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Chapter 1

Spectral clustering

Marina Meila

Department of Statistics, University of Washington

Abstract

Spectral clustering is a family of methods to find K clusters using the eigenvectors of a matrix. Typically, this

matrix is derived from a set of pairwise similarities Sij between the points to be clustered. This task is called

similarity based clustering, graph clustering, or clustering of diadic data.

One remarkable advantage of spectral clustering is its ability to cluster “points” which are not necessarily vectors,

and to use for this a“similarity”, which is less restrictive than a distance. A second advantage of spectral clustering

is its flexibility; it can find clusters of arbitrary shapes, under realistic separations.

This chapter introduces the similarity based clustering paradigm, describes the algorithms used, and sets the

foundations for understanding these algorithms. Practical aspects, such as obtaining the similarities are also

discussed.
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2 CHAPTER 1. SPECTRAL CLUSTERING

1.1 Similarity based clustering. Definitions and criteria

1.1.1 What is similarity based clustering?

Clusters when the data represent similarities between pairs of points is called similarity

based clustering. A typical example of similarity based clustering is community detection

in social networks [47] (see also Chapter ??), where the observations are individual links

between people, which may be due to friendship, shared interests, work relationships. The

“strength” of a link can be the frequency of interactions, e.g. communications by e-mail,

phone or other social media, co-authorships or citations.

In this clustering paradigm, the points to be clustered are not assumed to be part of a

vector space. Their attributes (or features) are incorporated into a single dimension, the link

strength, or similarity, which takes a numerical value Sij for each pair of points i, j. Hence,

the natural representation for this problem is by means of the similarity matrix S = [Sij ]
n
i,j=1.

The similarities are symmetric (Sij = Sji), and non-negative (Sij ≥ 0).

Less obvious domains where similarity based clustering is used include image segmenta-

tion, where the points to be clustered are pixels in an image, and text analysis, where words

appearing in the same context are considered similar.

The goal of similarity based clustering is to find the global clustering of the data set that

emerges from the pairwise interactions of its points. Namely, we want to put points that are

similar to each other in the same cluster, dissimilar points in different clusters.

1.1.2 Similarity based clustering and cuts in graphs

It is useful to cast similarity based clustering in the language of graph theory. Let the points

to be clustered V = {1, . . . n} be the nodes of a graph G, and the graph edges be represented

by the pairs i, j with Sij > 0. The similarity itself is the weight of edge ij.

G = (V,E), E = {(i, j), Sij > 0} ⊆ V × V (1.1)
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Thus, G is an undirected and weighted graph. A partition of the nodes of a graph into K

clusters is known as a (K-way) graph cut, therefore similarity based clustering can be viewed

as finding a cut in the graph G. The following definitions will be helpful. We denote

di =
∑

j∈V

Sij (1.2)

the degree of node i ∈ V . The volume of V is Vol V =
∑

i∈V di. Similarly, we define the

volume of cluster C ⊆ V by

dC =
∑

i∈C

di.

Note that the volume of a single node is di.

The value of the cut between subsets C,C ′ ⊆ V , C ∩ C ′ = ∅, briefly called the cut of

C,C ′ is the sum of the edge weigths that cross between C and C ′.

Cut(C,C ′) =
∑

i∈C

∑

j∈C′

Sij

Now we define the K-way Cut and respectivelyNormalized Cut associated to a partition

C = (C1, . . . CK) of V as

Cut(C) =
1

2

K
∑

k=1

∑

k′ 6=k

Cut(Ck, V \ Ck) (1.3)

NCut(C) =

K
∑

k=1

Cut(Ck, V \ Ck)

dCk

. (1.4)

In particular, for K = 2,

NCut(C,C ′) = Cut(C,C ′)

(

1

dC
+

1

dC′

)

Intuitively, a small Cut(C) is indicative of a “good” clustering, as most of the removed

edges must have zero or low similarity Sij. For K = 2, argmin|C|=2Cut(C) can be found

tractably by the MinCut/MaxFlow algorithm [35]. For K ≥ 3, minimizing the cut is
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Figure 1.1: Four cases in which the minimum NCut partition agrees with human intuition.

