
Both of these models fall under linear regression, because they are linear in the parameters alpha, 
beta_1, beta_2, ... . This linearity is desirable, because it leads to a system of linear eqns (linear in 
the parameters alpha, beta_1, beta_2, ...), and so, it guarantees a unique soln. It is not restrictive 
because the model can be as nonlinear (in x) as you would like it to be.
Even the next topic ("multiple regression") still falls under linear regression, and for the same reason.





We know that one can overfit data on x and y, if one uses a high-order polynomial in polynomial regression. 
Recall that the main reason overfitting can happen is because such a regression model will have a lot of 
parameters, which in turn allow the fit to be more curvy/nonlinear, thereby going through every case.

In multiple regression there is yet another way that overfitting can happen even without high-order (nonlinear 
or polynomial) terms in the model.

Consider 3 cases on y and x_1.
A model like y = alpha + beta x_1, (a line) cannot over fit that data.

But a model like y = alpha + beta_1 x_1 + beta_2 x_2 (a plain) overfits completely. To see why, visualize the 
geometry of the problem; the reason for the complete overfit is that now the 3 cases are in 3D (not 2D), and 
there is always a plain that goes through any 3 points exactly.

Note that the additional predictor x_2 can even be completely unrelated to y; it can even be just random 
numbers! In other words, by arbitrarily making the space big (by adding another predictor, even a useless 
one), we opened up the possibility of overfitting. So one can overfit even without any non-linear (e.g. 
quadratic, cubic, ...) terms.

You way think this is happening only because we are dealing with 3 cases here. But even with more cases, 
one can still overfit by simply including more (even random) predictors in the model. In general, if there are 
significantly more parameters/predictors than cases, then overfitting may happen. Furthermore, this overfitting 
problem is not specific to regression; All models can overfit ifwhen they are too large. AI/Machine Learning 
students, watch out!













n = 100
   x = rnorm(n,0,1)
   y = 1 + x + x^2 + rnorm(n,0,0.1)
   lm.1 = lm(y ~ x)
   yhat1 = predict(lm.1)
   lm.2 = lm(y ~ x + I(x^2))
   yhat2 = predict(lm.2)
 
   par(mfrow=c(2,2))
   plot(x,y)
   abline(lm.1) 
   plot(yhat1, y-yhat1)  ; abline(h=0)
   plot(yhat2, y-yhat2)  ; abline(h=0)
   



Warning: Regression is a powerful tool, and so one can do serious damage with it. At the least, you 
must be aware of overfitting, interaction, and collinearity. There is a complex interplay between them, 
even though they are completely different concepts.

For example, even though both interaction and collinearity make the beta's un-interpretable, they are 
very different concepts: the former refers to a term in the regression model, or equivalently, a saddle 
surface in the 3d scatterplot. Either way, it involves x1, x2, and y. By contrast, the latter refers to (or 
is defined as) a linear relationship between the predictors x1 and x2, nothing to do with y. And yet, 
they both lead to uninterpretable beta's.

One may think that these 2 issues are not important if/when you are not interested in interpreting the 
beta's (e.g. if/when you are interested in making predictions only). And there is some truth to that 
thinking. But, these issues can affect your predictions, too! For example, both of them can lead to 
overfitting. Interaction can lead to overfitting because it introduces one more parameter into the 
model, allowing the model to twist and turn its way through more points. Collinearity can lead to 
overfitting because each of the predictors comes with its own beta in the model eqn, and yet, each of 
the two predictors is essentially carrying the same information. So, don't ignore the three concepts of 
overfitting, interaction, and collinearity.

Finally, and again, recall that multiple regression (even with polynomial terms), is still an example of 
linear regression, because the model y = ... is linear in the parameters. As a result of that linearity, 
when we take derivatives of SSE, we get a set of linear equations (again, linear in the parameters) 
that can be solved exactly, giving a unique solution. This is the advantage of linear models. 
Meanwhile, the models can be as nonlinear (in x) as you choose to make them by adding higher 
powers, or products, of the predictors. So, multiple regression is a win-win!



hw_lect14_2  (By R)
The article "The Undrained Strength of Some Thawed Permafrost Soils" (Canadian Geotech. J., 1979: 420-427) 
contained the accompanying data on y shear strength of sandy soil (kPa), x1 depth (m), and x2 water content (%). 
Obs Depth Content Strength
 1    8.9   31.5    14.7 
 2   36.6   27.0    48.0 
 3   36.8   25.9    25.6 
 4    6.1   39.1    10.0  
 5    6.9   39.2    16.0  
 6    6.9   38.3    16.8  
 7    7.3   33.9    20.7  
 8    8.4   33.8    38.8  
 9    6.5   27.9    16.9  
10    8.0   33.1    27.0  
11    4.5   26.3    16.0  
12    9.9   37.0    24.9  
13    2.9   34.6     7.3  
14    2.0   36.4    12.8  
a) Perform regression to predict y from x1, x2, x3 = x1^2, x4 = x2^2, and x5 = x1*x2; and write down the 
coefficients of the various terms.
b) Can you interpret the regression coeficients? Explain.
c) Compute R^2 and explain what it says about goodness-of-fit ("in English").
d) Compute s_e, and interpret ("in English").
e) Produce the residual plot (residuals vs. *predicted* y), and explain what it suggests, if any.
f) Now perform regression to predict y from x1 and x2 only.
g) Compute R^2 and explain what it says about goodness-of-fit.
h) Compare the above two R^2 values. Does the comparison suggest that at least one of the higher-order terms in 
the regression eqn provides useful information about strength?
i) Compute s_e for the model in part f, and compare it to that in part d. What do you conclude?



hw_lect14_3  (By R)
For each of the data sets a) hw_3_dat1.txt and b) hw_3_dat2.txt, find the "best" (OLS) fit, and report R-
squared and the standard deviation of the errors. Do not use some ad hoc criterion (like maximum R2) to 
determine what is the "best" model. Instead, use your knowledge of regression to find the best model, and 
explain in words why you think you have the best model. Specifically, make sure you address 1) collinearity, 
2) interaction, and 3) nonlinearity. 

hw_lect14_4
In a problem involving x1, x2, y, suppose we have selected x1 such that it has a very (very) strong linear 
association with y .  For simplicity, suppose the linear pattern "goes through" the origin. Similarly for x2, ie. it's 
highly correlated with y. On the adjacent diagram, and inthe following order, draw the 
a) 2d scatterplot in the x1-y plain.
b) 2d scatterplot in the x2-y plain.
c) 3d scatterplot, i.e. cloud of data in 3d. It may be hard to draw, but do your best in showing perspective.
d) 2d scatterplot in x1-x2 plain.
Hint:This requires only 3d visualization of the type we did in the lecture!


