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Abstract

If we have found a “good” clustering C of a data set, can we prove that C is not far from the (unknown) best clustering
Copt of these data? Perhaps surprisingly, the answer to this question is sometimes yes. This paper gives spectral
bounds on the distance d(C,Copt) for the case when “goodness” is measured by a quadratic cost, such as the squared
distortion of K-means clustering or the Normalized Cut criterion of spectral clustering. The bounds exists only if the
data admit a “good”, low-cost clustering. The results in this paper are non-asymptotic and model-free, in the sense
that no assumptions are made on the data generating process. The bounds do not depend on undefined constants, and
can be computed tractably from the data.

1. Motivation

Optimizing clustering criteria like the minimum squared error of K-means clustering or the multiway Normalized
Cut of spectral clustering is theoretically NP-hard [9, 19, 33]. Abundant empirical evidence, however, shows that
if the data are well clustered, then it is easy to find a near-optimal partition. This suggests the existence of at least
two regimes for this optimality problem: the “difficult” regime, characterized by the worst-case situations, and the
“easy” one, characterized by the existence of a “good” clustering. To be more precise, in the “easy” regime the global
minimum of the clustering criterion, e.g., of the Normalized Cut, is much lower relative to its average value. Hence,
the cost function has a “deep” well at the global minimum.

There is no reason to believe that the “easy” regime is typical. But even if such a case is rare, this is the case of
interest for the field of data clustering. If we define clustering as the task of finding a natural partition of the data —
as opposed to data quantization, which is finding the best partition in data, no matter how “bad” this is — then it is in
the easy regime that the interesting cases lie. This paper shows that, when a sufficiently “good” clustering C exists in
a dataset, then C is also stable, in the sense that any other “good” clustering is “close” to it. Thus, our paper shows
that, in such a case, there is a unique and compact group of near-optimal clusterings. To our knowledge, this is the
first finite-sample stability result for the K-means optimization problem.

Practically, this paper will produce computable bounds on the distance d(C,Copt) between a given clustering C
and the (unknown) optimal clustering Copt of the given data. The bounds will be valid whenever the distortion of C
will be small. Both the bound on the distance and the threshold defining the existence of the bound are computable
given the clustering C.

Section 2 introduces the terminology and notation, defines the K-means and the NCut cost functions, and gives a
precise meaning to the terms “good” and “close”. Section 3 is the core of the paper, describing how to arrive from a
lower bound on the distortion to an upper bound on the distance to the optimum. In Section 4 we extend our results to
weighted data. This lets us obtain an analog bound for the Normalized Cut criterion of spectral clustering. The case
of general quadratic cost is treated in Section 5. We discuss the related work in Section 6 and present experiments on
synthetic and real data in Sections 7 and 8, respectively. The extended discussion in Section 9 compares our paradigm
with other directions of research on the theoretical foundations of clustering. To keep the paper readable, most of the
proofs are relegated to the Appendix.
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2. Definitions and representations

A clustering C of a finite dataset of size n is a partition of the indices {1, . . . , n} into disjoint, nonempty subsets
called clusters. If the partition has K clusters, we write C = {C1, . . . ,CK}, set n1 = |C1|, . . . , nK = |CK | and n1 + · · · +

nK = n. If the data points have weights w1 > 0, . . . ,wn > 0, then the cluster sizes become cluster weights

Wk =
∑
i∈Ck

wi, (1)

and the total weight of the data is Wall = w1 + · · · + wn. The weighted case reduces to the unweighted one when
w1 = · · · = wn = 1.

A clustering can be represented by an n × K matrix X̃ whose columns represent the indicator vectors of the the K
clusters, viz.

X̃ik =

{
1 if i ∈ Ck,
0 otherwise.

The columns of X̃ are mutually orthogonal vectors. We normalize these to length 1 in a way that takes into account
the point weights; we obtain thus the normalized representation X ∈ Rn×K of a clustering, viz.

Xik =

{ √
wi/Wk if i ∈ Ck,

0 otherwise.

In the case of unweighted data, i.e., w1 = · · · = wn = 1, the normalized representation becomes

Xik =

{
n−1/2

k if i ∈ Ck,
0 otherwise.

(2)

In the future, we will refer to a clustering by any of its matrix representations. As we will typically work with two
clusterings, one will be denoted by X̃ (respectively X) and the other by X̃′ (respectively X′). For example, the distance
between two clusterings can be denoted equivalently by d(C,C′) or d(X, X′) or d(X̃, X̃′).

2.1. The misclassification error (ME) distance between clusterings

The confusion matrix of two clusterings C = {C1, . . . , CK} and C′ = {C′1, . . . , C′K′ } is defined as the K × K′ matrix
M = (mkk′ ) with mkk′ = |Ck ∩ C′k′ |. It can be easily shown that M = X̃>X̃′. A distance between two clusterings
is typically a permutation invariant function of the confusion matrix M. For the purpose of clustering stability, it
is sufficient to handle the case K = K′. We will make this assumption implicitly in all that follows, including the
definitions of the distances. The misclassification error (ME) distance is defined as

d(X̃, X̃′) = 1 −
1
n max

π∈ΠK

∑
k

mk,π(k).

This distance represents the well-known cost of classification, minimized over the set ΠK of all permutations of
the labels 1, . . . ,K. Although the maximization is over a set of size K!, d can be computed in polynomial time by a
maximum bipartite matching algorithm [29]. This distance is widely used, having very appealing properties as long
as X and X′ are close [21].

For weighted data, the weighted confusion matrix is Mw = (mw
kk′ ) with mw

kk′ =
∑

i∈Ck∩C′k′
wi. In matrix form we

have
Mw = X̃>diag(w)X̃,

and the weighted misclassification error is written as

dw(X̃, X̃′) = 1 −
1

Wall
max
π∈ΠK

∑
k

mw
k,π(k).

2



2.2. The K-means clustering cost

In K-means clustering, the data points z1, . . . , zn are vectors in Rd. Let Z be the n × d data matrix having zi on
row i, and A be the Gram matrix given by Ai j = z>i z j or A = ZZ>. We will assume without loss of generality that the
data are centered at the origin, i.e.,

∑
i zi = 0 or, in matrix notation 1>Z = 0. Therefore, Z and A will have rank at

most d. The squared error distortion, often called “K-means” cost function, is defined as

D(X) =

K∑
k=1

∑
i∈Ck

||zi − µk ||
2. (3)

In the above, µ1, . . . , µK are the clusters’ centers, whose coordinates in Rd are given, for all k ∈ {1, . . . ,K}, by

µk =
1
nk

∑
i∈Ck

zi. (4)

If one substitutes the expression of the centers (4) into (3), and if one represents a clustering by the orthonormal
column matrix X defined above, one can show that the distortion is a quadratic function of X [12], viz.