NP-hard, in practice one applies the MinCut/MaxFlow recursively to obtain K-cuts of

low value. Unfortunately, like the better known Single Linkage criterion, the Cut criterion is

very sensitive to outliers; on most realistic dataset, the smallest cut will be between an outlier

and the rest of the data. Consequently, clustering by minimizing Cut is found empirically

to produce very imbalanced partitions1.

This prompted [38] to introduce the NCut (which they called balanced cut). A partition

can have small NCut only if it has both a small cut value and if all its cluster have sufficiently

large volumes dC . As Figure 1.1 shows, NCut is a very flexible criterion, capturing our

intuitive notion of clusters in a variety of situations.

1.1.3 The Laplacian and other matrices of spectral clustering

In addition to the similarity matrix S, a number of other matrices derived from it matrices

play a central role in spectral clustering.

One such matrix is P, the random walk matrix of G, sometimes called the random walk

1An interesting randomizing and averaging algorithm using MinCut/MaxFlow was proposed by [18].
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Table 1.1: The relevant matrices in spectral clustering
Matrix name dim definition properties

S similarity matrix n× n Sij = Sji ≥ 0
D degree matrix n× n D = diag(d1, . . . dn) Dii = di > 0, Dij = 0, j 6=
P random walk matrix n× n P = D−1S Pij ≥ 0,

∑n
j=1 Pij = 1

L Laplacian matrix n× n L = I−D−1/2SD−1/2 Lij = Lji, L � 0

P̂ transition matrix btw. clusters K ×K P̂kl =
∑

i∈Ck

∑

j∈Cl
Sij/dCk

Laplacian of G. P is obtained by normalizing the rows of S to sum to 1.

P = D−1S (1.5)

with D being the diagonal matrix of the node degrees

D = diag(d1, . . . , dn) (1.6)

Thus, P is a stochastic matrix, satisfying Pij ≥ 0,
∑n

j=1 Pij = 1. Another matrix of interest

is L, the Normalized Laplacian [12] of G, which we will call for brevity the Laplacian.

L = I−D−1/2SD−1/2 (1.7)

where I is the unit matrix.

Proposition 1 (Relationship between L and P). Denote by 1 = λ1 ≥ λ2 ≥ . . . λn ≥ −1
the eigenvalues of P and by v1, . . .vn the corresponding eigenvectors. Denote by µ1 ≤ µ2 ≤
. . . µn the eigenvalues of L and by u1, . . .un the corresponding eigenvectors. Then,

1.

µi = 1− λi ui = D1/2vi for all i = 1, . . . n. (1.8)

2. λ1 = 1 and µ1 = 0

3. The multiplicity of λ1 = 1 (or, equivalently, of µ1 = 0) is K > 1 iff P (L) is block

diagonal with K blocks.
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This proposition has two consequences. Because λj ≤ 1, it follows that µj ≥ 0; in other

words, that L is positive semidefinite, with µ1 = 0. Moreover, Proposition 1 ensures that

the eigenvalues of P are always real and its eigenvectors linearly independent.

1.1.4 Four bird’s eye views of spectral clustering

We can approach the problem of similarity based clustering from multiple perspectives.

1. We can view each data point i as the row vector Si: in R
n, and find a low dimensional

embedding of these vectors. Once this embedding is found, one could proceed to cluster

the data by e.g K-means algorithm, in the low-dimensional space. This view is captured

by Algorithm 1.2 in 1.2.

2. We can view the data points as states of a Markov chain defined by P. We group states

by their pattern of high-level connections . This view is described in section 1.3.1.

3. We can view the data points as nodes of graph G = (V,E, S) as in Section 1.1.2. We can

remove a set of edges with small total weight, so that none of the connected components

of the remaining graph is too small, in other words we can cluster by minimizing the

NCut. This view is further explored in Section 1.3.2.

4. We can view a cluster C as its {0, 1}-valued indicator function xC . We can find the

partition whose K indicator functions are “smoothest” with respect to the graph G,
i.e. stay constant between nodes with high similarity. This view is described in Section

1.3.3.

As we shall see, the four paradigms above are equivalent, when the data is “well clustered”,

are are all implemented by the same algorithm, which we describe in the next section.
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1.2 Spectral clustering algorithms

The workflow of a typical spectral clustering algorithm is shown in the top row of Figure

1.2.

The algorithm we recommend is based on [29, 30] and [34].

