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Abstract

This paper views clusterings as elements of
a lattice. Distances between clusterings are
analyzed in their relationship to the lattice.
From this vantage point, we first give an ax-
iomatic characterization of some criteria for
comparing clusterings, including the varia-
tion of information and the unadjusted Rand
index. Then we study other distances be-
tween partitions w.r.t these axioms and prove
an impossibility result: there is no “sensi-
ble” criterion for comparing clusterings that
is simultaneously (1) aligned with the lattice
of partitions, (2) convexely additive, and (3)
bounded.

1. Introduction

This paper views clusterings as elements of a lattice,
the natural algebraic structure for the partitions of
a set. A criterion for comparing clusterings is thus
seen as a function of pairs of elements in the lattice.
The goal in doing this is to contribute to the better
understanding of the space of all clusterings of a set
and of the problem of comparing clusterings.

This task is is an important component in the evalua-
tion of clustering algorithms. A clustering, or a clus-
tering algorithm, can be evaluated by internal crite-
ria, e.g distortion, likelihood, that are generally prob-
lem and algorithm dependent. There is another kind
of evaluation, called external evaluation, that simply
measures how close is the obtained clustering to a gold
standard clustering. The comparison criteria studied
here are all external. As such, they are independent
of the algorithm or of the way the clusterings were
obtained.

There are many competing criteria for comparing clus-
terings, with no clear best choice. In fact, as this paper
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will underscore, it is probably meaningless to search
for a best criterion for comparing clusterings, just as
it is meaningless to search for the best clustering al-
gorithm. Algorithms are “good” in as much as they
match the task at hand. With respect to distances
between clusterings, our goal is to better understand
their properties, their limitations, and the implied as-
sumptions underlying them. This paper does so via
an axiomatic study of several distances.

We first discuss some desirable properties of distances
between clusterings that amount to decomposing them
additively over elementary operations on clusterings
like splitting a cluster, merging two data sets, etc.
Then we give an axiomatic characterization for one
criterion, the variation of information. The choice is
not incidental: this criterion is closely matched to the
lattice of partitions, as it will be shown. It will turn
out that the resulting axioms have each an intuitive
interpretation.

The axiomatic framework introduced is extended to
characterize other distances between clusterings (the
Mirkin metric, the Rand index and the van Dongen
metric). We also discuss the “classification error” clus-
tering distance. Finally, we derive an impossibility
result for comparing clusterings: we show that no dis-
tance on the space of partitions can simultaneously
satisfy three desirable properties, each of which makes
the distance intuitive in some sense.

2. Additive properties for distances and

the lattice of partitions

This section introduces the basic notation, then in-
troduces the lattice of partitions and and lists some
properties related to the lattice representation which
will be relevant in the rest of the paper.

A clustering C is a partition of a data set D into sets
C1, C2, . . . CK called clusters such that

Ck ∩ Cl = ∅ and

K
⋃

k=1

Ck = D.
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Let the number of data points in D and in cluster Ck

be n and nk respectively. We have, of course, that
n =

∑K

k=1 nk. We also assume that nk ≥ 1; in other
words, that K represents the number of non-empty
clusters.

Let a second clustering of the same data set D be
C′ = {C ′

1, C ′
2, . . . C ′

K′}, with cluster sizes n′
k′ . The

two clusterings may have different numbers of clusters.
To compare C and C′ is to define a symmetric, non-
negative function d(C, C′) that measures how different
are the two clusterings. If C = C ′ then d(C, C′) = 0.
We shall call the function d a distance although in
general it may not satisfy the triangle inequality. If
the triangle inequality is satisfied, then d is called a
metric.

It should also be noted that this definition is not
aligned to the majority of clustering comparison cri-
teria, like the Rand (Rand, 1971), Fowlkes-Mallows
(Fowlkes & Mallows, 1983) and other indices. These
are taking values in [0, 1], with larger values as the
clusterings become more similar (and being 1 when
C = C′). This will not preclude us to consider these
indices, as one can turn any index i(C, C ′) into a dis-
tance by simply setting d(C, C ′) = 1 − i(C, C′).

The number of points in the intersection of clusters Ck

of C and C ′
k′ of C′ is denoted nkk′ .

nkk′ = |Ck ∩ C ′
k′ |

A distance d between that depends only on the relative
values nkk′/n and does not directly depend on n is said
to be n-invariant.

