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Abstract

Many manifold learning algorithms aim to create embeddings with low or no1
distortion (i.e. isometric). If the data has intrinsic dimension d, it is often impossible2
to obtain an isometric embedding in d dimensions, but possible in s > d dimensions.3
Yet, most geometry preserving algorithms cannot do the latter. This paper proposes4
an embedding algorithm that overcomes this problem. The algorithm directly5
computes, for any data embedding Y, a distortion Loss(Y), and iteratively updates6
Y in order to decrease it. The distortion measure we propose is based on the push-7
forward Riemannian metric associated with the coordinates Y. The experiments8
confirm the superiority of our algorithm in obtaining low distortion embeddings.9

1 Introduction, background and problem formulation10

Suppose we observe data points sampled from a smooth manifoldMwith intrinsic dimension dwhich11
is itself a submanifold of D-dimensional Euclidean spaceM⊂ RD. The task of manifold learning12
is to provide a mapping φ :M→N (where N ⊂ Rs) of the manifold into lower dimensional space13
s � D. According to the Whitney Embedding Theorem [11] we know thatM can be embedded14
smoothly into R2d using one homeomorphism φ. Hence we seek one smooth map φ :M→ Rs with15
d ≤ s ≤ 2d� D.16

Smooth embeddings preserve the topology of the originalM. Nevertheless, in general, they distort17
the geometry. Theoretically speaking1, preserving the geometry of an embedding is embodied in the18
concepts of Riemannian metric and isometric embedding. A Riemannian metric g is a symmetric19
positive definite tensor field onM which defines an inner product <,>g on the tangent space TpM20
for every point p ∈M. A Riemannian manifold is a smooth manifold with a Riemannian metric at21
every point. A diffeomorphism φ :M→N is called an isometry iff for all p ∈M, u, v ∈ TpM we22
have < u, v >gp=< dφpu, dφpv >hφ(p) . By Nash’s Embedding Theorem [13], it is known that any

23

smooth manifold of class Ck, k ≥ 3 and intrinsic dimension d can be embedded isometrically in the24
Euclidean space Rs with s = poly(d).25

In unsupervised learning, it is standard to assume that (M, g0) is a submanifold of RD and that it26
inherits the Euclidean metric from it2. An embedding φ :M→ φ(M) = N defines a metric g onN27
by < u, v >g(φ(p))=< dφ−1u, dφ−1v >g0(p) called the pushforward Riemannian metric; (M, g0)28
and (N , g) are isometric.29

Much previous work in non-linear dimension reduction[16, 19, 18] has been driven by the desire30
to find smooth embeddings of low dimension that are isometric in the limit of large n. This work31
has met with mixed success. There exists the constructive implementation [18] of Nash’s proof32
technique, which guarantees consistence and isometry. However, the algorithm presented falls short33
of being practical, as the embedding dimension s it requires is significantly higher than the minimum34

1For a more complete presentation the reader is referred to [8] or [15] or [10].
2Sometimes the Riemannian metric onM is not inherited, but user-defined via a kernel or distance function.
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necessary, a major drawback in practice. Overall, the algorithm leads to mappings φ that, albeit35

having the desired properties, are visually unintuitive, even for intrinsic dimensions as low as d = 1.36

There are many algorithms, too many for an exhaustive list, which map the data using a cleverly37

chosen reconstruction criterion. The criterion is chosen so that the mapping φ can be obtained as38

the unique solution of a “classic” optimization problem, e.g. Eigendecomposition for Laplacian39

Eigenmaps [3], Diffusion Maps [12] and LTSA [20], Semidefinite Programming for Maximum40

Variance Unfolding [19] or Multidimensional Scaling for Isomap [4]. These embedding algorithms41

sometimes come with guarantees of consistency [3] and, only in restricted cases, isometry [4].42

In this paper we propose an approach which departs from both these existing directions. The main43

difference, from the algorithmic point of view, is that the loss function we propose does not have a44

form amenable to a standard solver (and is not even guaranteed to be convex or unimodal). Thus,45

we do not obtain a mapping φ in “one shot”, as the previous algorithms do, but by the gradual46

improvements of an initial guess, i.e. by gradient descent. Nevertheless, the loss we define directly47

measures the deviation from isometry; therefore, when this loss is 0, (near) isometry is achieved.48

The algorithm is initialized with a smooth embedding Y = φ(M) ⊆ Rs, s ≥ d; we define the49

objective function Loss(Y) as the averaged deviation of the pushforward metric from isometry. Then50

Y is iteratively changed in a direction that decreases Loss. To construct this loss function, we exploit51

the results of [15] who showed how a pushforward metric can be estimated, for finite samples and52

in any given coordinates, using a discrete estimator of the Laplace-Beltrami operator ∆M. The53

optimization algorithm is outlined in Algorithm 1.54

Input : data X ∈ Rn×D , kernel function Kh(), weights w1:n, intrinsic dimension d, embedding dimension s
Initial coordinates Y0 ∈ Rn×s, with Yk,: representing the coordinates of point k.

