6 Hypothesis Testing, Confidence Intervals and p-values
6.1 Small Sample Confidence Interval (Unknown o)

For small samples. the sampling distribution of f—_j;—: 18 a t-distribution with n-1 degrees of freedom. To
compute that confidence interval, all we need to ﬁ:ncuw 15 how to compute areas under the t-distribution
between two numbers, which is similar to what we did with the normal distribution. To find *, we
just replace gnorm(.05 / 2) with £(0.05 / 2,sample.size-1).

In terms of coverage, the results will be very similar if the sample size is large (e.z., 100+). For
small samples (e.g., 10), the CI computed using a t-distribution will cover the population mean the
correct number of times, while the CI computed using the normal distribution will not.

Note that computing the confidence interval for small samples using the t-distribution assumes
that the population is normal. If the population i& non-normal, the bootstrap method should be
uzed inatead.

Bootstrapping should be used when:

1. The population is not normal and the sample size 1= small.

2. No formulas for computing standard errors of the statistics of interest exist.

6.2 Confidence Intervals and Hypothesis Tests

In general, this is the way to decide how to set up the null and alternative hypothesis: Convert the
statement of the problem to make it sound like “Does data provide evidence for blah?™ Then that
“blah” i what should go into H;. The reason is that the hypothesis testing procedure starts by
assuming whatever is under Hy. And so, if you are trying to see if the *data* provide evidence for
X, then vou should not start by assuming X is true. Similarly, if the problem asks “Does the data
contradict blah™, then the blah should go into Hy.

Some problems don't readily lend themselves to that kind of translation. They ask something like
“Test the prior belief that blah.” In that case, the blah should go into Hy. The reason is similar to
what I sald above: Data provides evidence for H,, against Hy. And “prior™ means prior to data. So,
any “prior belief” should go into Hy.

So far, we have learned 3 ways of constructing confidence intervals and doing hypothesis tests:
1. Using CI formulas.
2. Using bootstrapping.
3. Using the R function t.test().
The following example will focus on the last method.

Example 1: Exercise 8.28

Fusible interlinings are being used with increasing frequency to support outer fabries and improve
the shape and drape of various pieces of clothing. The article “Compatibility of Outer and Fusible
Interlining Fabrics in Tailored Garments” (Textile Res. I., 1007: 137777142) gave the accompanying
data on extensibility (%) at 100 gm/em for both high-quality fabric (H) and poor-quality fabric (P)
BpEcimens:

H ¢~ c(1.2, 0.9, 0.7, 1.0, 1.7, 1.7, 1.1, 0.8
1.4, 1.3, 1.8, 1.6, 0.8, 2.0, 1.7, 1.8
P ¢<- c(1.6, 1.5, 1.1, 2.1, 1.5, 1.3, 1.0, 2.8
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Suppose the problem asked us to estimate the true means for the the two populations separately.
Then, we would compute 2-sided, 1-sample, Cls for each of the two population means.

t.test (H)

One Sample t-test

data: H
t =17, df = 23, p-valus = 3e-14
alternative hypothesie: true mean is not equal to O
95 percent confidence interwal:
1.321 1.696
gample estimates:
mean of x
1.508

t.test(P)

One Sample t-test

data: P
t =8.6, df = 7, p-value = 0.00006
alternative hypothesie: trus mean is not equal to O
95 percent confidence interval:
1.144 2.031
gample estimates:
mean of x
1.588

However, if we were only comparing the means, we would not be able to tell much about the
difference in the true means because there is a lot of overlap between the two Cls.

boxplot(H, P, names = c("high-guality", "low-quality"))
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If we are intereated in the difference between the two means, it's better to compute a 2-sample CI,
instead of comparing two 1-sample Cls.

