j] <- median(boot.sample) # Median
1

CI[i, ] <- quantile(boot.stat, c(0.05 / 2, (1 = 0.05 / 2)))

}

count <- 0
for (i in 1:n.trial) {
if (CI[i, 1] <= pop.median &k CI[i, 2] >= pop.median)
count <- count + 1
)

count
[1] 98

plot{c(1, 1), €I[1, 1, ylim = (0.4, 1}, xlin = e(0, 101), xlab = '', ylab = "CI",
T’FPE = ||1||:|
for (i in 2:n.trial) {
linesf{cfi, i), CI[1, 1)
gbline(h = pop.median, col = "red", lwd = 2)

}
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Note that the number of times that the confidence interval covers the true median is cloge to 95,
In other words, the way we are computing a confidence interval for a population median gives us
confidence intervals that cover the population median the expected number of times. In practice,
when you have a single sample, and no population, you can use this bootstrap method to bunild a
confidence interval for the population median.

A quick partial fix to the problem of under-coverage is proposed by Charles Geyer:

http:/ /www.stat.umn.edu/gever /old /5601 /examp /percent.htm]

and it imvolves revising the CI line just a bit. The commented line in in the above code will let you
test this idea.
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