The lattice of partitions One can represent all clus-
terings of a finite set D as the nodes of a graph, as
illustrated by figure 1; in this graph an edge between
C, C′ will be present if C′ is obtained by splitting a clus-
ter of C into two parts. The set of all clusterings of a
dataset D forms a lattice called the lattice of partitions
(Stanley, 1997). The graph just described is known as
the Hasse diagram1 of this lattice. At the top of the
diagram is the clustering with just one cluster, denoted
by 1̂ = {D}. At the bottom is 0̂ = {{1}, {2}, . . . {n}}
the clustering with n clusters each containing a sin-
gle point. For all but the smallest n, the space of all
clusterings, although finite, is huge (superexponential
in n (Stanley, 1997)); a graphical representation like
the Hasse diagram can aid the understanding of the
complex relationships between and thus guide us in
choosing or designing the most relevant distances on
this space. In particular, we may ask if there are dis-

1The emphasized terms in this section represent stan-
dard lattice terminology. Their precise definitions can be
found in e.g (Stanley, 1997).

tances between clusterings that are “aligned” with the
lattice, in the sense that d(C, C ′) can be expressed as
a sum of distances along edges of the lattice?

In the following we give a formal definition of three
additivity properties, all related to the lattice of parti-
tions, and we explain why they are desirable.

Additivity w.r.t refinement (AR) If C ′ is obtained
from C by splitting one or more clusters, then we say
that C′ is a refinement of C. A distance d is additive
w.r.t refinement iff for any clusterings C, C ′, C′′ such
that C′ is a refinement of C and C′′ a refinement of C′

we have

d(C, C′′) = d(C, C′) + d(C′, C′′) (1)

For instance, C′′ = {{a}, {b}, {c}, {d}} is a refinement
of C′ = {{a}, {b}, {c, d}}, which in turn is a refinement
of C = {{a, b}, {c, d}}. The AR property says that the
distance d(C, C′′) is a sum of the distances correspond-
ing to the two succesive refinements that transform C
into C′′. Cluster splitting corresponds to taking down-
ward steps in the Hasse diagram.

Additivity w.r.t the join (AJ). The join of clus-
terings C and C′ is defined as

C × C′ = {Ck ∩ C ′
k′ |Ck ∈ C, C ′

k′ ∈ C′, Ck ∩ C ′
k′ 6= ∅}

(2)
Hence, the join of two clusterings is the clustering
formed from all the nonempty intersections of clusters
from C with clusters from C ′. A distance d is additive
w.r.t to the join iff for any clusterings C, C ′

d(C, C′) = d(C, C × C′) + d(C′, C × C′) (3)

This property is relevant for clusterings C, C ′ which are
not a refinement of each other. One can think of ob-
taining such a C′ from C by a series of cluster splits
(downward steps along the lattice edges) followed by a
set of cluster mergers (upward steps in the lattice). A
distance d is AJ if it can be expressed as a sum of dis-
tances along such a path. Note that usually there are
several possible paths between two clusterings (see for
instance {{a}, {b, c, d}} and {{a, c}, {b}, {d}} in figure
1); the sum is the same no matter what path is taken.

From a practical point of view, AJ also means that for
any two clusterings C, C ′ there is a clustering C × C
(and usually others) which has more clusters than
both C and C′ but is closer to both of them than
d(C, C′). In a geometric sense, the join C, C ′ is “on
the line segment” between C, C ′. If in an applica-
tion two clusterings should be close only if the num-
ber of clusters K,K ′ are nearly equal, then the dis-
tance d should not be AJ. However, there are other
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{a,b,c,d}

{a}{b,c,d} {b}{a,c,d} {c}{a,b,d} {d}{a,b,c} {a,b}{c,d} {a,c}{b,d} {a,d}{b,c}

{a},{b}{c,d} {a},{c}{b,d} {a},{d}{b,c} {a,b}{c},{d} {a,c}{b},{d} {a,d}{b},{c}

{a},{b}{c},{d}

Figure 1. The lattice of partitions of D ={a,b,c,d}. Note that 1̂ ={{a,b,c,d}}, 0̂ ={{a},{b},{c},{d}}; the clusterings
1̂, {{a},{b, c, d}}, {{a},{b},{c, d}}, 0̂ are collinear according to A3; the clusterings {{a},{b, c, d}}, {{a},{b},{c, d}},
{{a,b},{c, d}} are collinear according to A4; the clusterings {{a},{b, c, d}}, {{a},{b},{c, d}}, {{b},{a, c, d}} and 1̂ are
on a closed straight line; and there are 3 straight lines from {{d},{a, b, c}} to 0̂.