Suppose the problem asks “Does the data provide evidence to support the clalm that the two
populations have different means?" Then, we need to construct a 2-sided, 2-sample, CI. The two
hypotheses are:

Hy: pg —pp =0
Hy: pg —pp #0

t.teet(H, P, alternativa = "two.sided"}

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.7
alternative hypothesie: true difference in means i& not equal to O
95 percent confidence interwval:
-0.5404 0.3820
gample estimates:

mean of X mean of y
1.608 1.588

Note that the 35% CI includes zero. Also note that p-value = 0.05. Both of these observations imply
that we cannot reject the null hypothesis that the two means are equal. One often says “there is no
statistically significant difference between the means of H and P." Keep reminding vourself that this
does NOT mean that there is no difference; it just means that if there is a difference, your data is not
seeing it.
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Also note that the sample mean of H is smaller than the sample mean of P. Suppose the problem
had asked us if the data provide evidence that the population mean of H is less than the population
mean of P. Then the appropriate “interval” would be a (1-sided ) upper confidence bound for pg —p p.
The two hypotheses would be:

Hy: pg —pp =0
Hy: pg—pp <0

t.test(H, P, alternative = "legs")

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.4
alternative hypothesie: true difference in means ie lese than 0
95 percent confidence interwal:
-Inf 0.25866
gample estimates:
mean of x mean of y
1.608 1.588

The upper confidence bound i= positive, and so the difference f}.u,r — pip) may be positive. So, the
data do NOT provide evidence that pg — pp < 0. Although the p-value is lower than the 2-sided
p-value above, it's still not less than o = 0.05. S0, the conclusion is that the data do NOT provide
evidence to reject pg — pp > 0 in favor of H;. Either way, the conclusion is the same.

Note that this (1-sided) upper confidence bound is smaller than the upper limit of the 2-sided CIL.
This is consistent with what confidence intervals are supposed to do, i.e, cover the true parameter
some percentage of the time.

Had the problem asked us if there is evidence for py — pp > 0, then the hypotheses would be:

Hy: pg —pp <0
Hy: pg—pp >0

t.test(H, P, alternative = "greater")
2

Welch Two Sample t-test

data: H and P
t =-0.38, df = 10, p-value = 0.6
alternative hypothesie: true difference in means ie greater than 0
95 percent confidence interwval:

-0.4543 Inf

gample estimates:
mean of x mean of y

1.508 1.588
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t.test (H, P)$p.value



[1] 0.T115

# If the above command was placed inside a loop, R will not print the values on

# the scraen, unless you put the whole thing in a print(), i.e.,
print(t.test(H, P)$p.valus)

[1] D.7116

Example 2: Paired and Unpaired Two-sample t-test

Suppose the data (from example 1) on H and P were of the same size. Assume the data on H was
just the first 8 cases. Suppose the question had asked “is there a difference?”

H <- H[1:8] # Keep only the first 8 cases in above H.
boxplot(H, P, names = c("high-quality", "low-quality"))
t.test(H, P, alternative = "two.sided")

Welch Two Sample t-test

data: H and P
t =-1.3, df = 13, p-value = 0.08
alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwval:
-0.93361 0.05851
gample estimates:
mean of x mean of y
1.150 1.688
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Now suppose the problem had said that the two sets of measurements, H, P, are taken on the same
unit of study. For example, the two measurements are made on a given fabric, but in two different
conditions, say wet and dry. Then we are dealing with paired data. Then the appropriate test would
be:

t.test(H, P, paired = T, alternative = "two.sided")

Paired t-taest

data: H and P

t=-1.8, df = 7, p-value = 0.1

alternative hypothesie: true difference in means ie not equal to 0
95 percent confidence interwval:

-1.0262 0.1502

ganple estimates:
mean of tha differences
-0.4375

The CT is now much wider and the p-value is much larger. So, the pairing of the data meansa that
it provides even less evidence than otherwize. This makes sense in this example, only becanse the
data on H and P are not paired anyway. You can see that they are not paired by looking at the their
scatterplot, and noting that there is no correlation:

plot(H, P)
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But, if the data truly were paired, the CI for the paired data would be narrower than that of the
unpaired data. Similarly, the p-value for the paired test would be smaller than the p-value from an
unpaired test. That makes sense too, because by taking the difference between two columns of data,
all the wariahility within each column i= “subtracted out,” and so the test can focus only on the
variability in the difference between the two columns, which is all we really care about anyway.