Algorithm SpectralClustering

Input Similarity matrix S, number of clusters K

1. Transform S

Calculate di ←
∑n

j=1 Sij, j = 1 : n the node degrees.

Form the transition matrix P with Pij ← Sij/di, for i, j = 1 : n

2. Eigendecomposition

Compute the largest K eigenvalues λ1 ≥ . . . ≥ λK and eigenvectors v1, . . .vK of P.

3. Embed the data in K-th principal subspace

Let xi = [vi2 vi3 . . . viK ] ∈ R
n×(K−1), for i = 1, . . . n.

4. Run the K-means algorithm on the “data” x1:n

Output The clustering C obtained in step 4.

Note that in step 3 we discard the first eigenvector, as this is usually constant and is not

informative of the clustering.

Some useful variations and improvements of SpectralClustering are:

• Orthogonal initialization [34] Find the K initial centroids x̄1:K of K-means in step 4 by

Algorithm OrthogonalInitialization

1. choose x̄1 randomly from x1, . . .xn

2. for k = 2, . . .K set x̄k = argminxi
maxk′<k | cos(x̄k′ ,xi)|.
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Similarity S R.w. matrix P Top 3 e-vectors of P Data embedded by v2,3

Degrees D P̂ Top 3 e-vectors of S

[

0.67 0.26 0.07
0.4 0.5 0.1
0.25 0.25 0.50

]

Figure 1.2: Spectral clustering of a synthetic data set with n = 30 points and K = 3 clusters
of sizes 15, 10 and 5; the data are sorted so that points in the same cluster are consecutive.
The top row, from left to right, displays the similarity matrix S, the random walk matrix
P, the entries in the top 3 eigenvectors of P, plotted vs. the index i = 1, . . . 30, and finally,
the embedding x1:n of the data obtained from the eigenvectors. The similarity S is a perfect
similarity matrix to which noise was added; hence in the second and third eigenvectors of
P the corresponding to a cluster have approximately but not exactly the same value; the
first eigenvector of P is proportional to 1 and hence has exactly equal entries for all i. Since
v2,3 are almost piecewise-constant, in the embedding the points x1:n are well clustered. The
bottom row displays the node degrees on the diagonal of D, the P̂kl values of the transition
probabilities between blocks, and the top 3 eigenvectors of S. Note that this is not a case of
nearly block diagonal S: the probabilities of transitioning between clusters are significantly
away from 0, and the minimum NCut is not small (its value is 1.33 = 3− trace P̂). Yet the
data is very “well clustered”, if one uses the eigenvectors of P for clustering. In contrast, the
top 3 eigenvectors of the untransformed S are not informative (nor are the other eigenvectors
of S). The Cut corresponding to the clustering found by SpectralClustering is 140.3
(which represents 0.23 of the total VolV = 614.5); in contrast removing the point of smallest
degree has Cut equal to 11.7.
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This initialization is a variant of the FastestFirstTraversal algorithm [20]; Fastest-

FirstTraversal is part of one the best EM andK-means initialization algorithms

known to date [15, 10].

• Rescaling xi to have unit length in step 3 was recommended by [34] and was found

empirically to have good noise reduction effects.

• Rescaling v2:K by the eigenvalues (diffusion distance rescaling) in step 2. When P is

almost block diagonal, or close to perfect, this rescaling will have almost no effect. But

in the noisier situations, it can put more weight on the first eigenvectors which are more

robust to noise (see also Section 1.5). Moreover, [32] showed that setting vk ← λ2t
k v

k,

with some t > 1, is related to the diffusion distance, a true metric on the nodes of a

graph. The parameter t is a smoothing parameter, with larger t causing more smoothing.

• Using S instead of P in step 2 (and skipping the transformation in step 1). This

algorithm variant can be shown to (approximately) minimize a criterion call Ratio Cut

(RCut).

RCut(C) =
K
∑

k=1

Cut(Ck, V \ Ck)

|Ck|
(1.9)

The RCut differs from the NCut only in the denominators, which are the cluster

cardinalities, instead of the cluster volumes. The discussion in Sections 1.3.1,1.3.2 and

1.3.3 applies with only small changes to this variant of SpectralClustering, w.r.t.

the RCut criterion. However, it can be shown that whenever S has piecewise constant

eigenvectors (see Section 1.3.1) then P will have piecewise constant eigenvectors as well,

but the converse is not true [45]. Hence, whenever this algorithm variant can find a

good clustering, the original 1.2 can find it too. Moreover, the eigenvectors and values

of P converge to well-defined limits when n→∞, whereas those of S may not.