D(X) = tr A − tr X>AX. (5)

Furthermore, because the columns of X̃ sum to 1, the last column is determined by the other K − 1 and therefore one
can uniquely represent any clustering by a matrix with K − 1 orthonormal columns Y as follows. Let c ∈ RK be the
vector

c =

(√
n1

n
· · ·

√
nk

n
· · ·

√
nK

n

)>
(6)

with ||c|| =
√

(
∑

k nk)/n = 1. Let V be a K × K orthogonal matrix with c on its last column. It can be verified easily
that Xc = 1/

√
n. Then XV is a matrix with orthonormal columns, whose last column equals 1/

√
n, where 1 denotes

the vector of all 1s. Denote

XV =

(
Y 1

1
√

n

)
. (7)

We can now rewrite the distortion (3) in terms of the n × (K − 1) matrix Y , viz.

tr A − tr
(

Y 1
1
√

n

)>
A

(
Y 1

1
√

n

)
= tr A − tr Y>AY −

1
n

1>A1 = tr A − tr Y>AY ≡ D(Y). (8)

In the above, with a slight abuse of notation, we identify Y with X and write D(Y) for D(YV>). The last equality
holds because A1 = ZZ>1 = 0. It has been noted [12] that relaxing the integrality constraints in the above equation
results in a trace maximization problem that is solved by an eigendecomposition, viz.

D∗ = argmin
Y∈Rn×(K−1),orthogonal

D(Y) = tr A −
K−1∑
k=1

σk = D(U), (9)

where σ1, . . . , σK−1 are the K − 1 principal eigenvalues of A and U is the n × (K − 1) matrix containing the principal
eigenvectors. Hence, we have that for any clustering X represented by Y as above,D(X) ≥ D∗.

2.3. The Multiway Normalized Cut clustering cost

In graph partitioning, the data is a set of similarities S i j between pairs i, j of nodes in the set V = {1, . . . , n}. The
similarities satisfy S i j = S ji ≥ 0. The matrix S = (S i j)i, j∈V is called the similarity matrix. If we assimilate V with the
node set of a graph, in graph theory terminology S represents a weighted adjacency matrix. The weight of node i is
defined as

wi =
∑
j∈V

S i j.
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Without loss of generality, we assume that no node has weight 0. The weight of a set A ⊆ V is WA =
∑

i∈A wi.
The multiway normalized cut (NCut) clustering objective [20, 40] is

NCut(C) =

K∑
k=1

∑
k′,k

Cut(Ck,Ck′ )
WCk

,

where
Cut(A, B) =

∑
i∈A

∑
j∈B

S i j.

It is known from [19, 40] that the multiway normalized cut of a clustering C with K clusters in the weighted graph
represented by the similarity matrix S can be expressed as

NCut(C) = K − tr X>LX, (10)

where X is the normalized matrix representation of clustering C and L is the normalized similarity matrix defined as

L = diag(w)−1/2S diag(w)−1/2. (11)

By a reasoning similar to the one leading to Eq. (9), one can show [19] that for any clustering X,

NCut(X) ≥ N∗ = K −
K∑

k=1

λk attained for X = U,

where U is the n × K matrix containing the principal eigenvectors of L and λ1 ≥ · · · ≥ λn are the eigenvalues of L.

2.4. Summary of results
We now give a preview of the main results of this paper. Some of the technical conditions will be left vague here,

to be explicated later.
We assume data given in the form of a matrix A defined as in Section 2.2 for squared distortion clustering and

as in (11) for spectral clustering. In addition, for spectral clustering, the node weights w are given and for K-means
clustering the data are assumed centered, i.e., Z>1 = 0. We assume a fixed K and we denote by D∗, respectively
N∗, the spectral lower bound for the cost functionsD(X) and NCut(X), and by Xopt the (unknown) optimal clustering
according to the respective criterion.

We prove that for any K-clustering X whose cost is sufficiently low, the distance d(X, Xopt) can be bounded above
by a value that depends only on known quantities and can be computed easily. For the squared distortion D(X), we
have the following.

Imprecise version of Theorem 3 Let X be any clustering of a data set represented by the Gram matrix
A = (z>i z j)n

i, j=1. If δ = {D(X) − D∗}/ (σK−1 − σK) is sufficiently small, then d(X, Xopt) ≤ bound(δ, X),
where Xopt represents the clustering with K clusters that minimizes the distortionD on the data A.

An analog result holds in the case of the Normalized Cut cost.

Imprecise version of Corollary 1 Let X be any clustering of a data set represented by the symmetric
similarity matrix S = (S i j) with S i j ≥ 0. Let the vector of node weights be w = (wi) and let W1, . . . ,WK be
defined as in (1). If δ = {NCut(X)−N∗}/(λK −λK+1) is sufficiently small, then dw(X, Xopt) ≤ bound′(δ, X),
where Xopt represents the clustering with K clusters that minimizes the K-way Normalized Cut on the
data S .

In the above, D(X),D∗, σK−1, σK are defined as in Section 2.2 and N(X),N∗, λK+1, λK are defined as in Sec-
tion 2.3. The exact expression of the functions bound(δ, X), bound′(δ, X) and the other technical conditions for which
these inequalities hold are given in Theorem 3 and Corollary 1, respectively. Theorem 5 in Section 5 is a further
generalization that includes as special cases both Theorem 3 and Corollary 1.
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3. A clustering with small K-means distortion is close to the optimal clustering

We call good a K-clustering whose distortionD(X) is not too large compared to the lower boundD∗, i.e.,D(X)−
D∗ ≤ ε, for an ε to be determined. Let Xopt be the K-clustering of A with the smallest distortion and note that
D(X) ≥ D(Xopt) ≥ D∗. We will show that under certain conditions which can be verified on the data, if a clustering X
is good, then it is not too dissimilar from Xopt, as measured by the misclassification error distance d(X, Xopt).

This result will be proved in three steps. First, we will show that any good clustering represented by its Y matrix
is close to the (K − 1)st principal subspace U of A. Second, we show that any two good clusterings must be close to
each other under the distance d. Based on this, in the third step we obtain the desired result.

Let Y be a clustering with a corresponding c defined as in (6); Y can be written as

Y = [ U Ue ]
[

R
E

]
, (12)

where Uall = [U Ue] ∈ Rn×n is the orthogonal basis represented by the eigenvectors of A and R ∈ R(K−1)×(K−1), E ∈
R(n−K+1)×(K−1) are matrices of coefficients. Additionally, because Y,Uall are orthogonal, [R> E>]> is also orthogonal.
We show that ifD(Y) is small enough, then E is small.

Theorem 1. For any clustering Y represented like in (12), the following inequality holds:

||E||2F ≤ δ =
D(Y) −D∗

σK−1 − σK
. (13)

By || · ||F we denote the Frobenius norm of a matrix, ||M||2F = tr M>M. The proof of the theorem is given in the
Appendix.

We now show that two clusterings Y , Y ′ for which δ is small must be close to each other. First we show that a
certain function φ(X, X′) taking values in [0,K] is close to its maximum K when Y , Y ′ are both close to the subspace
spanned by U. Then, we show that when φ(X, X′) is large, the misclassification error d(X, X′) is small.

Denote by φ(X, X′) the following function, defined for any two n × K matrices with orthonormal columns:

φ(X, X′) = ||X>X′||2F . (14)

Since the Frobenius norm || · ||F of an orthogonal matrix with K columns is
√

K, we have

0 ≤ φ(X, X′) = ||X>X′||2F ≤ ||X||F ||X
′||F = K.

Lemma 1. For any two clusterings X, X′ denote by δ, respectively δ′ the corresponding values of the right-hand side
term of (13). For δ, δ′ ≤ (K − 1)/2, φ(X, X′) ≥ K − ε(δ, δ′) with

ε(δ, δ′) = 2
√
δδ′{1 − δ/(K − 1)}{1 − δ′/(K − 1)}. (15)

This lemma is proved in the Appendix.

