2 Distributions

2.1 Binomial and Poisson Distribution

```r
# The format is dbinom(x, n, pi), where x = number of heads out of n tosses of a
coin, and pi = prob of head. For example,
> dbinom(0, 100, 0.005)  # returns the value of the distribution (pmf) itself.
[1] 0.6058
> dbinom(0:3, 100, 0.005)  # running dbinom() for multiple values of x in one sweep.
[1] 0.60577 0.30441 0.07572 0.01243
> sum(dbinom(0:3, 100, 0.005))  # summing up the above probabilities.
[1] 0.9983
```

2.1.1 Plotting

```r
x <- 0:3
y <- dbinom(x = 0:3, 100, 0.005)
plot(x, y, type = "b")  # "b" (for "both") connects the points with lines.
                        # See ?plot for more options for line types
```

Plotting the mass function for different values of n and pi.
Note the n and pi values that produce normal-looking distributions,
and those that produce Poisson-looking distributions.
```r
par(mfrow = c(3, 4))  # A 3 by 4 matrix of figures.
x <- 0:20
plot(x, dbinom(x, 5, 0.01), type = "b")  # n=5, pi=0.01
```
plot(x, dbinom(x, 5, 0.1), type = "b") # n=5, pi=0.1. Use UP-ARROW to get
 # most recent run commend
plot(x, dbinom(x, 5, 0.5), type = "b") # n=5, pi=0.5
plot(x, dbinom(x, 5, 0.9), type = "b") # n=5, pi=0.9
plot(x, dbinom(x, 10, 0.01), type = "b") # n=10, pi=0.01 USE UP-ARROW
plot(x, dbinom(x, 10, 0.1), type = "b") # n=10, pi=0.1
plot(x, dbinom(x, 10, 0.5), type = "b") # n=10, pi=0.5
plot(x, dbinom(x, 10, 0.9), type = "b") # n=10, pi=0.9
plot(x, dbinom(x, 20, 0.01), type = "b") # n=20, pi=0.01
plot(x, dbinom(x, 20, 0.1), type = "b") # n=20, pi=0.1
plot(x, dbinom(x, 20, 0.5), type = "b") # n=20, pi=0.5
plot(x, dbinom(x, 20, 0.9), type = "b") # n=20, pi=0.9
Note that we can approximate the binomial distribution with the Poisson distribution (when \(\pi \) is small and \(n \) is large) or the normal distribution (when \(\pi \) is mid-range and \(n \) is large).

The shape of the Poisson distribution depends on the parameter \(\lambda \).

```r
par(mfrow = c(1, 1))  # One figure on whole page.
x <- 0:10
plot(x, dpois(x, 1), type = "b")  # "b" stands for "both"  # points and lines.
lines(x, dpois(x, 4), type = "b", col=2, main = 'lambda = 4')  # USE UP-ARROW
lines(x, dpois(x, 6), type = "b", col=3, main = 'lambda = 6')  # lines() adds lines  # on existing plot.
legend('topright', c(expression(lambda == 1), expression(lambda == 2),
expression(lambda == 3)), text.col = c(1, 2, 3), bty = 'n')
# Similarly, dnorm(x, mu, sigma) produces the density function Normal(mu,sigma) .  # See ?dnorm() for required format.
```

![Poisson Distribution Plot](image)

2.2 Simulation from Mass and Density Functions

In this section, we will present how to generate data that follow the binomial distribution; i.e., simulate the tossing of a coin, without actually tossing coins. For example, shown below is a way to generate 200 numbers from a binomial:

```r
rbinom(200, 10, 0.5)  # format = rbinom(number of tosses, n, p).
# See ?rbinom for more.
```

Effectively, you just tossed 10 fair coins, 200 times, each time noting the number of heads out of 10. This way, you can do a lot of experiments on the computer, without actually doing the experiment! If the coin is not fair, then just change the parameter \(\pi \).
Putting an "r" before the name is R's way of generating the numbers.
For example, consider the Poisson distribution, which is often used to
model the number of some event, per unit time, or space, etc. Then,
rpois(100,4) generates 100 numbers from the poisson distribution. So, each of these
100 numbers could be the "number of people arriving at a teller, per hour",
if the average number of people arriving per hour is 4.
rpois(100, 4) # generates 100 numbers from the Poisson distribution.