Init : Compute Laplacian matrix L ∈ Rn×n using X and Kh().
while not converged do

Compute H = [Hk]k=1:n ∈ Rn×s×s the (dual) pushforward metric at data points from Y and L.
Compute Loss(H1:n) and∇Y Loss(H)
Take a gradient step Y← Y− η∇Y Loss(H)

end
Output: Y

Algorithm 1: Outline of the Riemannian Relaxation Algorithm.55

A remark on notation is necessary. Throughout the paper, we denote byM, p∈M, TpM,∆M a56

manifold, a point on it, the tangent subspace, and the Laplace-Beltrami operator in the abstract,57

coordinate free form. When we describe algorithms acting on data, we will use coordinate and finite58

sample representations. The data is X ∈ Rn×D, and an embedding thereof is denoted Y ∈ Rn×s;59

rows k of X,Y, denoted Xk, Yk are coordinates of data point k, while the columns, e.g Yj represent60

functions of the points, i.e restrictions to the data of functions onM. The construction of L (see61

below) requires a kernel, which can be the (truncated) gaussian kernelKh(z) = exp(z2/h), |z| < rh62

for some fixed r > 0 [9, 17]. Besides these, the algorithm is given a set of weights w1:n,
∑
k wk = 1.63

The construction of the loss is based on two main sets of results that we briefly review here. First,64

an estimator L of the Laplace-Beltrami operator ∆M ofM, and second, an estimator of the push-65

forward metric g in the current coordinates Y.66

To construct L we use the method of [5], which guarantees that, if the data are sampled from a67

manifoldM, L converges to ∆M [9, 17]. Given a set of points in high-dimensional Euclidean space68

RD, represented by the n×D matrix X, construct a weighted neighborhood graph G = ({1 : n},W )69

over them, with W = [Wij ]ij=1:n. The weight wkl between Xk: and Xl: is the heat kernel [3]70

Wij ≡ Kh(||Xk: − Xl:||) with h a bandwidth parameter fixed by the user, and || || the Euclidean71

norm. Next, construct L = [Lkl]ij of G by72

D=W1 , W̃ = D−1WD−1 , D̃ = W̃1 , and L = D̃
−1

W̃ (1)

Equation (1) represents the discrete versions of the renormalized Laplacian construction from [5].73

Note that W,D, D̃, W̃,L all depend on the bandwidth h via the heat kernel. The consistency of L74

has been proved in e.g [9, 17].75

The second fact we use is the relationship between the Laplace-Beltrami operator and the Riemannian76

metric on a manifold [11]. Based on this, [15] give a a construction method for a discrete estimator77
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of the Riemannian metric g, in any given coordinate system, from an estimate L of ∆M. In a given78

coordinate representation Y, a Riemannian metric g at each point is an s× s positive semidefinite79

matrix of rank d. The method of [15] obtains the matrix Moore-Penrose pseudoinverse of this metric80

(which must be therefore inverted to obtain the pushforward metric). We denote this inverse at point81

k by Hk; let H = [Hk, k = 1, . . . n] be the three dimensional array of all . Note that H is itself82

the (discrete estimate of) a Riemannian metric, called the dual (pushforward) metric. With these83

preliminaries, the method of [15] computes H by84

Hij =
1

2

[
L(Yi · Yj)− Yi · (LYj)− Yj · (LYi)

]
(2)

Where here Hij is the vector whose kth entry is the ijth element of the dual pushforward metric H at85

the point k and · denotes element-by-element multiplication.86

2 The objective function Loss87

The case s = d (embedding dimension equals intrinsic dimension). Under this condition, it can88

be shown [10] that φ : M → Rd is an isometry iff gp, p ∈ M expressed in a normal coordinate89

system equals the unit matrix Id. Based on this observation, it is natural to measure the quality of the90

data embedding Y as the departure of the Riemannian metric obtained via (2) from the unit matrix.91

This is the starting idea for the distortion measure we propose to optimize. We develop it further as92

follows. First, we choose to use the dual of g, evaluated by H instead of pushforward metric itself.93

Naturally Hk = Id iff H−1k = Id, so the dual metric identifies isometry as well. When no isometric94

transformation exists, it is likely that optimizing w.r.t g and optimizing w.r.t h will arrive to different95

embeddings. There is no mathematically compelling reason, however, to prefer optimizing one over96

the other. We choose to optimize w.r.t h for three reasons; (1) it is computationally faster, (2) it is97

numerically more stable, and (3) in our experience users find H more interpretable.398