Theorem 2 (after [23]). For two weighted clusterings with K clusters each, if φ(X, X′) ≥ K − ε, ε ≤ pmin then
dw

ME(X, X′) ≤ εpmax, where pmax = maxk Wk/Wall, pmin = mink Wk/Wall.

Note the asymmetry of this statement, which involves only the pmax, pmin values of one clustering. This is crucial
in allowing us to prove the result we have been striving for.

Theorem 3. Let X be any clustering of a data set represented by the Gram matrix A = (z>i z j)n
i, j=1, with z1 + · · ·+zn = 0.

Let pmax = maxk nk/n, pmin = mink nk/n, let δ be given by (13) and ε by (15). If δ ≤ (K − 1)/2 and ε(δ, δ) ≤ pmin, then
d(X, Xopt) ≤ ε(δ, δ)pmax, where Xopt represents the clustering with K clusters that minimizes the distortion D on the
data A.
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Proof. We know thatD(Yopt) ≤ D(Y) and hence ||Eopt||2F ≤ δ from Theorem 1. By applying Lemma 1 and Theorem 2
we obtain the desired result. �

A few remarks are in order. First, the bound δ in Theorem 1 is necessary only for the unknown clustering Xopt;
for a known clustering, one can directly compute ||E||2F and therefore obtain a tighter bound. We have followed this
route in the experiments of Sections 7 and 8. Second, Theorem 3 implies that d(X, Xopt) ≤ pmin pmax ≤ pmin. Hence,
for pmax not too large, the bound is informative, guaranteeing that all clusters in Copt have been identified. It should
be also noted that the condition ε ≤ pmin in Theorem 2 is only sufficient, not necessary.

4. Extension to weighted data and the Normalized Cut cost

Extending Theorem 3 to weighted and kernel-based distortion functions is immediate. Assume that the data points
are weighted with weights w = (w1, . . . ,wn). The weighted distortion is defined as

Dw(C) = min
µ1,...,µK∈Rd

∑
k

∑
i∈Ck

wi||zi − µk ||
2. (16)

It can be easily checked that the centroids µ1, . . . , µK that minimize the above expression for Z and C fixed are the
weighted means of the data in each cluster. That is, for all k ∈ {1, . . . ,K},

µk =
∑
i∈Ck

wizi/Wk.

By replacing the above values in (16) we obtain after some calculations

Dw(C) = tr A − tr X>AX, (17)

with X defined as in (2) and
A = diag(

√
w)ZZ>diag(

√
w). (18)

An important application of Theorem 2 for weighted data is to the problem of graph partitioning with the Normal-
ized Cut cost.

By comparing the quadratic representation of the NCut criterion (10)–(11) and of the weighted distortion (17)–
(18), one can see that the normalized cut of any clustering X in S equals (up to a constant) the weighted distortion
D(X) of the same clustering for a mapping of the graph nodes i ∈ {1, . . . , n} into d-dimensional vectors z1, . . . , zn; this
fact was noted by [2] and used by [11] for the special case S positive definite. To find the mapping we set A = L and
obtain

Z = diag(w)−1
√

S (19)

In the above, the
√

S is the matrix square root of S , which is real if S is non-negative definite and complex
otherwise. The matrix square root

√
S satisfies

√
S
√

S ∗ = S , where M∗ denotes the transpose complex conjugate of
the matrix M. With the mapping Z as in (19), we have, for all X,

NCut(X) = Dw(X) − tr L + K.

Because for any clustering NCut(X) differs fromD(X) by a constant independent of X, we can use Theorem 2 in order
to obtain an analog for partititions in a graph that are “good” under the NCut criterion.

A necessary preparation for this is “centering” the data Z, as the matrix A in Theorem 3 is assumed to be obtained
from centered data. In the following lemma we show how to evaluate directly the effect of centering on the eigenvalues
and eigenvectors of L. We start with some notation. Let Z be the embedding of the graph nodes according to (19).
Let Z0 = Z − 1m> denote the embedded points shifted by the vector m, so that Z>0 w = 0. That is, Z0 represents the
centered data. Let L0 be the “centered L” matrix, i.e., the matrix obtained by applying the right-hand side of (18) to
Z0. Note that although Z,m,Z0 may be complex, L, L0 are always real and symmetric matrices.

Lemma 2. Let n,w, L, L0 be defined as above. Let λ1 = 1 ≥ · · · ≥ λn be the eigenvalues of L and u1, . . . , un be the
corresponding eigenvectors. Then
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(i) L0 = (I − B)L(I − B) where the matrix B =
√

w
√

w>/Wall represents the projection onto the direction
√

w.

(ii) The eigenvalues and eigenvectors of L0 are

λ0
j =

{
0 if j = 1,
λ j if j > 1, u0

j = u j for all j

(iii) Let X be a clustering and Y be an orthogonal n × (K − 1) matrix satisfying XV = [ u1 Y] for V an orthogonal
matrix; this decomposition is not possible in general, but it can be verified that it is always possible when X
represents a clustering. Then

tr L = tr L0 + 1, (20)

tr X>LX = tr Y>L0Y + 1, (21)

and
D(X) = tr L0 − tr Y>L0Y . (22)

We can now apply Theorem 1 to the distortion expressed as in (22). If we take into account Lemma 2 and we
assume in addition that

λK+1 ≥ 0, (23)

we obtain

δ =
λ2 + · · · + λK − tr Y>L0Y

λK − λK+1
=

1 + λ2 + · · · + λK − tr X>LX
λK − λK+1

. (24)

Assumption (23) is often verified in practice. If it is true, then the K − 1 largest eigenvalues of L0 are λ2, . . . , λK and
its (K − 1)st eigengap is λK − λK+1. If (23) does not hold, then the modification of the bound in Eq. (24) is immediate.

With this, we have succeeded in bounding the distance of a clustering with small NCut to the optimal clustering
possible for data S .

Corollary 1. Let X be any clustering of a data set represented by the symmetric similarity matrix S = (S i j) with
S i j ≥ 0. Let the vector of node degrees be w = (wi) with wi > 0, W1, . . . ,WK be defined as in (1), pmax = maxk Wk/Wall,
pmin = mink Wk/Wall; let δ be given by (24) and ε by (15). Assume λK+1 ≥ 0, where λK+1 is the (K + 1)st eigenvalue
of L = diag(w)−1/2S diag(w)−1/2. Then, if δ ≤ (K − 1)/2 and ε(δ, δ) ≤ pmin, we have dw(X, Xopt) ≤ ε(δ, δ)pmax, where
Xopt represents the clustering with K clusters that minimizes the K-way Normalized Cut on the data S .

We now compare this bound with the previously obtained bound of [25], which we reproduce here.

Theorem 4 (after [25], Theorem 1). Let C,C′ be two K-way clusterings of the weighted graph represented by the
similarity matrix S , let δ, δ′, λ1, . . . , λK+1 be defined as in Corollary 1 and let the function φ(X, X′) be defined by (14).
Then, whenever δ ≤ 1, φ(X, X′) ≥ K − εold(δ, δ′) with εold(δ, δ′) = 2

√
δδ′(1 − δ)(K − δ′) + Kδ + δ′ − 2δδ′.