The most significant variant of Algorithm 1.2 is its original recursive form [38] given below.
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Algorithm Two-Way Spectral Clustering

Input Similarity matrix S

1. Transform S

Calculate di =
∑n

j=1 Sij, j = 1 : n the node degrees.

Form the transition matrix P with Pij ← Sij/di for i, j = 1, . . . n

2. Compute the eigenvector v corresponding to the second largest eigenvalue λ2 of P

3. Sort

Let vsort = [vi1 vi2 . . . vin] be the entries of v sorted in increasing order and denote

Cj = {i1, i2, . . . ij} for j = 1, . . . n− 1.

4. Cut

For j = 1, . . . n− 1 compute NCut(Cj, V \Cj) and find j0 = argminj NCut(Cj, V \Cj).

Output clustering C = {Cj0, V \ Cj0}

Two-Way Spectral Clustering is called recursively on each of the two resulting clus-

ters, if one wishes to obtain a clustering with K > 2 clusters.

Finally, an observation related to numerical implementation that is too important to omit.

From Proposition 1, it follows that steps 1 and 2 of spcalg can be implemented equivalently

as

Algorithm StableSpectralEmbedding

1. L̃ij ← Sij/
√

didj for i, j = 1 : n (note that L̃ = I − L)

2. Compute the largest K eigenvalues λ1 = 1 ≥ λ2 ≥ . . . ≥ λK and eigenvectors u1, . . .uk

of L̃ (these are the eigenvalues of P and the eigenvectors of L).

Rescale vk ← D−1/2uk (obtain the eigenvectors of P).

Eigenvector computations for symmetric matrices like L̃ are much more stable numerically

than for general matrices like P. This modification guarantees that the eigenvalues will be



1.3. UNDERSTANDING THE SPECTRAL CLUSTERING ALGORITHMS 11

real and the eigenvectors orthogonal.

1.3 Understanding the spectral clustering algorithms

1.3.1 Random walk/Markov chain view

Recall the stochastic matrix P defines a Markov chain (or random walk) on the nodes V .

Remarkably, the stationary distribution π of this chain has the explicit and simple form2

πi =
di

VolV
for i ∈ V (1.10)

Indeed, it is easy to verify that

[ π1 . . . πn ]P =
1

VolV

[

∑

i

diPi1 . . .
∑

i

diPin

]

=
1

VolV
[

n
∑

i=1

Si1 . . .
n
∑

i=1

Sin = [ π1 . . . πn ]

(1.11)

If the Markov chain is ergodic, then π is the unique stationary distribution of P, otherwise,

uniqueness is not guaranteed, yet property 1.11 still holds.

Now let’s consider the Algorithm 1.2 and ask when are the points xi ∈ R
K well clustered?

Is there a case when the xi’s are identical for all the nodes i that belong to the same cluster

k? If this happens we say that S (and P) are perfect. In the perfect the case, the K-Means

algorithm (or, by that matter, any clustering algorithm) will be guaranteed to find the same

clustering.

Thus, to understand what is a “good” clustering from the point of view of spectral clus-

tering, it is necessary to understand what the perfect case represents.

Definition 1. If C = (C1, . . . CK) is a partition of V , we say that a vector x is piecewise

constant w.r.t C if for all pairs i, j in the same cluster Ck we have xi = xj.

Proposition 2. Lumpability Lemma [30] Let P be a matrix with rows and columns indexed

2This is true for any reversible Markov chain.
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by V that has independent eigenvectors. Let C = (C1, C2, . . . Ck) be a partition of V . Then, P

has K eigenvectors that are piecewise constant w.r.t. C and correspond to non-zero eigenval-

ues if and only if the sums Pik =
∑

j∈Ck
Pij are constant for all i ∈ Cl and all k, l = 1, . . .K

and the matrix P̂ = [P̂kl]k,l=1,...K (with P̂kl =
∑

j∈Ck
Pij , i ∈ Cl) is non-singular. We say

that (the Markov chain represented by) P is lumpable w.r.t C∗.