Similarly, the following draws a single sample of size 10000 from a normal
distribution with mu=0 and sigma=1.
x <- rnorm(10000, 0, 1)
hist(x, breaks = 200) # Checks the histogram and it looks pretty normal

2.3 Boxplots

A boxplot of data is a way of summarizing the data into five numbers that capture the shape of
the histogram. The five numbers are the minimum, 25th percentile, median, 75th percentile, and
maximum.

```r
x <- rnorm(10000, 0, 1)
par(mfrow = c(1, 2))
boxplot(x, cex = 0.7) # Circles at the end of boxplot are outliers according to some
# criterion.
boxplot(x, range = 0) # Suppresses outliers.
```

![Boxplots](image)

Example 1

Now, recall the bimodal histogram we saw before in hist data. It was bimodal because two separate
data files were joined, each one with 100 cases in it. We can separate the two and boxplot them,
separately:
dat <- read.table('hist_dat.txt', header = F)
x <- dat[, 1] # All of x.
x_1 <- x[1:100] # Put the 1st 100 cases of x in x_1,
x_2 <- x[101:200] # Put the remainder in x_2.
par(mfrow = c(1, 2))
hist(x, breaks = 20) # Draw a histogram
boxplot(x_1, x_2) # Draw boxplots

![Histogram of x](image)

Example 2: Attendance Data

The variable of interest is the “percentage of time student attends lectures”, and the two groups are boys and girls.

dat <- read.table('attend_dat.txt', header = T)
x <- dat$attendance
y <- dat$gender

par(mfrow = c(2, 2))
A way of selecting cases in x that correspond to some value of y.
hist(x[y == 0], main = "Boys' Attendance", xlab = 'Attendance')
hist(x[y == 1], main = "Girls' Attendance", xlab = 'Attendance')
boxplot(x[y == 0], x[y == 1])

Look at the two sample means to see if there is a difference between
boys and girls with respect to their attendance.
mean(x[y == 0]) # Sample mean attendance for girls.

[1] 87.57

mean(x[y == 1]) # Sample mean attendance for boys.

[1] 86.4
The y=0 group (girls) has the higher sample mean than the y=1 group (boys);
(87.6 vs. 86.4). But the medians are reversed (92.5 vs. 95):
median(x[y == 0]) # Sample median attendance for girls.

[1] 92.5

cdf(x[y == 1]) # Sample median attendance for boys.

[1] 95

There are several sources of complexity in comparing two groups:

1. Sample mean or median measure only “center” or “location” of data.

2. They measure 2 different notions of “center,” and there are many others.
3. Measures of location (e.g., mean, median) do not conclude all characteristics of the sample. The spread is equally important.

```r
# One measure of spread is the sample standard deviation:
sd(x[y == 0])  # Sample standard deviation of attendance for girls
[1] 20.41

sd(x[y == 1])  # Sample standard deviation of attendance for boys.
[1] 18.02
```

We can see that the spread is a bit wider for girls than for boys. In statistics, some interpretation is always important. For example, one might say that boys are more “consistent” across the sample.

Percentiles can also be used to assess spread. For example, the distance between the 25th percentile and the 75th percentile (the interquartile range) conveys a sense of the spread.

```r
# To get percentiles, use quantile()
# The 25th percentile is simply the 0.25 quantile, etc.
# Quantiles of attendance for boys:
quantile(x[y == 1], prob = c(0, .25, .5, .75, 1))

   0%  25%  50%  75% 100%  
  25 80 95 100 100

# Quantiles of attendance for girls.
quantile(x[y == 0], prob = c(0, .25, .5, .75, 1))

   0%  25%  50%  75% 100%  
  2.0 90.0 92.5 100.0 100.0

# The interpretation of sample quartiles is as follows: Since the value corresponding to the 25th percentile is 90, it means that 25% of girls attended classes less than or equal to 90% of the time.
```

Overlaying two histograms:

```r
dat <- read.table('hist_dat.txt', header = F)
x <- dat[, 1]  # Here is all of x.
x_1 <- x[1:100]  # Put the 1st 100 cases of x in x_1,  
x_2 <- x[101:200]  # Put the remainder in x_2.
a <- hist(x_1, plot = F)  
b <- hist(x_2, plot = F)
x.lim <- range(c(a$mids, b$mids))  
plot(a$counts, a$mids, type = "h", xlim = x.lim, xlab = 'mids', ylab = 'counts')
lines(b$counts + 0.1, b$mids, type = "h", col = "red")  # The shift of 0.1 avoids overlapping histograms.
```
That was the hard way! But it shows the inner workings of hist(). The easy way is:

```r
hist(x_1, breaks = 20, xlim = range(x_1, x_2), xlab = 'mids', ylab = 'counts', main = '')
hist(x_2, breaks = 20, add = T, border = 2)
```

2.4 Binomial Distribution

Recall that the mean and variance of the binomial distribution are given by $n\pi$ and $n\pi(1 - \pi)$. Note that they grow linearly with the sample size n. For example, if $NG = \text{number of girls in a random sample of size } n$, then as n increases the typical value of NG increases (obviously), and the variability (across samples) of NG also increases (not obvious). We will confirm this mathematical result with a simulated coin toss example.
Example 1