There are some slight differences in the requirements of the above theorem versus Corollary 1. The expression
for εold is defined only for δ ≤ 1, a more restrictive requirement than δ ≤ (K − 1)/2 in the definition of ε. In contrast,
assumption (23) is not necessary. We remind the reader that assumption (23) is a simplifying assumption which allows
one to compute δ according to the same formula in all cases. If this assumption is not satisfied, our main results will
not be invalidated. Merely, the equation of δ will be changed in a way in which the comparison between the old and
new criterion will be less straightforward. More interesting is the comparison between the bounds given by the two
criteria. This is the object of the next lemma.

Lemma 3. εold(δ, δ) ≥ Kε(δ, δ)/2 for all δ ≤ 1.

Hence, the new bound improves the result of [25].
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5. General quadratic cost function

Theorem 5. Let Dw be any clustering cost function that can be expressed in the form Dw(X) = C0 − tr X>A0X,
where X is a (weighted) clustering defined as in (2), and C0 ∈ R, A0 ∈ Rn×n symmetric depend only on the data
and on the data weights w = (wi) with wi > 0. Define Wall =

∑
i wi, W1, . . . ,WK as in (1), pmax = maxk Wk/Wall,

pmin = mink Wk/Wall.

(i) Let B =
√

w
√

w>/Wall and A = (I − B)A0(I − B). Then, for any clustering X, A
√

w = 0 and Dw(X) =

C − tr X>AX with C a constant independent of X.

(ii) D∗ = C −
∑K−1

k=1 σk(A) is a lower bound forDw(X).

(iii) Let δ be given by (13) and ε by (15). Then, if δ ≤ (K − 1)/2 and ε(δ, δ) ≤ pmin, we have dw(X, Xopt) ≤ ε(δ, δ)pmax,
where Xopt represents the clustering with K clusters that minimizes the costDw for the given data and weights.

In this form, our result encompasses the K-means distortion and the NCut as well as several other clustering cost
functions. The most notable are the kernel K-means distortion and various graph partitioning criteria like for example
the Average Cut [33].

For the Average Cut, we have w = 1/n and Dw(X) = −tr X>S X, where S is the graph similarity matrix defined
in Section 2.3. In kernel K-means (see [32] for details) the data points zi are mapped in a high-, possibly infinite-
dimensional Hilbert spaceH called the feature space by

zi
h
−→ hi = h(zi).

The dot product inH between two feature vectors hi, h j can be pulled back in the original zi, z j by the Mercer kernel
κ(zi, z j) = h>i h j. The Gram matrix A0 is redefined to be

A0 = [κ(zi, z j)]n
i, j=1. (25)

The kernel K-means clustering cost function is the distortion with respect toH . It is easy to see that with A0 defined
as in (25) the distortion takes the same form as in Theorem 5.

In all cases presented in this paper, computing the bounds ε, δ requires computing the principal K or K + 1
eigenvalues of a symmetric n × n matrix. This operation is of order n2K, hence obtaining the bounds is tractable
whenever spectral clustering is tractable for a data set.

6. Existing work on model-free guarantees for clustering

This paper expands and strengthtens earlier work by the author in [22, 25]. For K-means clustering, Ostrovsky
et al. [28] give an algorithm with verifyable model-free guarantees. However, the conditions become too restrictive
when K > 2, e.g., they do not hold on the data in Figures 1–2. We are not aware of other model-free guarantees for
clustering by K-means.

In the area of graph partitioning this problem has been studied more. Wan and Meilă [39] gave model-free
guarantees for community detection in networks. They considered two classes of models, the Stochastic Block Model
and the more general Preference Frame Model [38] and for each, they derived spectral bounds.

We also mention [6], which guarantees approximate and tractable recovery assuming A is close to a DC-SBM.
The assumptions are testable given a clustering C. This result is one of many in the clustering literature which present
tractable algorithms to find a good C, under the assumption that one with specified “robustness” exists. We will
discuss this area of research below, as well as in Section 9.2.

Spectral graph partitioning is the area with most model-free guarantees. In the paper of Peng et al. [30], Theo-
rem 1.2 states that if the K-way Cheeger constant of the graph is ρ(K) ≥ λK+1(L)/(cK3), then the Spectral Clustering
algorithm outputs C with dw(C,Copt) ≤ C/c with C = 2 × 105, c ∼ 1/K3. Since the distance dw cannot exceed 1,
while the right-hand side C/c � 1, this bound is too loose to be informative. In [4, 27], guarantees are given when
the matrix A is nearly block diagonal. The conditions in these papers are extremely restrictive in their applicability.
This was studied by Wan and Meilă [37], who generated a set of weighted graphs on which spectral clustering could
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Figure 1: A mixture of three normal distributions in d = 35 dimensions, with fixed centers and equal covariances σ2Id , σ = 0.4, projected on its
second principal subspace. The true mixture labels are shown in different colors.

recover the original clustering. Then, it was verified whether the guarantees of [4, 27] applied to these data; the ex-
periments of [37] extended to several other recovery theorems for clustering in graphs. The outcome was uniformly
negative: guarantees could not be obtained in even a single of the cases tested. In the experiments of Section 7.2, we
show that with Corollary 1 we can obtain very tight bounds on the same examples.

Other significant results in graph partitioning by cuts. The work of Lee et al. [17] establishes a relationship
between the kth Cheeger constant of a graph and the eigenvalues of the Laplacian of the graph. The aforementioned
Cheeger constant is equal to the NCut whenever no cluster is larger than half the total weight WV . Of interest to the
present work is Theorem 4.10, which relates the existence of good r-way partitioning, where r ≥ K − 3Kδ, to a large
eigengap. More precisely, if λK+Kδ/λK > c(ln K)2/δ9 then the above partition is “better” than λK/δ

3 × c′ (for c, c′

unspecified). While these results are remarkable for their generality, the previous theorem requires extremely large
λK+Kδ/λK to produce non-trivial bounds, no matter what c, c′ are.

7. Experiments

7.1. Experiments with the K-means distortion

Worst-case bounds are notoriously lax; therefore, we conducted experiments in order to check that the bounds in
this paper ever apply. In the experiments illustrated by Figure 2, we generated data from a mixture of spherical normal
distributions, clustered them with the K-means algorithm (with multiple initializations), then evaluated the bound and
the other related quantities. The spread of the clusters, controlled by the standard deviation σ, varied from σ = 0.05
(very well separated) to σ = 0.4 (clusters touching). The centroids are fixed inside the [0, 1]d hypercube. In all cases
we confirmed by visual inspection that K-means found a (nearly) optimal clustering. Therefore, the true d(X, Xopt)
is practically identical 0. The bound worsens with the increase of σ, as expected, from 0.004 to 0.22. Up to values
of σ = 0.3, however, the bound is lower than pmin/2. This confirms qualitatively that we have found a “correct”
clustering, in the sense that the total number of misclustered points is a fraction of the smallest cluster size.

The values of ε are plotted to verify that Corollary 3 applies. For the two largest values of σ, ε is outside the
admissible domain, so the bound is not provably correct.

The lines with no markers display the quantity ||E||2F for the found clustering (with E defined in Section 3) and
its upper bound δ from (13). We see that the quality of this bound in absolute value also degrades with increasing σ;
however, the ratio δ/||E||2F is approximatively constant around 1.4. This occurred uniformly over all our experiments
with mixtures of Gaussians.