applications, image segmentation being a prime ex-
ample, where breaking off a set b of pixels from
a segment {a, b} is less of a mistake than break-
ing them off and attaching them to another seg-
ment c (i.e we want d({{a, b}, {c}}, {{a}, {b}, {c}}) <
d({{a, b}, {c}}, {{a}, {b, c}})). In such applications,
the number of segments is less meaningful than the
grouping of the pixels; therefore AJ is reasonable as
it represents the total error as as sum of two kinds of
error.

Convex additivity (CA). Let C = {C1, . . . CK} be a
clustering and C′, C′′ be two refinements of C. Denote
by C′

k (C′′
k ) the partitioning induced by C ′ (respectively

C′′) on Ck. Let P (k) represent the proportion of data
points that belong to cluster Ck. Then

d(C′, C′′) =

K
∑

k=1

P (k)d(C′
k, C′′

k ) (4)

This property expresses additivity of d over the sub-
lattices corresponding to the individual clusters Ck. In
particular, CA implies that if only some cluster(s) of
C are changed to obtain C′, then then d(C, C′) depends
only on the affected clusters, and is independent on
how the unaffected part of D is partitioned. For an
example, consider the pairs C = {{a, b}, {c, d}}, C ′ =
C = {{a}, {b}, {c, d}} and C̃ = {{a, b}, {c}, {d}}, C̃ =
{{a}, {b}, {c}, {d}}. In both cases the first cluster is
split while the remaining cluster(s) are left unchanged.
Therefore, if d is CA then d(C, C ′) = d(C̃, C̃′).

Properties AJ and CA were described in (Meilă, 2003),
where several distances were discussed w.r.t satisfying
them. In this section we extend and deepen the geo-
metric view suggested there. The remainder of the pa-
per addresses the reverse question: instead of checking
whether a given distance satisfies a certain property,

we will ask what properties uniquely define a certain
distance. The focus will be on the additive properties
discussed above. Hence the complementary question:
how can one characterize all the distances that satisfy
them?

The reason we pay special attention to the properties
AV, CA and AJ in this paper, is because splitting a
cluster, forming a clustering by taking the union of two
clusterings on two subsets of the data, and merging two
clusters are (sequences of) elementary and intuitive
operations that one can do on clusterings. It is easy
and natural to think of changing a clustering C into
C′ by appying these operations one after the other. If
the distance d satisfies AV, CA and AJ, then d will
measure the change between C and C ′ as a sum of
elementary changes, each corresponding to one step.

Finally, if d is also a metric, some additional geometric
insights are possible. One can extend the notion of a
straight line from Euclidean space to a metric space: 3
points in a metric space for which triangle inequality is
satisfied with equality are said to lie on a straight line,
in other words to be collinear. Additivity w.r.t refine-
ment implies that the clusterings along a vertical chain
of lattice edges are collinear. As all “vertical” straight
lines meet both at 1̂ and 0̂, this space is clearly non-
Euclidean. In general, if C′ is a refinement of C, then
each of the possible ways of subdividing C to obtain
C′ generates a straight line in the lattice. Unless C, C ′

are connected by a single edge, there will be multiple
“straight lines” between the two clusterings. Figure 1
illustrates these properties on a simple example. An
even more interesting picture is implied by the “hor-
izontal” straight lines that exist because of the addi-
tivity w.r.t the joint. These lines are composed of the
vertical “descending” segment C, C × C ′, continued by
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the “ascending” segment C ×C ′, C′. Figure 1 shows an
example of such a straight line. Moreover, using both
properties, one can derive that the union of any two
chains that have the same endpoints forms a “closed”
straight line according to such a metric.

3. The axioms of the variation of

information

The variation of information (dVI), introduced in
(Meilă, 2003), measures the distance between two clus-
terings in terms of the information difference between
them.

dVI(C, C′) = H(C) + H(C′) − 2I(C, C′) (5)

where H and I represent respectively the entropies2 of
and the mutual information3 between the two cluster-
ings.