Second, we choose to measure the distortion of Hk by ||Hk− I|| where || || denotes the matrix spectral99

norm. This choice will be justified shortly.100

Third, we choose the weights w1:n to be proportional to D̃ from (1). As [5] show, these values101

converge to the sampling density π onM. Putting these together, we obtain the loss function102

Loss(Y;L, w) =

n∑
k=1

wk ||Hk − Id||2 . (3)

To motivate the choice of a “squared loss” instead of simply using ||Hk − Id||, notice (the proofs are103

straightforward) that || || is not differentiable at 0, but || ||2 is104

A natural question to ask about Loss is if it is convex. The following proposition proved in the105

Supplement summarizes a set of relevant convexity facts.106

Proposition 1 Denote by λ1:d(Hk) ≥ 0 the eigenvalues of Hk, in decreasing order and assume Y is107

in a compact, convex set. Then108

1. λ1(Hk), λ1(Hk)− λd(Hk) and λ1(Hk)−
∑d
d′=1 λd′(Hk) are convex in Y.109

2. ||Hk − Id|| is convex in Y for (λ1(Hk) + λd(Hk))/2 ≥ 1 and concave otherwise.110

3. ||Hk − Id||2 is convex in Y whenever ||Hk − Id|| is convex and differentiable in Y.111

This proposition shows that Loss may not be convex near its minimum, and moreover that squaring112

the loss only improves convexity.113

Choosing the right measure of distortion The norm of a Hermitian bilinear functional (i.e114

symmetric tensor of order 2) g : Rs × Rs → R is defined as supu 6=0 |g(u, u)|/||u||. In a115

fixed orthonormal base of Rs, g(u, v) = u′Gv, ||g|| = supu6=0 |u′Gu|. One can define norms116

with respect to any metric g0 on Rs (where g0 is represented in coordinates by G0 a symmetric,117

positive definite matrix), by ||u||G0
= u′G0u, respectively ||g||G0

= supu6=0 |u′Gu|/||u||G0
=118

3it is more intuitive in that it shows the direction and degree of distortion as opposed to the scaling required
to “correct" the space
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supũ 6=0 |ũ′G
−1/2
0 GG−1/20 ũ|/||ũ|| = λmax(G−1/20 GG−1/20 ). In particular, since any Riemannian119

metric at a point k is a g as above, setting g and g0 respectively to Hk and Id we measure the operator120

norm of the distortion by ||Hk − Id||. In other words, the appropriate operator norm we seek can be121

expresed as a matrix spectral norm.122

The expected loss over the data set, given a distribution represented by the weights w1:n is then123

identical to the expression of Loss in (3). If the weights are computed as in (1), it is easy to see that124

the loss function in (3) is the finite sample version of the squared L2 distance between h and g0 on125

the space of Riemannian metrics onM, w.r.t base measure πdVg0126

||h− g0||2 =

∫
M
||h− g0||g0πdVg0 , with dVg0volume element onM. (4)

Defining Loss for embeddings with s > d dimensions Consider G,G0 ∈ Rs×s, two symmetric127

matrices with G0 semipositive definite of rank d < s. We would like to extend the G0 norm of G to128

this case. We start with the family of norms ||||G0+εIs for ε > 0 and we define129

||G||G0
= lim

ε→0
||G||G0+εIs . (5)

130

Proposition 2 Let G,G0 ∈ Rs×s be symmetric matrices, with G0 semipositive definite of rank d < s,131

and let ε > 0, γ(u, ε) = u′Gu
u′G0u+ε||u||2 . Then,132

1. ||G||G0+εIs = ||G̃||2 with G̃ = (G0 + εI)−1/2G(G0 + εI)−1/2.133

2. If ||G||G0+εIs < r, then λ†(G) < εr with λ†(G) = supv∈Null(G0) γ(v, ε),134

3. ||||G0
is a matrix norm that takes infinite values when Null G0 6⊆ Null G.135

Hence, || ||G0+εIs can be computed as the spectral norm of a matrix. The computation of || ||G0
is136

similar, with the additional step of checking first if Null G0 6⊆ Null G, in which case we output137

the value∞. Let Bε(0, r) (B(0, r)) denote the r-radius ball centered at 0 in the || ||G0+εIs (|| ||G0
).138

From Proposition 2 it follows that if G ∈ Bε(0, r) then λ†(G) < εr and if G ∈ B(0, r) then139

Null(G0) ⊆ Null(G). In particular, if rank G = rank G0 then Null(G) = Null(G0).140

To define the loss for s > d we use Hk for G and G0 = UkU′k, with Uk an orthonormal basis for141

the tangent subspace at k, TkM , the norms || ||G0+εIs , || ||G0
act as soft and hard barrier functions142

constraining the span of Hk to align with the tangent subspace of the data manifold.143

Loss(Y; L, w, d, εorth) =

n∑
k=1

wk|| (UkU′k + ε2orthIs)−1/2
(
Hk − UkU′k

)
(UkU′k + ε2orthIs)−1/2︸ ︷︷ ︸

G̃k

||2.