A comparison between Figure 2a and 2b shows that there is practically no variation due to the data set size, except
for a slight improvement for larger n. This is consistent with the theory and with all our other experiments so far.
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a b

Figure 2: The bound used as a certificate of correctness. The data represent a mixture of three normal distributions in d = 35 dimensions, with
fixed centers and equal covariances σ2Id; these data are depicted in Figure 1 for σ = 0.4. The clustering X represents the K-means solution. In (a),
the bound and the values of pmin, ε, ||E||2F , δ for X are evaluated at different values of σ; the data set has size n = 1000. In (b) the same are plotted
for n = 100.

Figure 3 shows a different experiment. Here the optimal clustering X is perturbed randomly into X′; we assume X
to be represented by the true labels, which is extremely plausible as the clusters are well separated. We evaluate the
true misclassification error d(X, X′) and its bound, together with other relevant quantities for K ∈ {3, 4}, each with a
uniform and a non-uniform clustering. Note that the bound becomes looser when d(X′, Xopt) and K increase, or when
pmin decreases. For instance, in Figure 3d, more than half of the clusterings have invalid bounds. Hence, the figures
demonstrate both the informativeness of the bounds and the limitations of their applicability.

The degradation with decreasing pmin is completely expected, based for example on the condition ε ≤ pmin in
Theorem 2. This behavior also agrees with the common wisdom that small clusters in the data make clustering more
difficult practically (higher chance of missing a cluster) and harder to analyze theoretically. In our framework, we can
say that small clusters in the data reduce the confidence that a clustering X is optimal, even when it is so.

7.2. Experiments with the Normalized Cut cost

In the first set of experiments, the data consist of symmetric, non-negative similarity matrices S of dimension
n = 3000 with entries in [0, 1]. These matrices were used in [37], which compared experimentally the existing
theoretical conditions in [4, 27]. They were generated in a way that guaranteed that they would have an optimal
clustering Copt easy to find by the Spectral Clustering algorithm, e.g., the matrices in Figure 4a, c. Then the conditions
required in [4, 27] were computed for these data. The aforementioned conditions are provably sufficient to guarantee
that the Spectral Clustering algorithm will find an almost optimal C. The question posed by the experiment was
whether these conditions are also (close to being) necessary. In other words, if we generate cases where Spectral
Clustering works well but the aforementioned theorems do not hold, it means that the state of knowledge in the area
as a whole is far from understanding what is possible. This is what [37] showed: none of the theorems of [4, 27]
covered any of the test cases.

We applied Corollary 1 to the S matrices used in [37] for n = 3000. These were matrices with K = 5 clusters,
where the eigengaps varied between 0.99 (almost block diagonal matrix) and 0.02, the cluster sizes were either equal
or unequal (see Figure 4) and the degree distribution in each cluster varied from uniform to highly non-uniform (as
in Figure 4). In all 3 × 2 × 3 cases, the bound from Corollary 1 was below 10−3, and much smaller than 0.1 ≈ pmin.
Hence, even though the conditions in this paper are sufficient but not necessary, they represent a major improvement
over the state of the art.

Next, two of the matrices S from [37] were further perturbed by zero-mean uniform iid noise in each entry, where
the noise amplitude s varied between 0.01 and 0.04, ensuring that no weigth becomes negative. The case s = 0
corresponds to the original data from [37]. The results of this experiment are depicted in Figure 4. Note that in the
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a K = 3, σ = 0.1, perr = 3%, pmin ≈ 0.32 b K = 3, σ = 0.1, perr = 0.5%, pmin ≈ 0.15
||µk − µk′ || ∈ [2.3, 2.5] ||µk − µk′ || ∈ [2.2, 2.3]

c K = 4, σ = 0.1, perr = 1%, pmin ≈ 0.22 d K = 4, σ = 0.03, perr = 1%, pmin ≈ 0.15
||µk − µk′ || ∈ [2.0, 2.2] ||µk − µk′ || ≈ 1.4

Figure 3: The data represent a mixture of K normal distributions in d = 25 dimensions, with fixed centers and equal covariances σ2Id; X represents
the true mixture labels, which can be assumed to be the optimal clustering for these data. We construct X′ by perturbing the labels of X randomly
with probability perr. The figure displays the value of d(X, X′) and the values for the bound, ε and pmin for 20 randomly sampled X′s; n = 800 in
all cases.
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a b

c d

Figure 4: Certificates of correctness for spectral clustering of a weighted graph. The data (a) represent a similarity matrix S with elements in [0, 1],
which were further perturbed by symmetric, zero-mean uniform iid noise with amplitude 0.04; for better contrast, the plot displays

√
S i j instead

of S i j. In (b), the bound and the values of pmin, ε, ||E||2F , and δ are evaluated at different values of the noise amplitude; the plot shows mean and
standard deviations over five replications. The data set has size n = 3000. In (c) and (d) the experiment is repeated with an easier, almost block
diagonal, S matrix.
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a b

Figure 5: Certificates of correctness for labeling the data from molecular dynamics simulations of the system described by Eq. (26). The data
in (a) represent one simulation trajectory at 1200 Kelvin, containing n = 23,566 points. The preprocessed data are 12-dimensional, and they are
displayed here in the plane of the first two principal components. The centroids obtained after K-means clustering with K = 2 are also displayed. In
(b), the bound and the values of pmin, ε, ||E||2F , δ for the obtained clustering are evaluated at different values of the noise amplitude; the plot shows
mean and standard deviations over the 16 trajectories simulated at each temperature.

right panels, the values are computed on the weighted data points, as described in Section 4. Hence, although the
smallest cluster contains 10% of the data points (n1 = 300 points), when the points are weighted by their degree,
the mass pmin amounts to only 5% (respectively 2%) of the total. The first of the matrices, depicted in Figure 4a,
is very far from being block diagonal. In fact, for the second largest cluster in this weighted graph, the intra-cluster
connections have less weight than the connections with nodes outside the cluster. Yet, a good clustering exists in this
S and Corollary 1 is able to guarantee its uniqueness. The second matrix, in Figure 4c, is a nearly block diagonal
matrix. It is included because the other existing guarantees for Spectral Clustering are taylored to this type of matrices.

8. An experiment on molecular simulation data

In Figure 5, Theorem 3 is used to obtain guarantees for chemical simulation data. The data are obtained from a
molecular dynamics simulation [13] of the reversible reaction

CH3C` + C`− ↔ CH3C` + C`−,

in which one of the chlorine (C`) atoms replaces the other in the methilchloride molecule. The simulation output
represents a sequence of x, y, z spatial locations of the six atoms involved in the reaction at consecutive time steps
during the simulation. When a chlorine atom binds to the methil (CH3) group, the energy of the system is lower; in
the sequence of configurations in which the reaction takes place, and both chlorine atoms are dissociated, the energy of
the system is higher, hence fewer configurations will be present in these regions. Therefore, molecular simulations of a
chemical reaction will exhibit clusters, whose sizes will be roughly dependent on the potential energy of the respective
energy wells. In this reaction, due to symmetry, the cluster sizes will be approximately equal if the simulation is long
enough to allow several transitions from one cluster to the other, which is the case in our data. The density between
the two clusters will depend on the absolute temperature T of the system, with lower density at lower temperatures.
Our data, available at https://www.stat.washington.edu/spectral/data/MDsimulations2017/, consist of
16 simulated trajectories at each of the four temperatures T ∈ {600, 900, 1050, 1200} degrees Kelvin. The length of
the trajectories varies around n = 6250 in the 600K simulations, and around n = 23,400 in the other simulations.