In (Meilă, 2003) the variation of information was
shown to satisfy AJ and AC and that it is a metric,
among several other properties. It is also easy to show
that it satisfies additivity w.r.t refinement (see the ap-
pendix).

Now we show that a subset of these properties uniquely
defines dVI .

Theorem 1 The variation of information is the
unique cluster comparison criterion d that satisfies the
axioms:

A1 Symmetry For any two clusterings C, C ′

d(C, C′) = d(C′, C)

A2 Additivity w.r.t refinement Denote by 0̂ and
1̂ the unique clusterings having K = n respectively
K = 1 clusters. For any clustering C

d(0̂, C) + d(C, 1̂) = d(0̂, 1̂)

A3 Additivity w.r.t the join For any two cluster-
ings C, C′

d(C, C′) = d(C, C × C′) + d(C′, C × C′)

A4 Convex additivity Let C = {C1, . . . CK} be a
clustering and C′ be a refinement of C. Denote by
C′

k the partitioning induced by C ′ on Ck. Then

d(C, C′) =

K
∑

k=1

nk

n
d(1̂nk

, C′
k)

2H(C) = −
∑

K

k=1

nk

n
log nk

n

3I(C, C′) =
∑

K

k=1

∑

K
′

k′=1

nk,k′

n
log

nk,k′

n

nk

n

n
′

k′

n

A5 Scale Denote by CU
K the “uniform” clustering, i.e

the clustering with K equal clusters. If CU
K exists,

then

d(1̂, CU
K) = log K

In the above, 1̂nk
is the 1̂ clustering of the dataset

Ck containing nk points. The proof of the theorem is
constructive and is given in the appendix. Note that
the axioms do not require d to be a metric; this follows
implicitly.

Intuitively, axioms A2 and A3 describe the geomet-
ric properties of dVI , i.e that it is aligned with the
lattice of partitions. Axiom A2 is a weak version of
the AR property defined in the previous section. Ax-
ioms A4 and A5 set the scale of d and in particular its
logarithmic growth rate. They are reminiscent of the
postulates III and IV of entropy as given in (Rènyi,
1970).

It is interesting to see what happens if the last two
axioms are changed. In other words, if one maintains
that the distance has to be aligned with the lattice of
partitions, but allows the scale to differ. This is what
we are going to do in the next section.

4. Other metrics for comparing

clusterings

The clustering literature contains quite a number of
criteria for comparing clusterings: the Rand index
(Rand, 1971), the Jaccard index (Ben-Hur et al.,
2002), the Folwkes-Mallows index (Fowlkes & Mallows,
1983), the Huber and Arabie indices (Hubert & Ara-
bie, 1985), the Mirkin metric (Mirkin, 1996), the Van
Dongen metric (van Dongen, 2000), as well as statisti-
cally “adjusted” versions of some of the above (Hubert
& Arabie, 1985).

We shall start with two criteria, the Mirkin and Van
Dongen metrics, for which we give an axiomatic char-
acterization.

The Mirkin metric is defined by (Mirkin, 1996)

d′M (C, C′) =
∑

k

n2
k +

∑

k′

n′
k′

2 − 2
∑

k

∑

k′

n2
kk′ (6)

This metric can also be rewritten (Ben-Hur et al.,
2002) as

d′M (C, C′) = 2Ndisagree(C, C′) (7)

where Ndisagree is defined as the number of point pairs
which are in the same cluster under C but in different
clusters under C′ or viceversa. The Rand index is de-
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fined as

iR(C, C′) =
n(n − 1) − 2Ndisagree(C, C′)

n(n − 1)
(8)

Therefore the characterization of dM below will reflect
immediately on the (unadjusted) Rand index. In what
follows we shall use an rescaled form of the Mirkin
metric which is n-invariant and bounded.

dM (C, C′) =
d′M (C, C′)

n2
(9)

The Van Dongen criterion was also proved to be a
metric (van Dongen, 2000)

d′D(C, C′) = 2n −
∑

k

max
k′

nkk′ −
∑

k′

max
k

nkk′ (10)

As with the Mirkin metric, we shall use its bounded
n-invariant version

dD(C, C′) =
d′D(C, C′)

2n
(11)

To proceed with our axiomatic study, we first compute
the distances between 1̂ and CU

K under the invariant
Van Dongen and Mirkin metrics.

dD(1̂, CU
K) =

1

2

(

1 −
1

K

)

dM (1̂, CU
K) = 1 −

1

K

With respect to convex additivity, it is easy to prove
(see also (Meilă, 2003)) that dD is convexely additive,
while the Mirkin metric satisfies

dM (C, C′) =

K
∑

k=1

n2
k

n2
dM (1̂nk

, C′
k) (12)

whenever C′ is a refinement of C and C′
k represents the

partitioning induced by C ′ on cluster Ck of C.