Corrolary 3. If stochastic matrix P obtained in Step 1 is lumpable w.r.t C∗ with piece-

wise constant eigenvectors v1, . . .vK corresponding to the K largest eigenvalues of P, then

Algorithm 1.2 will output C∗.

Corrolary 3 shows that spectral clustering will find clusterings for which points i, i′ are in

the same cluster k if they have the same probability P̂kl of transitioning to cluster l, for all

k = l to K.

A well-known special case of lumpability is the case when the clusters are completely

separated, i.e. when Sij = 0 whenever i, j are in different clusters. Then, S and P are block

diagonal with K blocks, each block representing a cluster. From Proposition 2 it follows that

P has K eigenvalues equal to 1, and that P̂ = I. What can be guaranteed in the vicinity

of this case has been intensely studied in the literature. In particular, [34] and later [5] give

theoretical results showing that if S is nearly block diagonal, the clusters representing the

blocks of S can be recovered by spectral clustering.

The Lumpability Lemma shows however that having an approximately block diagonal S

is not necessary, and that spectral clustering algorithms will work in a much broader range

of cases, namely as long as “the points in the same cluster behave approximately in the same

way” in the sense of Proposition 2.

This interpretation relates spectral clustering to a remarkable fact about Markov chains.

It is well-known that if one groups the states of a Markov chains in clusters C1, . . . CK , a

sequence of states i1, i2, . . . it implies a sequence of cluster labels k1, k2, . . . kt ∈ {1, . . .K}.
From the transition matrix P and the clustering C1, . . . CK one can calculate the transition

matrix at the cluster level Pr[Ck → Cl|Ck] = P̂kl, as well as the stationary distribution w.r.t
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the clusters by

P̂kl =
∑

i∈Ck

∑

j∈Cl

Sij/dCk
, π̂k =

dCk

VolV
, k, l = 1, . . .K. (1.12)

However, it can be easily shown that the chain k1, k2, . . . kt, . . . is in general not Markov; that

is, Pr[kt+1|kt, kt−1] 6= Pr[kt+1|kt], or knowing past states can give information about future

states even when the present state kt is known. Lumpability in Markov chain terminology

means that there exists a clustering C∗ of the nodes in V so that the chain defined by P̂ is

Markov. Proposition 2 shows that lumpability hold essentially iff P has piecewise-constant

eigenvectors. Hence, spectral clustering Algorithm 1.2 finds equivalence classes of nodes

(when they exist) so that all nodes in an equivalence class Ck contain the same information

about the future.

The following proposition underscores the discussion about lumpability, showing that

the eigenvectors of P, when they are piecewise constant, are “stretched versions” of the

eigenvectors of P̂.

Proposition 4. Relationship between P and P̂ (Telescope Lemma) Assume that the con-

ditions of Proposition 2 hold. Let v1, . . .vK ∈ R
n and 1 = λ1 ≥ λ2 ≥ . . . λK be the

piecewise constant eigenvectors of P and their eigenvalues and 1 = λ̂1 ≥ λ̂2 ≥ . . . λ̂K and

v̂1, . . . v̂K ∈ R
K the eigenvalues and eigenvectors of P̂. Then

λ̂k = λk and (1.13)

v̂kl = vki for l = 1, . . .K and i ∈ Cl (1.14)

1.3.2 Spectral clustering as finding a small balanced cut in G

We now explain the relationship between spectral clustering algorithms like 1.2 and mini-

mizing the K-way normalized cut.

First, we show that the NCut defined in 1.4 can be rewritten in terms of probabilities

P̂kl of transitioning between clusters in the random walk defined by P.
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Proposition 5 (NCut as conditional probability of leaving a cluster). TheK-way normalized

cut associated to a partition C = (C1, . . . CK) of V is equal to

NCut(C) =

K
∑

k=1

[

1−
∑

i∈Ck
πi

∑

j∈Ck
Pij

∑

i∈Ck
πi

]

=

K
∑

k=1

[

1− P̂kk

]

= K − trace P̂ (1.15)

The denominators
∑

i∈Ck
πi above represent dCk

/VolCk = πCk
, the probability of being

in cluster Ck under the stationary distribution π. Consequently each term of the sum repre-

sents the probability of leaving cluster Ck given that the Markov chain is in Ck, under the

stationary distribution.