Because the energy of the molecule depends only on the relative positions of the atoms, the original 6 × 3 = 18
dimensions are reduced to 12 degrees of freedom in the following way. First, all the plane angles within the molecule
are computed, for a total of

(
6
3

)
= 20 angles. Then, the linear relationships between these are eliminated by Principal
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Component Analysis, keeping up to 12 components, or enough to reduce the residual variance to 10−4. With the
present data, the resulting dimension was always 12. These data are now clustered by K-means with K = 2. Figure 5
shows that the data distribution in each cluster is non-Gaussian, non-symmetric around the centroids, and heavy-tailed.

The purpose of clustering is to label the data by energy well; this in turn allows chemists to filter out the states
around the transitions. They form a very small fraction of the data; their study enables chemists to understand the
conditions under which the reaction occurs. Currently, the labeling is done by ad hoc algorithms. Having guarantees
of (almost) correctness for the grouping, such as those in Figure 5 saves the time needed to validate the clustering by
human inspection.

9. Discussion

This paper proves that if (i) the data are well clustered and (ii) by some algorithm a good clustering X is found,
then we can bound the distance between X and the unknown optimal clustering Xopt of this data set. Hence, it provides
a user with a certificate that the clustering X at hand is almost optimal.

In the present context, “well clustered” means that the affine subspace determined by the centroids µ1, . . . , µK is
parallel to the K − 1 principal components of the data Z. The matrix A = ZZ> and the data covariance matrix have the
same non-zero eigenvalues up to a factor n; U is the projection of the data on the principal subspace. In other words,
the first K − 1 principal components of the variance are mainly due to the inter-cluster variability. This in turn implies
that the bound will not exist (or will not be useful) when the centroids span an affine subspace of lower dimension
than K − 1. For example, if µ1, . . . , µK with K > 2 are along a line, no matter how well separated the clusters are, then
the vectors U will give only partial information on the optimal clustering. Practically, this means that “well separated”
refers not just to the distances between the clusters, but to the volume (of the polyhedron) spanned by them, which
should be as large as possible.

By the same geometric view, a “good clustering” is one whose Y representation lies close to the principal subspace
U. This is implied in much of the prior work, e.g., [2, 11, 12, 20, 27, 40]. This paper adds that all the clusterings that
are near U must be very similar.

From the perspective of the functionD(X), we have shown quantitatively that if the data are well clustered,D(X)
has a unique “deep crater”. When points are moved to other clusters with respect to Xopt, the distortion grows fast
because the clusters are far apart. Conversely, if the distortion is small, it means that we cannot be elsewhere than near
Xopt. “Small” is measured as deviation from the lower boundD∗ in σK−1 − σK units.

9.1. Related work: Probably correct algorithms for mixtures
While Section 6 discusses the existing model-free guarantees for clustering, here we describe work under a dif-

ferent paradigm, and mainly published in theoretical computer science. This work is concerned with guarantees for
clustering under the assumptions that the data are sampled from a finite mixture model.

This area was pioneered by [10] who presented an algorithm that estimates Gaussian mixtures with sufficiently
“rounded” and separated clusters by projecting the data on a random subspace of dimension O(k). The paper of
Vempala and Wang [36] shows that by projecting a mixture of spherical Gaussians on the (K − 1)st principal subspace
of the data instead of a random subspace, the mixture components (clusters) can be identified at lower separations.
More sophisticated use of the spectral projection by [1, 15] results in algorithms for mixtures of general log-concave
distributions with arbitrary covariance matrices working at lower separations.

While technically our results do not rely on the above mentioned papers, it is instructive to look at both the similar-
ities and the differences between the two classes of results. The papers in this section offer polynomial algorithms for
clustering, plus guarantees that the output will be correct with high probability. More precisely, these papers contain
theorems saying that under certain separation conditions, with sufficiently large sample sizes, and with probability at
least δ, the clustering returned by the proposed algorithm will correspond to the true mixture labels. There is a subtle
difference here, as the “true clustering” (let us denote it by Xtrue) is not always the same as the maximum likelihood
clustering Xopt. However, the two clusterings are the same with high probability which means that the aforementioned
algorithms guarantee d(X, Xopt) = 0 with high probability. Hence, the “computer science” techniques give stronger
theoretical guarantees and provide algorithms. These guarantees rely on strong assumptions about the data distribu-
tion, in particular knowledge of the shape of the clusters (Gaussian or log-normal, sometimes spherical symmetry) and
of the cluster separation. The proofs use concentration results (e.g., Chernoff bounds) for these distribution classes.
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Our paper’s results rely on much weaker assumptions. We make no (explicit) assumptions about the sample size,
nor about the distribution of the data inside each cluster. Hence our results are worst-case results and necessarily the
weakest possible. We make only one explicit assumption, namely that a clustering with low cost exists, where “low”
is measured in δ units. Finding distributions and sample size when this condition is met is one of the areas that this
research is opening. We do not explicitly offer an algorithm, but one can think of the spectral algorithm of [12] or
of the variant of EM with PC projection used by Srebro et al. [34] as associated algorithms. Alternatively, one can
use our results after algorithms such as that in [36] as a certificate of correctness for the found clustering. This would
allow such algorithms to be run with a lower confidence parameter, i.e., a larger δ.

Beyond the differences in posing the problem, there is also a fundamental similarity between our paper and the
spectral embedding methods of [1, 15] and especially of [36] that we discuss now. A crucial fact proved in [36]
is that for a sufficiently large n and for well separated clusters, the Kth principal subspace of the data and the K
dimensional subspace determined by the cluster centroids are close. Hence, the Kth principal subspace of the data
contains information about the best clustering. Our result exploits the same fact, as Theorem 3 holding implicitly
means that all good clusterings, when represented as subspaces, are close to the (K − 1)st principal subspace of the
data (the difference of 1 in the dimensions comes from centering the data). Hence, both groups of results rely on the
informativity of the principal subspace with respect to a salient clustering in the data. In [1], the same fact is exploited,
albeit in a slightly different way: even if the clusters are not isotropic (e.g., ellipsoidal instead of spherical) there is
a separation at which the principal subspace will coincide with the subspace spanned by the cluster centers. The
algorithm presented in [1] is based on the distance preserving property of the projection on the principal subspace.

We also mention the results of Balakrishnan et al. [3], who analyzed the fixed points of the EM algorithm for
models with hidden variables, and their basins of attraction, giving sufficient conditions for the basin to have radius R
in parameter space.

One can also draw an analogy between our result and the VC type bounds for structural risk minimization (SRM);
see [35]. These are distribution-free worst-case bounds for the expected risk of a learned model on a data set. They
depend on the empirical risk (i.e., the observed error rate) and on the complexity of the learned model. The bound
is looser if either of the two components is higher. Similarly, Theorem 3 gives a bound on the error of an obtained
clustering with respect to the best possible clustering of the same data set. The bound is worst-case and distribution-
free, and depends on the observed distortion; it also depends on 1/eigengap(A) and increases when either component
increases. It is known that the (K − 1)st eigengap of a matrix measures the stability of its (K − 1)st principal subspace
to perturbations. Thus, its inverse can be regarded as the analog of a “complexity” measure. There are also obvious
differences: while in SRM the bound is for the expected error over unseen samples from the same distribution, in our
case the sample is fixed. Our bound is not a generalization bound. The SRM bounds are sometimes greater than 1;
here the bound doesn’t always exist but is always informative when it does.