We now can replace the scale axioms of dVI with ax-
ioms corresponding to dD and dM respectively. We
obtain a negative

Theorem 2 There is no cluster comparison criterion
that satisfies axioms A1–A4 and
A5.D d(1̂, CU

K) = 1 − 1/K

Theorem 3 The unique cluster comparison criterion
d that satisfies axioms A1, A3, A4, and

A2.D d(1̂, C) =
1

2

[

1 −
maxk nk

n

]

is the invariant van Dongen metric dD.

Theorem 4 The unique cluster comparison criterion
d that satisfies axioms A1–A3, A5.D and

A4.M Let C′ be a refinement of C and denote by C ′
k the

clustering induced by C ′ on Ck ∈ C. Then

d(C, C′) =

K
∑

k=1

n2
k

n2
d(1̂nk

, C′
k)

is the invariant Mirkin metric dM .

Thus, the invariant Mirkin metric is also aligned with
the lattice of partitions. The additivity axiom A4.M
has several consequences. First, it shows that dM is lo-
cal, i.e changes inside one cluster depend only on the
relative size of that cluster and of the nature of the
change, and are not affected by how the rest of the
data set is partitioned. But the union of two or more
datasets shrinks distances (because of the weighting
with the squares of the proportions), a rather counter-
intuitive behavior. It is worth recalling that all these
properties of the Mirkin metric are readily translated
into similar properties of the unadjusted Rand index.
The “unnatural” behavior of the Rand index with in-
creasing K has been noted early on and is the main
reason why this index is used mostly in its adjusted
form (Hubert & Arabie, 1985).

The van Dongen metric is horizontally aligned with the
lattice of partitions but not vertically, that is it satisfies
axioms A1, A3, A4, A5.D. To uniquely characterize it,
we introduced axiom A2.D, which implies A5.D but is
significantly stronger4.

How about other, more popular indices for comparing
partitions? The space does not permit us to describe
and compare all of them here (such comparisons can be
found in (Ben-Hur et al., 2002; Hubert & Arabie, 1985;
Meilă, 2003; Wallace, 1983) and others). One fact
shown in (Meilă, 2003) is that the Jaccard, Fowlkes-
Mallows, some of the Huber and Arabie and all the
adjusted indices, including the widely used adjusted
Rand index, are non-local (that is, a change inside a
single cluster counts differently depending on how the
rest of the data is clustered). Therefore they will rate
worse on the scale of understandability and in par-
ticular cannot satisfy the convex additivity property.
Also, it is easy to show that most of the above in-
dices are only asymptotically n-invariant, so their ax-
iomatic description would be much more complicated
(and consequently a much less illuminating exercise).

4We have not proved that A2.D is the weakest possible
axiom that uniquely deterimines dD. But we believe this
as likely and will consider it in further research.
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Another very interesting criterion, the classification er-
ror, is discussed in the next section.

5. The classification error metric

The classification error (CE) distance dCE is defined
as

dCE(C, C′) = 1 −
1

n
max

σ

K
∑

k=1

nk,σ(k) (13)

In the above, it is assumed w.l.o.g that K ≤ K ′, σ is
an injective mapping of {1, . . . K} into {1, . . . K ′}, and
the maximum is taken over all such mappings. In other
words, for each σ we have a (partial) correspondence
between the cluster labels in C and C ′; now looking at
clustering as a classification task with the fixed label
correspondence, we compute the “classification error”
of C′ w.r.t C. The minimum possible “classification
error” under all correspondences is dCE .

From the computational point of view, it is not neces-
sary to explicitly enumerate all correspondences (order
K!). The maximum can be computed in polinomial
time as the solution of a linear program identical to
the maximum bipartite matching algorithm in graph
theory (Golumbic, 1980). The CE distance is simple
and intuitive, especially if the two clusterings are close
together. The following lemma describes its properties
from the point of view of the axioms considered in this
paper.