In the perfect case, from Proposition 4, λ̂1:K are also the top K eigenvalues of P, hence

NCut(C∗) = K −
K
∑

k=1

λk (1.16)

Next, we show that the value K −∑K
k=1 λk is the lowest possible NCut value for any K-

clustering C in any graph.

Proposition 6 (Multicut Lemma). Let S, L, P, v1, . . . vK and λ1, . . . λK be defined as before,

and let C be a partition of V into K disjoint clusters. Then,

NCut(C) ≥ min{traceYTLY |Y ∈ R
n×K , Y has orthonormal columns} (1.17)

= K − (λ1 + λ2 + . . .+ λK) (1.18)

The proof is both simple and informative so we will present it here. Consider an arbitrary

partition C = (C1, . . . CK). Denote by xk ∈ {0, 1}n the indicator vector of cluster Ck for

k = 1, . . .K.

We start with rewriting, again, the expression of NCut . From Proposition 5, noting that
∑

i∈Ck
di =

∑

i∈V (x
k
i )

2di and

∑

i,j∈Ck

Sij =
∑

i,j∈V

Sijx
k
i x

k
j =

∑

i∈V

(xk
i )

2di −
∑

ij∈E

Sij(x
k
i − xk

j )
2 (1.19)
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we obtain that

NCut(C) = K −
K
∑

k=1

∑

i,j∈Ck
Sij

∑

i∈Ck
di

=

K
∑

k=1

∑

ij∈E Sij(x
k
i − xk

j )
2

∑

i∈V (x
k
i )

2di
=

K
∑

k=1

R(xk) (1.20)

In the sums above, i, j ∈ Ck means summation over the ordered pairs (i, j) while ij ∈ E

means summation over all “edges”, i.e all unordered pairs (i, j) with i 6= j. Next, we

substitute

yk = D1/2xk (1.21)

obtaining

R(xk) =
(yk)TLyk

(yk)Tyk
= R̃(yk) (1.22)

and

NCut(C) =

K
∑

k=1

R̃(yk) (1.23)

The expression R̃(y) represents the Rayleigh quotient for the symmetric matrix L [12] equa-

tion (1.13). Recall a classic Rayleigh-Ritz theorem in linear algebra [43], stating that the

sum of K Rayleigh quotients depending on orthogonal vectors y1 . . .yK is minimized by the

eigenvectors of L corresponding to its smallest K eigenvalues µ1 ≤ µ2 ≤ . . . µK . As yk,yl

defined by 1.21 are orthogonal, the expression 1.23 cannot be smaller than
∑K

k=1 R̃(uk) =
∑K

k=1 µk = K −∑K
k=1 λk, which completes the proof.

Hence, if S is perfect with respect to some K-clustering C∗, then C∗ is the minimum

NCut clustering, and Algorithm 1.2 returns C∗.

Recall that finding the clustering C† that minimizes NCut is NP-hard. Formulated in

terms of y1:K this problem is

min
y1,...yK∈Rn

K
∑

k=1

(yk)TLyk s.t. (yl)Tyk = δkl (1.24)

there exist x1:K ∈ {0, 1}n so that 1.21 holds (1.25)
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By dropping constraint 1.25, we obtain

min
y1,...yK∈Rn

K
∑

k=1

(yk)TLyk s.t. (yl)Tyk = δkl (1.26)

whose solution is given by the eigenvectors u1, . . . , uK and smallest eigenvalues µ1, . . . µK

of L. Applyiing 1.21 and Proposition 1 to u1:K we see that the x1:K correspondig to the

solution of 1.26 are no other than the eigenvectors v1:K of P. Problem 1.26 can be formulated

directly in the x variables as

min
x1,...xK

K
∑

k=1

R(xk) s.t. xk ⊥ Dxl for k 6= l and ||xk|| = 1 for all k (1.27)

Problem 1.27 is called a relaxation of the original minimization problem 1.24. Intuitively,

the solution of the relaxed problem is an approximation to the original problem 1.24 when

the latter has a clustering with cost near the lower bound. This intuition has been proved

formally by [4, 25]. Hence, spectral clustering algorithms are an approximate way to find

the minimum NCut.