Note that comparative boxplots of paired data are misleading. For example, it’s possible that the
boxplots will show a huge overlap, but each case in H is higher than the corresponding/paired case
in P. If H i= pgreater than P, case-by-case, then the conclusion that H has a higher mean than P is
warranted, and yet the boxplots will simply not show that.

Example 3: Exercise 8.38

Elevated energy consumption during exercise continues after the workout ends. Because calories

burned after exercise contribute to weight loss and have other consequences, it is important to un-
derstand this process. The paper “Effect of Weight Training Exercise and Treadmill Exercise on
Post-Exercise Oxygen Consumption” (Medicine and Science in Sports and Exercize, 1008: 518777522)
reported the accompanying data from a study in which oxygen consumption (liters) was measured
continuously for 30 minutes for each of 15 subjects both after a welght traning exercise and after a
treadmill exercise. Carry out a formal test to decide whether there is compelling evidence for con-
cluding that true average consumption after welght training exceeds that for the treadmill exercise by
more than 5. Does the validity of your test procedure rest on any assumptions, and if so, how would
you check the plausibility of what you have assumed?

First, ask yourself if the data are paired. In this problem the answer 18 Yes, based simply on the
statement of the problem regarding how the data were collected.

weight <- c(i4.6, 14.4, 19.5, 24.3, 16.3, 22.1, 23, 18.7, 19, 17, 19.1, 19.6,
23,2, 18.5, 15.9)

tread <- c(11.3, 5.3, 9.1, 15.2, 10.1, 19.6, 20.8, 10.3, 10.3, 2.6, 16.6, 22.4,
23.6, 12.6, 4.4)

t-ox:piot{ueigh‘t, tread, names = c{"weight", "treadmill™})

x
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# can be completely wrong for paired data. But 4t is useful to look at for unpaired
# data.

# The scatterplot of the two variables shows a correlaiion
plot(weight, tread)
cor (weight, tread)

[1] 0.7419

# Now, the t.test assumes that the population is normal. 5o, left's sae
# if our data are ot leasi comsistent with that assumpiion:
gqnorm(weight)

qqnorm(tread)

# These could look beiter! Buit with the small sample size we're dealing with,
# they are normal enough. Also, technically, since we need to do @ paired test,
# it i5 the differences thai should have a mormal disiribution.

qgnorm(weight - tread)
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Now, suppose the problem had asked if the data suggest that the mean consumption associated
with weight training is higher than that associated with treadmill exercise. The hypotheses would be;

-HI:I: Hweight — Hiread i: 1]
-Hl: Fweight — Hiread =0

The appropriate CI or test would be the two-sample, 1-sided, t-test. But, which side - the lower or
the upper confidence hound?

t.test(weight, tread, paired = T, alternative = "greater")

Paired t-tast

data: weight and tread
t=4.8, df = 14, p-valus = 0.0001



alternative hypothesie: true difference in means ie greater than 0
95 percent confidence interwval:
3.802 Inf
gample estimates:
mean of the differences
6.067

This particular arrangement of arguments in t.test(), and “alternative = greater” produce the
lower confidence bound for po.eight — feread. Here, it's about 3.9, and it’s greater than 0. So, we would
gay that we are 5% confident that the true difference between the means is greater than 3.0. So,
there is evidence (from the data) that pry.ighs is greater than pyead.

