
Dealing with ambiguity
Random variable
histograms
Comparative boxplots
quantiles
distributions
probability (e.g. from Poisson)
sample mean and variance
distr mean and variance
qqplots

scatterplots
correlation
regression (multiple, polynomial, ...)
ANOVA (R^2, s_e ~ RMSE)
overfitting, collinearity, interaction

sampling distribution
1-sample Confidence Interval for ...
2-sample CI for ...
t-distribution

Hypothesis testing with p-values
1-sample, 2-sample, paired, ... tests
tests for means and proportions
chi-squared test of multiple proportions in 1 pop
chi-squared test of indepedence of two categorical variables

1-way ANOVA F-test for the equality of multiple pop means.

t-test of regression coefficients
Confidence and Prediction Intervals
F-test of model utility

Model selection via bootstrapping (and cross-validation)
Neural networks (as a regression model).

















# hw_optional (By R).
# Install the R package called nnet. Then,

   library(nnet)

# Simply run the following block, which makes the object "data." The 1st (2nd) column is x (y). 
You don't need to understand what this block does. 

   n = 100
   n.hd = 4                      # This assures that the true H is 4.
   n.in = n.out =1
   input = seq(-1,1,length=n)
   target = rep(1,n)             # Not used, but necessary for nnet()
   n.wts = (n.in+1)*n.hd + (n.hd+1)*n.out
   set.seed(1)
   nn.1 = nnet(input, target, size = n.hd, rang=10, maxit = 0, linout=T)
   output = predict(nn.1)
   y = output + rnorm(n, 0, 0.3)
   data = data.frame(input,y) 
     plot(input, output, type="l")
     lines(input, y , type="p",col=2)

# Now, do go through the rest of this code and understand what it does. The idea behind it is 
explained in the "bootstrap" part of the lecture.

   set.seed(1)            
   ntrial = 300                    # number of (re) samples that will be taken.
   SSE_vld0 = SSE_vld4 = SSE_vld8 = SSE_vld16 = numeric(ntrial)
   SSE_trn0 = SSE_trn4 = SSE_trn8 = SSE_trn16 = numeric(ntrial)

   for( trial in 1:ntrial){

   trn = sample(1:n, 90, rep=T)                  # Take a (re) sample of size 90.
   nn = nnet( data[trn,1], data[trn,2], skip=T, linout=T, size = 0)  # The only argument you need 
to know about is "size" which is what I called H in the lecture, i.e., the number of hidden 
nodes.
   SSE_trn0[trial] = nn$value                    # This returns/selects SSE.
   pred_nn = predict(nn, newdata=data.frame(data[-trn,1]))  # -trn means everything other than 
trn .
   SSE_vld0[trial] = sum(( pred_nn - data[-trn,2] )^2 )

     nn = nnet( data[trn,1], data[trn,2], linout=T, size = 4)      # Repeat for H = 4
     SSE_trn4[trial] = nn$value
     pred_nn = predict(nn, newdata=data.frame(data[-trn,1]))
     SSE_vld4[trial] = sum(( pred_nn - data[-trn,2] )^2 )
       nn = nnet( data[trn,1], data[trn,2], linout=T, size = 8)    # H = 8
       SSE_trn8[trial] = nn$value
       pred_nn = predict(nn, newdata=data.frame(data[-trn,1]))
       SSE_vld8[trial] = sum(( pred_nn - data[-trn,2] )^2 )
         nn = nnet( data[trn,1], data[trn,2], linout=T, size = 16) # H = 16
         SSE_trn16[trial] = nn$value
         pred_nn = predict(nn, newdata=data.frame(data[-trn,1]))
         SSE_vld16[trial] = sum(( pred_nn - data[-trn,2] )^2 ) 

   } # end of loop over trial.



# Here is one of the figs shown in the lecture note. It's more convenient to work with the 
log of SSE; otherwise, the hists are all highly skewed. You can try without log, and see 
for yourself.

    lim = log(range(SSE_trn0, SSE_trn4, SSE_trn8, SSE_trn16, SSE_vld0, SSE_vld4, SSE_vld8, 
SSE_vld16))
    par(mfrow=c(4,1), mar=c(4,4,0,0))
    hist(log(SSE_trn0), breaks=40, xlim=lim, ylim=c(0,3), main="", xlab="log(SSE) H=0", 
freq=F)
    hist(log(SSE_vld0), breaks=50, add=T, border = 2, freq=F)
    hist(log(SSE_trn4), breaks=50, xlim=lim, ylim=c(0,3), main="", xlab="log(SSE) H=4", 
freq=F)
    hist(log(SSE_vld4), breaks=50, add=T, border = 2, freq=F)
    hist(log(SSE_trn8), breaks=30, xlim=lim, ylim=c(0,3), main="", xlab="log(SSE) H=
8",freq=F)
    hist(log(SSE_vld8), breaks=50, add=T, border = 2, freq=F)
    hist(log(SSE_trn16), breaks=30, xlim=lim, ylim=c(0,3), main="", xlab="log(SSE) H=16", 
freq=F)
    hist(log(SSE_vld16), breaks=50, add=T, border = 2, freq=F)

# Here is a comparative boxplot, summarizing the above histograms:

   boxplot(log(SSE_trn0), log(SSE_trn4), log(SSE_trn8), log(SSE_trn16), range = 0, axes=F, 
ylab="log(SSE)", xlab="H", ylim=lim)
   boxplot(log(SSE_vld0), log(SSE_vld4), log(SSE_vld8), log(SSE_vld16), range = 0, axes=F, 
add=T, border=2, boxwex=0.5)
   axis(1,labels=c(0,4,8,16),at=c(1:4),cex.axis=1)
   axis(2, labels=T) ; box()

# a) Based on the boxplots, one cannot tell if SE_vld4, SSE_vld8, and SSE_vld16 have truly 
different means. To test that more objectively, perform an appropriate test, report the p-
value, and state your conclusion, at alpha = 0.05.
 
# b) Perform the appropriate test if we want to see whether SSE_vld4 is less than 
SSE_vld8.  Report the p-value, and state your conclusion, at alphs = 0.05 .

# It is commonly believed that neural nets are "better" than regression. Let's prove that 
wrong. To that end, 

# c) Revise the code above to ALSO compute SSE_trn_lm and SSE_vld_lm, corresponding to a 9
^th order polynomial regression model.  Hint: Here is how to do one instance of 
regression:

   x = data[trn,1] 
   y = data[trn,2]
   lm.1 = lm( y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6) + I(x^7) + I(x^8) + I(x^
9))
   summary.aov(lm.1)[[1]][10,2]  
   new.data = data.frame(data[-trn,1])
   colnames(new.data) = c("x")
   pred_lm = predict(lm.1, newdata=new.data)
   sum(( pred_lm - data[-trn,2] )^2 ) 

# d) Finally, make a comparative boxplot, like the one above, that includes SSE_trn_lm and 
SSE_vld_lm. Do not worry about the x-axis labels.