9.2. Related stability results

As mentioned before, Theorem 2 is a stability result. Here we discuss stability results of a different type, i.e.,
under a different paradigm, that have been obtained in the literature.

For spectral clustering with the Normalized Cut cost, Ben-David et al. [7] build on previous work by von Luxburg
et al. [18] and Rakhlin and Caponnetto [31]. We briefly summarize [7]. This paper is concerned with algorithmic
stability; i.e., can we bound the clustering algorithm’s output variability that is due to sampling noise? If the variability
tends to 0 when the sample size tends to infinity, then the algorithm is stable. The paper establishes general conditions
for the stability of an algorithm A when data are sampled according to P, the clustering cost function is DP(C) and
the clusterings are compared with some distance d. These are that (i) P has a unique minimizer, and (ii) the algorithm
A is R-minimizing.

The second condition essentially means that algorithm A is an ε-optimizer of the cost R for any finite sample.
The first condition states that any low DP clustering is similar to the optimal clustering on the given probability
space. In other words, the present paper proves the necessary prerequisites for the main theorem in [7] to hold. The
previous statement can be made more precise: our Theorem 5 proves that for a quadratic cost, under certain verifiable
conditions, a distribution P with finite support has a unique minimizer, while the definition in [7] refers to general
probability spaces. To bridge the gap, it remains to take the limit n → ∞ in Theorem 5. We regard this as possibly
subject to some distributional assumptions about the data, but as beyond the scope of the present paper.
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One can think of [7] as proving that if in the limit of n → ∞ all almost optimal clusterings are similar, and if one
has an algorithm A which always produces an almost optimal clustering with respect to the cost, then the output of
algorithmA on a large finite sample will not vary much with the sample.

Our paper makes no general assumption about the clustering algorithm. It only assumes that it was capable once
to find a low cost clustering, where “low cost” means low enough for ε ≤ pmin. From this it follows that on the current
data set, all low cost clusterings are similar.

In the literature, a data set that is well clustered is often called clusterable, and various definitions of clusterability
have been proposed. The data properties we analyze here, namely admitting a good clustering (as in the conditions
of Theorems 2 as well as 5), and the uniqueness (up to perturbations) of such a good clustering, can be considered as
ways to define clusterability. The latter notion of clusterability was used under the name “uniqueness of optimum”
in [5, 26]. An alternative popular notion of clusterability is that of (weak) perturbation resilience introduced in [8].
In [5, 26] it is shown that if a data set contains a clustering satisfying Theorem 2 then this clustering is weakly
perturbation resilient. Hence, the theorems in this paper are the first tractable way to prove any form of perturbation
resilience.

9.3. An alternative distance between clusterings
The function φ(X, X′), defined by (14), and used as an intermediary vehicle for the proof of Theorem 3, can in

fact represent a distance in its own right. Denote d2
χ(X, X′) = 1 − φ(X, X′)/min(K,K′). This function is 0 when the

clusterings are identical and 1 when they are independent as random variables. It has been introduced by Hubert and
Arabie [14] and is closely related to the χ2 distance between two distributions [16]. Another possible advantage of
this distance, at least for theoretical analysis, is that it is a quadratic function in each of its arguments. From Lemma 1
we have that d2

χ(X, X′) ≤ ε(δ, δ′)/K whenever δ, δ′ ≤ (K − 1)/2. This bound is tighter than the one in the subsequent
theorem by virtue of making fewer approximations. Moreover, because the condition on ε is no longer necessary, it
also holds for a much broader set of conditions (e.g., larger perturbations away from the optimum) than the bound
for d. Remembering also that the misclassification error has been criticized for becoming coarser as the clusterings
become more dissimilar, we suggest that paying attention to the χ2 distance will prove fruitful in theoretical and
practical applications alike.

9.4. Regimes in clustering data
Let us return to the idea expressed in the introduction, of the existence of two regimes, “hard” and “easy” for

the K-means optimization problem. The experimental work by Srebro et al. [34] show experimental evidence for
the existence of at least three regimes in clustering: the “hard” one where no clustering is known to be significantly
better than the others, the “easy” one where clustering algorithms successfully find what is believed to be the best
clustering, and an “interesting” regime where clustering algorithm do not seem to work well at minimizing the cost
(the cost function in [34] is only slightly different from the quadratic distortion D), but a good clustering may exist.
The “easy” regime delimited empirically in [34] contains realistic, non-trivial data sets, and extends well beyond the
current theoretical results for clustering with mixtures.

Our theoretical and experimental results suggest that the “easy” regime, the one where a good clustering can
be found, may in turn contain two zones: the high-confidence one, where we can not only find a good clustering
(in polynomial time), but we can also prove that we did so; outside this zone lies the low-confidence zone, where
algorithms still find the optimal clustering with high probability, but we cannot prove that they did. Fortunately, as the
experiments in Sections 7–8 demonstrate, the easy and high-confidence regime extends to realistic data and covers
practically relevant applications.
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Appendix

Proof of Theorem 1. Using Eq. (8), the notation of (12) and Σ = diag(σ1, . . . , σK−1), Σe = diag(σK , . . . , σn) we
have that

D(Y) −D∗ = tr Σ − tr (R>ΣR + E>ΣeE).

We now construct the matrix

A0 = Uall
[

Σ

σIn−K+1

]
Uall,

with σ ∈ (σK−1, σK). If we replace A with A0 in (9), the solution, which depends only on the first K − 1 eigenval-
ues/vectors of A, remains unchanged. Hence, we have

U>A0U − Y>A0Y = tr Σ − tr (R>ΣR + σE>E) ≤ 0.

Subtracting now (9.4) from (.1) we obtain

D(Y) −D∗ ≥ tr (R>ΣR + σE>E) − tr (R>ΣR + E>ΣeE) = tr E>(σI − Σe)E

≥ tr E>(σI − σK I)E = (σ − σK)||E||2F . (A.1)

The last inequality holds because σI − Σe � (σ − σK)I � 0 for all σ in the chosen interval. Now, by taking the limit
σ→ σK−1 in (A.1) we obtain

D(Y) −D∗ ≥ (σK−1 − σK)||E||2F .

From the above, whenever σK − σK−1 is nonzero, we obtain the desired result. �

Proof of Lemma 1. Note first that since A1 = 0 we have 1 ⊥ U and therefore its normalized version n−1/21 = Ueq,
where q ∈ Rn−K+1 is a length-1 vector of coefficients. Let X be a clustering, and c,V,Y be the same as in Eqs. (6)–(7).
Denote by V− the first K − 1 columns of V . We can write X as

X = YV>− + n−1/21c> = URV>− + UeEV>− + Ueqc> = URV>− + Ue(EV>− + qc>).

For a second clustering X′, we define V ′,V ′−, c
′,R′, E′ similarly and have

X′ = UR′(V ′−)> + Ue{E′(V ′−)> + q(c′)>}.