We have shown here that (1) when P is perfect, Algorithm 1.2 minimizes the NCut exactly

and that (2) otherwise, the algorithm solves the relaxed problem 1.27 and rounds the results

by K-means to obtain an approximately optimal NCut clustering.

1.3.3 Spectral clustering as finding smooth embeddings

Here we explore further the connection between the normalized cut of a clustering C and the

Laplacian matrix L seen as an operator applied to functions on the set V , and the functional

||f ||2∆ defined below as a smoothness functional.

Proposition 7. Let L be normalized Laplacian defined by 1.7 and f ∈ R
n be any vector

indexed by the set of nodes V . Then

∆ f
def
= fTLf =

∑

ij∈E

Sij

(

fi√
di
− fj
√

dj

)2

(1.28)
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The proof follows closely the steps 1.19 to 1.20.

Now consider the NCut expression 1.24 and replace yk by D−1/2xk according to 1.21.

We obtain3

R̃(yk) = R(xk) =
∑

ij∈E

Sij(x
k
i − xk

j )
2 (1.29)

This shows that a clustering that has low NCut is one whose indicator functions x1:K are

smooth w.r.t the graph G. In other words, the functions xk must be almost constant on

groups of nodes that are very similar, and are allowed to make abrupt changes only along

edges Sij ≈ 0.

The symbol ∆ and the name “Laplacian” indicate that L and fTLf are the graph ana-

logues of the well-known Laplace operator on R
d, while Proposition 1.28 corresponds to

the relationship < f,∆ f >=
∫

dom f
|∇f |2dx in real analysis. The relationship between the

continuous ∆ and the graph Laplacian has been studied by [8, 14, 19].

1.4 Where do the similarities come from?

If the original data are vectors in xi ∈ R
d (note the abusive notation x in this section only),

then the similarity is typically the Gaussian kernel (also called heat kernel)

Sij = exp

(

−||xi − xj ||2
σ2

)

(1.30)

This similarity gives raise to a complete graph G, as Sij > 0 always. Alternatively, one can

define graphs that are dense only over local neighborhoods. For example, one can set Sij by

1.30 if ||xi − xj || ≤ cσ and 0 otherwise, with the constant c ≈ 3. This construction leads

to a sparse graph, which is however a good approximation of the complete graph obtained

by the heat kernel [44]. A variant of the above to zero out all Sij except for the m nearest

neighbors of data point i. This method used without checks can produce matrices that are

not symmetric.

3This expression is almost identical to 1.20; the only difference is that in 1.20 the indicator vectors xk take values in {0, 1}
while here they are normalized by (xk)TDxk = 1.
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Even though the two graph construction methods appear to be very similar, it has been

shown theoretically and empiricaly [19, 24] that the spectral clustering results they produce

can be very different, both in high and in low dimensions. With the fixed m-nearest neighbor

graphs, the clustering results are strongly favor balanced cuts, even if the cut occurs in regions

of higher density; the radius-neighbor graph construction favors finding cuts of low density

more. This is explained by the observation below, that the graph density in the latter graphs

reflects the data density stronger than in the former type of graph.

It was pointed out that when the data density varies much, there is no unique radius

that correctly reflects “locality”, while the K-nearest neighbor graphs adapt to the variying

density. A simple and widely used way to “tune” the similarity function to the local density

[49] is to set

Sij = exp

(

−||xi − xj ||2
σiσj

)

(1.31)

where σi is the distance from xi to its m-th nearest neighbor. Another simple heuristic to

choose σ is to try various σ values and to pick the one that produces the smallest K-means

cost in step 4 [34].

If the features in the data x have different units, or come from different modalities of

measuring similarity, then it is useful to give each feature xf a different kernel width σf .

Hence, the similarity becomes

Sij = exp

(

d
∑

j=1

(xif − xjf)
2

σ2
f

)

(1.32)

Clustering by similarities is not restricted to points in vector spaces. This represents one of

the strengths of spectral clustering. If a distance dist(i, j) can be defined on the data, then

dist(i, j)2 can substitute ||xi − xj ||2 in 1.30; dist can be obtained from the kernel trick [37].

Hence, spectral clustering can be applied to a variety of classes of non-vector data for which

Mercer kernels have been designed, like trees, sequences or phylogenies [39, 13, 37].