Lemma 5 The classification error distance dCE sat-
isfies axioms A1 (symmetry), A4 (convex additivity),
A5.D (scales like 1− 1/K). It violates axioms A2 and
A3, hence it is not aligned with the lattice of partitions.

The proof is sufficiently simple and has been omitted.
The above result shows similarities betweed dCE and
especially the dD metric, and underscores its convex
additivity, locality, and n-invariance, all of which con-
tribute to making dCE a most intutitive criterion. The
dissimilarity is of course the non-alignment with the
lattice of partitions. We have not yet found a complete
characterization of dCE , this is a matter of further re-
search.

6. An impossibility result for

comparing partitions

Theorem 2 prompts the question: what kind of scal-
ings in A5 are compatible with A1–A4? To answer
this question, we change A5 to the weaker A5.H:

A5.H d(1̂, CU
K) = h(K) where h is a non-decreasing

function of K.

Then, the result below shows that A5 is essentially
superfluous.

Theorem 6 Any clustering comparison criterion sat-
isfying A1–A4 and A5.H is identical to dVI up to a
multiplicative constant.

In other words, the variation of information is the
only “sensible” (that is symmetric, n-invariant, with
d(1̂, CU

K) non-decreasing) criterion that is convexely ad-
ditive and aligned to the lattice of partitions.

From theorem 6 the following impossibility result fol-
lows immediately.

Corrollary 7 There is no d symmetric, n-invariant,
with d(1̂, CU

K) non-decreasing, that satisfies simultane-
ously the following three properties:
• d is aligned to the lattice of partitions (axioms A2,
A3)
• d is convexly additive (axiom A4)
• d is bounded

Hence, there is no criterion for comparing clusterings
that can satisfy all three of the above desirable prop-
erties. The users of distances between clusterings will
have to make choices. What are the tradeoffs?

The first property gives geometric intuition in addition
to the intuition one would get from having a metric.
Preserving this property would be useful in designing
search algorithms in the space of clusterings and prov-
ing their properties.

The second one is, in our opinion, the most important
for the “understandability” of a distance, because it is
a law of composition. It says that under unions of sets,
the distances on the parts are weighted in proportion
to the sizes of the parts and then summed.

The argument for the third property is partly “his-
torical”. The vast majority of criteria for comparing
clusterings are bounded between 0 and 1. Moreover,
in statistics, the tradition is to indicate identity be-
tween two clusterings by a 1 (like in the Rand, Fowlkes-
Mallows, Jaccard indices and their adjusted versions).
Another very appealing reason to use a distance that
is bounded (for instance between 0 and 1) is to inter-
pret it as a probability. When can we do this? The
aforementioned indices can all be interpreted as prob-
abilities (see the original papers (Rand, 1971; Fowlkes
& Mallows, 1983; Hubert & Arabie, 1985; Ben-Hur
et al., 2002) for details), but their adjusted versions
can not (Hubert & Arabie, 1985). In this respect, per-
haps the most interpretable is the classification error
dCE , which is indeed the optimal error probability if
clustering was regarded as classification.
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Note however that a criterion that is bounded between
0 and 1 carries the implicit assumption that cluster-
ings can only get negligibly more diverse as the number
of clusters increases. Thus, while using dCE may be
the most natural and intuitive when K is small, this
distance will loose its resolution power for large K.
Whether a bounded or unbounded criterion for com-
paring clusterings is better depends ultimately on the
clustering application at hand. This paper’s aim in
this respect is to underscore the possible choices and
their consequences.

7. Conclusion

This is the first axiomatic approach to comparing clus-
terings. What are the benfits of such an exercise?
Characterizing distances between clusterings in terms
of axioms highlights the essential properties of these
distances, from which all others follow. For example,
we have seen that being aligned to the lattice of par-
titions is a very strong requirement: together with an
additivity constraint (like A4 or A4.M), it completely
determines the values of a distance on the lattice.

An impossibility result is also important, because it re-
veals an essential characteristic of the problem itself.
In this case, very loosely speaking, we have shown that
the lattice of partitions, which is the space where all
possible clusterings lie, has too rich a structure to be
packed inside a bounded ball without breaking some of
the structure. For an analogy, one can say that the Eu-
clidean n-dimensional space, another space with rich
structure, cannot be folded into a sphere without los-
ing some of its properties. Thus, presenting distances
between clusterings in an axiomatic framework helps
better understand their properties and their limita-
tions. It is interesting to note that an impossibility
result for clustering exists in (Kleinberg, 2002). The
Kleinberg paper refers to clustering criteria (e.g single
linkage, mean-squared error, etc) and shows that there
is none that satisfies three desirable properties.