We now compute directly X>X′ and then (X>X′)(X>X′), remembering that U,Ue and [V− c] [V ′− c′] represent pairs of
orthogonal subspaces. After all the cancellations, we obtain the following formula for φ(X, X′) = tr (X>X′)(X>X′) =

||X>X′||2:

tr (X>X′)(X>X′) = K − 1 + 2tr V ′−R′>RE>(q(c′)> + E′V ′−) + tr (EE> + qq>)(E′E′> + qq>)
= K − 1 + 2tr R′>RE>E′ + tr (EE>E′E′>) + q>E>Eq + q>E′>E′q + qq>

= K − 1 + 2tr (RE>)(E′R′>) + tr (EE>E′E′>) + 0 + 0 + 1 (A.2)

To see that E>q = E′>q = 0 recall that [R> E>]> and [0 q] are the coefficients of Y and 1, respectively, in the basis
Uall. As 1 ⊥ Y it must hold that [0 q] ⊥ [R> E>]>, which implies E>q = 0.

We now try to bound (A.2) from below. We bound from below the last term tr (EE>E′E′>) by 0. The middle term
tr (RE>)(E′R′>) requires more work:

|tr (RE>)(E′R′>)| = | < ER>, E′R′> >F | ≤ ||ER>||F ||E′R′>||F .

Furthermore,

||ER>||2F = tr RE>ER> = tr E>ER>R = tr E>E(I − E>E) = tr E>E − tr E>EE>E ≤ ||E||2F −
1

K − 1
||E||4F . (A.3)

The last inequality follows from Lemma 4 stated below.
Now, because the function x{1 − x/(K − 1)} increases on [0, (K − 1)/2], we can combine (A.3) with ||E||2F ≤

δ, ||E′||2F ≤ δ
′ and with (A.2) to obtain that ||X>X′||2 ≥ K − 2

√
δ{1 − δ/(K − 1)}δ′{1 − δ′/(K − 1)}. �

17



Lemma 4. For any matrix A ∈ Rm×m, ||A>A||F ≥ ||A||2/m.

The proof is left to the reader.

Proof of Lemma 2. Part (i): Let m be the centroid of the data, m =
∑

i wizi/Wall ∈ Cd. Then, the centered data points
z0

i can be expressed as z0
i = zi − m, or, in matrix notation Z0 = Z − 1m> = (I − 1w>/Wall)Z. It can easily be verified

that Z0w = 0. Hence,

L0 = diag(
√

w)Z0Z∗0diag(
√

w) (from (18))

= diag(
√

w)(I − 1w>/Wall)ZZ∗(I − 1w>/Wall)>diag(
√

w)

= diag(
√

w)(I − 1w>/Wall)diag(w)−1
√

S
√

S ∗diag(w)−1

× (I − 1w>/Wall)>diag(
√

w) (from (19))

= diag(
√

w)(I − 1w>/Wall)diag(
√

w)−1 diag(
√

w)−1S diag(
√

w)−1︸                           ︷︷                           ︸
L

× diag(
√

w)−1(I − 1w>/Wall)>diag(
√

w)

= (I −
√

w
√

w>/Wall)L(I −
√

w
√

w>/Wall)>

= (I − B)L(I − B) (A.4)

Part (ii): The matrix B above is symmetric, idempotent (i.e., B2 = BB> = B) and satisfies

B
√

w =
√

w, (A.5)

Bu = 0 for all u ⊥
√

w, (A.6)

L is a symmetric real matrix, hence it has real eigenvalues λ1 ≥ · · · ≥ λn and real, orthogonal eigenvectors u1, . . . , un.
The largest eigenvalue of L has value λ1 = 1 and its corresponding eigenvector is u1 =

√
w/
√

Wall; see [24].
Applying (A.4), (A.5) and (A.6) we obtain after some simple calculations

L0u j =

{
0 if j = 1,
λ ju j if j > 1.

Part (iii): Eq. (20) follows from (ii).
The distortionD is invariant to translations in the data Z and therefore to centering.

D(X) = tr L0 − tr X>L0X = tr L0 − tr V[ Y u1]>L0[ Y u1]V> = tr L0 − u>1 L0u1 − tr Y>L0Y = tr L0 − tr Y>L0Y

To obtain Eq. (21), it is sufficient to equate the right-hand sides of (5) and (22). �

Proof of Lemma 3. We have ε(δ, δ) = 2δ{1 − δ/(K − 1)} and

εold(δ, δ) = 2δ
√

(1 − δ)(K − δ) + (K + 1)δ − 2δ2 = 2δ(K − δ)


√

1 − δ
K − δ

+
(K + 1)/2 − δ

K − δ


≥ 2δ(1 −

δ

K − 1
)K


√

1 − δ
K − δ

+
(K + 1)/2 − δ

K − δ

 = ε(δ, δ)KF(δ).

We show now that F(x) ≥ 1/2 for all x ∈ [0, 1]. We have

F(x) =

√
1 − x
K − x

+
(K + 1)/2 − x

K − x

and hence, for x < 1,

F′(x) =
1

2
√

1−x
K−x

x − K − (x − 1)
(x − K)2 +

x − K − {x − (K + 1)/2}
(x − K)2 = −

K − 1
2(x − K)2

√K − x
1 − x

− 1

 ≤ 0

18



Hence, for all x ∈ [0, 1],

F(x) ≥ F(1) = 0 +
(K + 1)/2 − 1

K − 1
=

1
2
.

Proof of Theorem 5. Part (i): It is easy to check that B
√

w =
√

w and, therefore, A
√

w = (I − B)A0(I − B)
√

w = 0. It
suffices to prove that X>A = X>A0X + constant. To simplify notation, assume without loss of generality that Wall = 1.
Then B =

√
w
√

w> and the Kth column of X is X:k = diag(
√

w)X̃:kdiag(W−1/2
1 , . . . ,W−1/2

K ). Hence BX:k =
√

w
√

Wk

and

BX = (
√

w · · ·
√

w)diag(W1/2
k ) = diag(

√
w)(1n · · · 1n)diag(W1/2

k ) = diag(
√

w)X̃(1K · · · 1K)diag(W1/2
k )

= diag(
√

w)X̃diag(W−1/2
k )diag(W1/2

k )(1K · · · 1K)diag(W1/2
k ) = X [

√
WkWk′ ]k,k′=1:K︸               ︷︷               ︸

B′

= XB′.

Then,

tr X>AX = tr (I − B′)X>A0X(I − B′) = tr (I − B′)2X>A0X′ = tr (I − B′)X>A0X because (B′)2 = B′

= tr X>A0X + tr B′X>A0X (A.7)

and

tr B′X>A0X = tr
√

[Wk]k=1:K
√

[Wk]k=1:K
>X>A0X =

√
[Wk]k=1:K

>X>A0 X
√

[Wk]k=1:K︸          ︷︷          ︸
√

w

=
√

w>A0
√

w.

In the above, [Wk]k=1:K = (W1, . . . ,WK)> represents the column vector of cluster weights. Replacing the last equation
into (A.7) we obtain the desired result.

Part (ii): Since A0
√

w = 0, this part is proved in the same way as (9) in Section 2.2.

Part (iii): The proof follows closely the proof of Theorem 3 and is therefore omitted. �
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[20] M. Meilă, The multicut lemma, Technical Report 417, University of Washington, 2002.
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