2 Distributions

2.1 Binomial and Poisson Distribution

# The format is dbinom(z, n, pi), where x = number of heads out of n tosses of a
# coin, and pr = prob of head. For exzample,
dbinom{0, 100, 0.005) # returns the value of the distribution (pmf) itself.

[1] 0.6053

dbinom(0:3, 100, 0.005) # running dbinom() for muliiple values of z in one sweep.
[1] 0.60577 0.30441 0.07572 0.01243

sum{dbinom(0:3, 100, 0.005)) # summing up the above probabilitzes.

[1] ©0.9983

2.1.1 Plotting

¥ €= 023

y <- dbinom(0:3, 100, 0.005)

plot(x, y, type = "b") # “b" (for "both") comnects the points with lines.
# See 7plot for more options for line types

0.6

0.0

# Plotting the mass function for different values of n and pe.

# Note the n and pi values that produce normal-looking distributions,
# and those that produce Poisson-looking distributions.

par{mfrow = c(3, 4)) # 4 3 by 4 metriz of figures.

X <= 0020

plot(x, dbinom(x, 5, 0.01), type = "b") # n=5, p2=0.01
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Note that we can approximate the binomial distribution with the Poisson distriution (when 7 is
small and n is large) or the normal distribution (when 7 is mid-range and = is large).
The shape of the Poisson distribution depends on the parameter A.

par {mfrow = c(1, 1))
¥ <=0:10
plot (x, dpois(x, 1), type = "b")

lines(x, dpois(x, 4), type = "b", ¢ol=2, main = 'lambda
lines(x, dpois{x, 8), type = "b", c0l=3, main = 'lambda

1l
2R

legend('topright', c(expression{lambda == 1), expression(lambda == 2),

expression(lambda == 3)), text.col = c(1, 2, 3), bty = 'n')
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2.2 Simulation from Mass and Density Functions

In this section, wewill present how to generate data that follow the binomial distribution; i.e., simulate
the tossing of a coin, without actually tossing coins. For example, shown below is a way to generate
200 numbers from a binomial:

rbinom(200, 10, 0.5)

Effectively, you just tossed 10 fair coins, 200 times, each time noting the number of heads cut of 10.
This way, you can do a lot of experiments on the computer, without actually deing the experiment!
If the coin is not fair, then just change the parameter =.



rpois(100, 4)

% <¢- rnorm{10000, 0, 1)
hist{(x, breaks = 200)

2.3 Boxplots

A boxplot of data is a way of summarizing the data into five numbers that capture the shape of
the histogram. The five numbers are the minimum, 25th percentile, median, 75th percentile, and
maximuim.

¥ <- rnorm{10000, 0, 1)
par (mfrow = c(1, 2))
boxplot{x, cex = 0.7) #C

boxplot (x, rangs = 0)
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Example 1

Now, recall the bimodal histogram we saw before in hist data. It was bimodal because two separate
data files were joined, each one with 100 cases in it. We can separate the two and boxplot them,
separately:
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dat <- read.table{'hist_dat.txt', header = F)
x <-dat[, 11 # All of =.

x_1 <~ x[1:100]
x_2 <- x[101:200]
par(mfrow = c({1, 2))
hist{x, breaks = 20)
Boxplotdz 1, = 2)

Histogram of x

— [ 1 A O — o
5 - o
c 0 _ 1 1 <+ o) !
3 "] N - -—
q) ——
Em_ﬁ 1 ==
o - i | OlJ_ _:_
| | | I | I |
-2 0 2 4 6 1 2

Example 2: Attendance Data

The variable of interast is the “percentage of time student attends lectures”, and the two groups are
boys and girls.

dat <- read.table('attend_dat.txt', header = T)
% <~ dat$attendance
y <- dat$Gender

ar(mfrow = (2, 2))

s

hist(xty == 01, main = "Boys' Attendance", xlab = 'Attendance')
hist{x[y == 11, main = "Girls' Attendance", xlab = 'Attendance')
boxplot(x[y == 0], x[y == 11)

neanCxly == 013 4
[1] 87.57

mean{x[y == 11)

[1] 86.4
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01)

median(x[y ==

[1] 92.5
median(x[y == 11)
[1] 95
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Attendance

There are several sources of complexity in comparing two groups:

1. Sample mean or median measure only “center” or “location” of data.

2. They measure 2 different notions of “center;”
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and there are many others.
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3. Measures of location (e.g., mean, median) do not conclude all characteristics of the sample. The
spread is equally important.

# One measure of spread is the sample standard deviation:
sd(xly == 0]) # Sample standard deviation of attendance for girls

[1] 20.41
sdix[y == 11} # Sample standard deviation of attendance for boys.

[1] 18.02

We can see that the spread is a bit wider for girls than for boys. In statistics, some interpretation
is always important. For example, one might say thal boys are more “consistent” across the sample.

Percentiles can also be used to assess spread. For example, the distance between the 25th percentile
and the 75th percentile (the interquartile range) conveys a sense of the spread.

# To get percentiles, use gquantile().

# The 26th percentile 1s simply the 0.256 quantile, etc.
# Quantiles of attendance for boys:

quantile(x[y == 11, prob = c(0, .25, .5, .75, 1))

0% 25% 50% 75% 100%
25 80 95 100 100

# Quantiles of attendance for girls.
quantile(x[y == 0], prob = c(0, .25, .5, .75, 1))

0% 25% BO%  75% 100%
2.0 90.0 92.5 100.0 100.0

# The wnterpretation of sample quartiles 25 as follows: Since the wvalue
# corresponding to the 25th percentile 2s 90, 1t means that 257 of girls
# attended classes less than or equal to 904 of the time.

Overlaying two histograms:

dat <- read.table{'hist_dat.txt', header = F)

x <~ dat[, 11 # Here is all of =.

x_1 <- x[1:100] # Put the 1st 100 ceses of z in z_1,

x_ 2 <- x[101:200] # Put the remainder in z_2.

a <- hist(x_1, plot = F)

b <- hist(x_2, plot = F)

x.lim <- range{(c{a$mids, bPmids))

plot(a$mids, afcounts, type = "h", xlim = x.lim, xlab = 'mids', ylab = 'counts')

lines(b$mids + 0.1, bPcounts, type = "h", col = "red") # The shift of 0.1 avoids
# overlapping histograms.
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30
]

counts

mids

That was the hard way! But it shows the inner-workings of hist(). The easy way is:

hist(x_1, breaks = 20, xlim = range(x_1, x_2), xlab = 'mids', ylab = 'counts', main = '')
hist{x_2, breaks = 20, add = T, border = 2)

15
1

counts
]

2.4  Binomial Distribution

Recall that the mean and variance of the binomial distribution are given by nn and nn(l — 7). Note
that they grow linearly with the sample size n. For example, if NG = number of girls in a random
sample of size n, then as n increases the typical value of NG increases (obviously), and the variability
(across samples) of NG also increases (not obvious). We will confirm this mathematical result with a
simulated coin toss example.
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