We have given a prominent role to the lattice of par-
titions, interpreting distances as functions on pairs of
points in the lattice. We believe this view will also
become useful in the future, whether one will use dis-
tances aligned to the lattice like the dVI , or completely
unaligned like dCE . Clustering is a hard problem and
seeing clusterings as nodes in a graph opens the possi-
bility of applying new techniques, based on graph and
lattice theory, to this task.
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Proofs

Proof of AR for the dVI distance. dVI can be ex-
pressed as a sum of conditional entropies (Meilă, 2003)

dVI(C, C′) = H(C|C′) + H(C′|C′) (14)

The proof then follows from elementary properties of
the conditional entropy (see (Cover & Thomas, 1991)
for details): first, if C′ is a refinement of C, then
H(C|C′) = 0; then, one applies the chain rule for con-
ditional entropy.

Proof of Theorem 1 From A4 and A5 we have that

d(0̂, C) =
∑

k

nk

n
d(1̂, CU

nk
) (15)

=
∑

k

nk

n
log nk (16)

=
∑

k

nk

n
(log

nk

n
+ log n) (17)

= log n − H(C) (18)

From A2 we get d(1̂, C) = log n − d(0̂, C) = H(C).
For any two clusterings C, C ′ define by Ck the clustering
induced by C′ on Ck ∈ C.

d(C, C × C′) =

K
∑

k=1

nk

n
d(1̂, Ck) (19)

=

K
∑

k=1

nk

n
H(Ck) (20)

= H(C|C′) (21)

Therefore, by A2, d(C, C′) = H(C|C′)+H(C′|C), Q.E.D

Proof of Theorem 2

d(0̂, C) =
∑

k

nk

n
d(1̂, CU

nk
) (22)

=
∑

k

nk

n

(

1 −
1

nk

)

(23)

= 1 −
K

n
(24)

Therefore d(1̂, C) = (1−1/n)−(1−K/n) = (K−1)/n
if |C| = K. This contradicts A5 according to which
d(1̂, CU

K) = (K − 1)/K.
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Proof of Theorems 3 and 4 These proofs follow the
same steps as the proof of Theorem 1 and are therefore
omitted.

Proof of Theorem 6 We have consecutively:

d(1̂, 0̂) = h(n) by A5.H (25)

d(1̂, C) = h(n) − d(0̂, C) by A2 (26)

d(0̂, C) =
∑

k

nk

n
h(nk) by A4 (27)

d(1̂, CU
K) = h(n) − d(0̂, CU

K) (28)

= h(n) − K
1

K
h(

n

K
) (29)

Since n/K = M is an integer, and recalling A5.H we
can rewrite the last equality as

h(K) = h(KM) − h(M)

or equivalently

h(KM) = h(K) + h(M) (30)

for any positive integers K,M . By lemma 8 below,
this implies that h(n) = C log n for all n = 1, 2, 3, . . ..

It follows that A1-A4 together with A5.H imply essen-
tially the original A5 (up to the multiplicative constant
C) and therefore d cannot be but proportional to the
VI.

Lemma 8 Let h : {1, 2, . . .} → [0,∞) be a non-
decreasing function satisfying (30) for any positive in-
tegers K,M . Then h(n) = C log n for any n.

Proof Let h(2) = C. We prove that h(n) = C log n.
Let a = log(nq) = q log n with q a large positive inte-
ger. Then

h(2bac) ≤ h(2a) = h(nk) ≤ h(2dae) (31)

bacC ≤ qh(n);≤ daeC (32)

bac

a
≤ h(n)

C log n
;≤

dae

a
(33)

The middle term does not depend on q, while the left
and right tend to 1 for q increasing to infinity, which
implies h(n) = C log n.
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Rènyi, A. (1970). Probability theory. North-Holland.

Stanley, R. P. (1997). Enumerative combinatorics.
Cambridge Unversity Press.

van Dongen, S. (2000). Performance criteria for graph
clustering and Markov cluster experiments (Techni-
cal Report INS-R0012). Centrum voor Wiskunde en
Informatica.

Wallace, D. L. (1983). Comment. Journal of the Amer-
ican Statistical Association, 78, 569–576.