Also, note that the p-value is small (below any of the common o values). So, the conclusion
would be “Yes, the data do provide sufficient evidence to reject Hj in favor of the alternative |that

Buweight = Hiread :I 4

Now, returning to the exact statement of the problem, it asks if there iz sufficient evidence that
the difference exceeds 5 (not zero). The appropriate hypotheses are:

Hy: Houweight — Hiread <5
-Hl: Fuweight — Hiread - b

This is how you do the t.test():

t.test(weight, tread, mu = 5, paired = T, alternative = "greater")

Paired t-test

data: weight and tread
t =0.87, df = 14, p-value = 0.2
alternative hypothesie: true difference in means i1& greater tham &
95 percent confidence interwval:
3.802 Inf
gample estimates:
mean of the differences
6.067

The lower confidence bound i= still about 3.0 . But the conclusion iz now different. Becausze 3.0 iz
lower than 5 (i.e., 5 is ingide the “interval” ), we CANNOT say anything! The most we can say is that
there is insufficient evidence to conclude that the true average consumption after weight training
exceeds that for the treadmill exercise by more than 5.

The p-value approach leads to the same conclusion:

The p-value for this test is different from that of the previous part. Now, the p-value is large
(larger than any common value of o). As a result, the data do NOT provide sufficient evidence to
reject Hp in favor of Hy (that fuyeight — Miread > 5).
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t_obe <- (mean(weight - tread) - 5) / (sd(weight - tread) / sqrt(15))
t_obe # Note that this agrees with i_observed given in t.fest()

[1] 0.8681



# According to the formu
# under the t-distribul

pt(t_obe, lower.tail = F, df = 1B=1

[1] 0.2
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6.3 Power of A Test

Recall that the power of a test 18 defined as power = 1 — 3 where J is the probability of maling a
type II error. The main reason why we care about power is that just concentrating on o {which 18
what most people do) has some serious and adverse consequences in decision making.

n <~ 100 # Sample siza.
pop.ed <= 1 # Population siandord deviatiion.
mul} €= 0 # tha null paramater.

alpha <- 0.05
a <- gnorm(1l - alpha, m0, pop.ed / sqrt(n)) # Value of z_bar with righi-area = 0.05
a # Note this is not 1.64, but 1.64/(sigma/root(nl).

[1] 0.1845

mu <- seq(-0.5, 0.5, 0.01} # Differeni values of mu.

power <- pnormia, mi, pop.sd / sqrt{n), lower.tail = F)

# Note that we are doing o one-sided test because Hi1: mu > mud.
plot{m, power, typs = "1")

abline(v =9, col = 2)

ablinath = O, col = 2}

power

00 04 08

-04 00 04

mu

Recall what o = 0.05 means: If we use the above procedure for testing Hy ve. H; many many
times, about §% of the time we will commit a type I error. In other words, we will reject Hy when
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it is in fact true. In this problem, we will say p is not zero, when it really is zero. But what fraction
of the time will we reject Hy when it iz in fact False? That's power. So, in this case if g is 0.4, then
nearly 99%, of the time we will correctly reject p = 0.

6.4 Distribution of p-values

Have you wondered what the distribution of p-values (=ay, from a 2-sided, 2-sample t-test ) is under the
null hypothesia (of equal means)? The following simulation shows that the p-values have a uniform
digtribution.

mi.1l <=0
mu.2 <= 0 i population 2
n.triale <- 1000 # Number of samples to tak

p <- numeric(m.trials) # Space

for(i in 1l:n.trials) {
xl <- roorm(100Q, mu.l, 1} # Sample of size 100 from populatior
xz2 <- rnorm(100, mu.2, 1)
pli]l <- t.test(zl, z2)§p.valus

}

histl{p, braake = 20, xlim = c{0, 1))

range (p) 1t some p-value

[1] 0.001452 0.998470

Histogram of p

Frequency

0 20 40 60

This result will seem either obvious or completely mysterious. It's not easv to make it intuitive,
but think of it this way: If the null hypothesis is true, e.g., if there really is no difference between two
population means, then what else can the distribution of p-values be? Any distribution other than
uniform would have some nontrivial location (e.g., mean), or acale (e.g., std dev), which means that
it cannot be a general 'universal answer to the question.
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