Toss n fair coins and count the number of heads. Then, repeat 1000 times. You’ll get 1000 numbers, each of which is the number of heads out of n. What’s the sample mean of these 1000 numbers? What’s their variance (spread)? How do these values vary with n?

```r
n.trials <- 1000  # Number of repeats.
n <- 1:100  # Values of n to explore.
sample.mean <- numeric(100)  # Generate a vector to store the results
sample.var <- numeric(100)
for (i in n) {
  head.counts <- rbinom(n.trials, i, 0.5)  # Number of heads in each repeat.
  sample.mean[i] <- mean(head.counts)  # Mean number of heads in 1000 repeats.
  sample.var[i] <- var(head.counts)  # Variance of the 1000 repeats.
}
plot(n, sample.mean, cex = 0.5)  # cex controls the size of points.
points(n, sample.var, col = 2, cex = 0.5)  # points() adds new values on an
# existing plot.
legend('topleft', c('Sample Mean', 'Variance'), text.col = c('black', 'red'), bty = 'n')
```

From the example above, we can see that mean and variance grow linearly with n. This is consistent with the n-dependence in the results $E[x] = np$ and $Var[x] = np(1−p)$. It makes sense for the mean to grow linearly - the expected number of heads out of 10 tosses is about 5, while that for 20 tosses is about 10, etc. Now, recall that standard deviation is the square root of the variance. Therefore, standard deviation grows at rate \sqrt{n}, which is slower than the mean. In other words, the spread/uncertainty of the number of heads out of n grows slower than the mean itself does. This is one of those breaks that nature has given us, because it allows us to effectively “reduce error” (i.e., std. dev.), relative to the “signal” (i.e., mean) by simply increasing sample size.
2.5 Sample Quantile

Suppose our sample/data consists of the following 11 numbers:

```r
x <- c(-10, 50, 30, 20, 0, 40, 70, 60, -20, 80, 10)

# The median of this data is 30, as confirmed by
median(x)

[1] 30

# That's because about half of the cases are smaller than 30, and about
# half of the data are larger than 30. (I say "about" because 11 is not
# exactly divisible by 2). The way to see that is to sort the data
sort(x)

[1] -20 -10  0 10 20 30 40 50 60 70 80

# Note that 5 numbers are lower than 30, and 5 numbers are larger than 30.
# There are three other ways of stating this result:

# - 50% of the cases are less than 30.

# - The 50th percentile of the data is 30.

# - The 0.5th quantile of the data is 30, as confirmed by
quantile(x, probs = 0.5)

50%
30

# Note: 50th percentile = 0.5th quantile.

# Similarly, 10th percentile = 0.1th quantile, and 90th percentile = 0.9th
# quantile.

# Instead of focusing on "50% of the cases," we can ask about 10% of the cases.
# That would be the number in the data that has 10% of the 11 cases below it,
# i.e., -10, because there is 1 case below -10, as confirmed by
quantile(x, probs = 0.1)

10%
-10
```

2.6 Distribution Quantile

In this section, we will review the notion of distribution quantile. Recall Table 1 in the textbook, which gives us the area under the standard normal distribution to the left of some number. For example, \(z = 1.285 \) has about 90% of the area to its left. That means that about 90% of the values of \(z \) (ranging from \(-\infty \) to \(+\infty \)) are less than 1.285. In other words, the 90th percentile (or 0.9th
quantile) of the standard normal distribution is about 1.285. Table 1 is more precisely encoded into the R function `qnorm()`:

```r
# Finding the 0.9th quantile of a standard normal distribution
qnorm(0.9, mean = 0, sd = 1, lower.tail = TRUE)

[1] 1.282

# Similarly, we can find the 0.1th, 0.2th, 0.3th, ..., 0.9th quantile:
sequence <- seq(0.1, 0.9, by = 0.1)
qnorm(sequence, mean = 0, sd = 1, lower.tail = TRUE)

[1] -1.2816 -0.8416 -0.5244 -0.2533 0.0000 0.2533 0.5244 0.8416 1.2816

# This way, we can compute any quantile of the standard normal distribution.
# In fact, we can find any quantile of any distribution.
```

2.7 Q-Q Plots

A q-q plot is a plot of sample quantiles versus distribution quantiles for some specified distribution. If the result is a relatively straight “line,” then there is some evidence that the data have come from that distribution. More intuitively, there is evidence that the histogram of the data is consistent with the specified distribution. Most often when people talk about a q-q plot, they are assuming that the distribution is the standard normal distribution. So one plots sample quantiles (along the y-axis) versus quantiles of the of the standard normal (along the x-axis). The R corresponding function is `qqnorm()`.

Example

Now we take a sample from a standard normal distribution and use `qqnorm()` to make the q-q plot for the sample. Then, we will make the q-q plot “by hand.”

```r
n <- 500  # Sample size = 500.
x <- rnorm(n, 0, 1)  # Sample from a normal distribution with mu = 0, sigma = 1.

qqnorm(x, cex = 0.5)  # The q-q plot, according to qqnorm().

# Doing it by hand:
X <- seq(.5 / n, 1 - .5 / n, length = n)  # Make a sequence of n values between (1-.5)/n and (n-.5)/n , and find
Q <- qnorm(X, mean = 0, sd = 1)  # their quantiles under standard normal.
plot(Q, sort(x), col = 2, cex = 0.5)  # plot the data (sorted) vs. the quantiles.
abline(0, 1)  # Add a line with slope 1 and intercept 0.
```