Several methods for learning the similarities as a function of data features in a supervised

setting exist [29],[4],[31]; the method of [31] has been extended to the unsupervised setting

[40].
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1.5 Practical considerations

The main advantage of spectral clustering is that it does not make any assumptions about

the cluster shapes, and even allows clusters to “touch”, as long as the clusters have sufficient

overall separation and internal coherence (see e.g. Figure 1.2 right panels).

The method is computationally expensive compared to e.g center based clustering, as

it needs to store and manipulate similarities/distances between all pairs of points instead

of only distances to centers. The eigendecomposition step can also be computationally

intensive. However, with a careful implementation, for example using sparse neighborhood

graphs as in Section 1.4 instead of all pairwise similarities, and sparse matrix representations,

the memory and computational requirements can be made tractable for sample sizes in the

tens of thousands or larger. Several fast and approximate methods for spectral clustering

have been proposed [11, 17, 23, 46].

It is known from matrix perturbation theory [42] that eigenvectors with smaller λk are

more affected by numerical errors and noise in the similarities. This can be a problem when

the number of clusters K is not small. In such a case, one can either (1) use only the

first K0 < K, eigenvectors of P or, (2) use the diffusion distance type rescaling vk by λα
k ,

with α > 1 which will smoothly decrease the effect of the noisier eigenvectors or (3) use

Two-Way Spectral Clustering recursively.

One drawback of spectral clustering is the sensitivity of the eigenvectors vk on the simi-

larity S in ways that are not intuitive. For example, monotonic transformations of Sij , even

shift by a constant, can change a perfect S into one that is not perfect.

Outliers in spectral clustering need special treatment. An outlier is a point which has

very low similarity with all other points (for example, because it is far away from them).

An outlier will produce a spurious eigenvalue very close to 1 with an eigenvector which

approximates an indicator vector for the outlier. So, l outliers in a data set will cause the

l principal eigenvectors to be outliers, not clusters. Thus, it is strongly recommended that

outliers be detected and removed before the eigendecomposition is performed. This is done

easiest by removing all points for which
∑

j 6=i Sij ≤ ǫ for some ǫ which is small w.r.t. the
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average di. Also before the eigendecomposition, one should detect if G is disconnected by a

connected components algorithm (see Chapter ??).

1.6 Conclusions and further reading

The tight relationship between K-means and SpectralClustering hints at the situations

when SpectralClustering is recommended. Namely, SpectralClustering returns

hard, non-overlaping clusterings, requires the number of clusters K as input, and works best

when this number is not too large (up to K = 10). For larger K, recursive partitioning based

on Two-Way Spectral Clustering is more robust.The relationship with K-means is

even deeper than we have presented it here [16]. As mentioned above, the algorithm is

sensitive to outliers and transformations of S, but it is very robust to the shapes of clusters,

to small amounts of data “spilling” from one cluster to the another, and can balance well

cluster sizes and their internal coherence.

For chosing the number of clusters K, there are two important indicators: the eigengap

λK − λK+1, and the gap NCut(CK) − (K −∑K
k=1 λK), where we have denoted by CK the

clustering returned by a spectral clustering algorithm with input S and K. Ideally, the

former should be large, indicating a stable principal subspace, and the latter should be near

zero, indicating almost perfect P for that K and CK . A heuristic proposed by [26] is to find

the knee in the graph of gap vs. K, or in the graph of gap divided by the eigengap, as

suggested by the theory in [25]; [3] proposes heuristic based on the eigengaps λt
k − λt

k+1 for

t > 1 that can find clusterings at different granularity levels and works well for matrices that

are almost block diagonal.

Other formulations of clustering that aim to minimize the same Normalized Cut criterion

are based on Semidefinite Programming [48], and on submodular function optimization [33,

9, 22].

Spectral clustering has been extended to directed graphs [36, 2, 28] as well as finding the

local cluster of a data point in a large graph [41]
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Clusterability for spectral clustering, i.e. the problem of defining what is a “good” clus-

tering, has been studied by [27, 25, 1, 6, 21]; some of these references also introduced new

algorithms with guarantees that depend on how clusterable is the data.

Finally, the ideas and algorithms presented here have deep connections with the fast

growing areas of non-linear dimension reduction, also known as manifold learning [8] and of

solving very large linear systems [7].
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