(6)

144

3 Optimizing the objective145

First, we note that Hk can be rewritten in the convenient form146

Hk(Y) =
1

2
Y′[trace(Lk)− (eke

′
kL)− (eke

′
kL)′]Y ≡ 1

2
Y′LkY (7)

where ek refers to the kth standard basis vector of Rn and Lk is a symmetric positive semi-definite147

matrix precomputed from entries in L; Lk has non-zero rows only for the neighbors of k.148

Proposition 3 Let Lossk denote term k of Loss. If s = d, the gradient of Lossk as given by (3) is149

∂ Lossk
∂Y

= 2wkλ
∗
kLkYuku

′
k, (8)

with λ∗k the largest eigenvalue of Hk − Id and uk is the corresponding eigenvector.150

If s > d, the gradient of Lossk of (6) is151

∂ Lossk
∂Y

= 2wkλ
∗
kLkYΠkuku

′
kΠ
′
k (9)

where Πk = (UkU′k + (εorth)kIs)−1/2, λ∗k is the largest eigenvalue of G̃k of (6) and uk is the152

corresponding eigenvector.153
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When embedding in s > d dimensions, the loss function depends at each point k on finding the154

d-dimensional subspace Uk. Mathematically, this subspace coincides with the span of the Jacobian155

DYk which can be identified with the d-principal subspace of Hk. When computing the gradient of156

Loss we assume that U1:n are fixed. Since the derivatives w.r.t Y are taken only of H and not of the157

tangent subspace Uk, the algorithm below is actually an alternate minimization algorithm, which158

reduces the cost w.r.t Y in one step, and w.r.t U1:n in the alternate step.159

3.1 Algorithm160

We optimize the loss (3) or (6) by projected gradient descent with line search (subject to the observa-161

tion above). The projection consists of imposing
∑
k Yk = 0, which we enforce by centering ∇Y162

before taking a step. This eliminates the degeneracy of the Loss in (3) and (6) w.r.t constant shift in Y.163

To further improve the good trade-off between time per iteration and number of iterations, we found164

that a heavy-ball method with parameter α is effective. At each iteration computing the gradient is165

O((S + s3)n) where S is the number of nonzero entries of L.166

Input : data X, kernel function Kh(), initial coordinates Y0, weights w1:n, intrinsic dimension d, orthonormal
tolerance εorth, heavy ball parameter α ∈ [0, 1)

Init : Compute: graph Laplacian L by (1), matrices L1:n as in (7). Set S = 0
while not converged do

Compute∇Loss:
for all k do

1. Calculate Hk via (2);
2. If s > d

(a) Compute Uk by SVD from Hk;
(b) Compute gradient of∇Lossk(Y) using (9);

3. Else (s = d): calculate gradient∇Lossk(Y) using (8);
4. Add∇Lossk(Y) to the total gradient;

end
Take a step in Y:

1. Compute projected direction S and project S← (In − ene′n)∇Loss+αS;
2. Find step size η by line search and update Y← Y− ηS;

end
Output: Y

Algorithm 2: RIEMANNIANRELAXATION (RR)167
168

3.2 For large or noisy data169

Here we describe an extension of the RR Algorithm which can naturally adapt to large or noisy data,170

where the manifold assumption holds only approximately. The idea is to subsample the data, but in a171

highly non-uniform way that improves the estimation of the geometry.172

A simple peliminary observation is that, when an embedding is smooth, optimizing the loss on a173

subset of the data will be sufficient. Let I ⊂ {1, . . . n} be set of size n′ < n. The subsampled loss174

LossI will be computed only for the points k′ ∈ I. If every point k has O(d) neighbors in I, this175

assures that the gradient of LossI will be a good approximation of ∇Loss at point k, even if k 6∈ I,176

and does not have a term containing Hk in LossI . To optimize LossI by RR, it is sufficient to run the177

“for” loop over k′ ∈ I. Algorithm PCS-RR below describes how we choose a “good" subsample I,178

with the help of the PRINCIPALCURVES algorithm of [14].179

Input : data X, kernel function Kh(), initial coordinates Y0, intrinsic dimension d, subsample size n′, other
parameters for RR

Compute X̂ = PRINCIPALCURVES(X,Kh, d)
Take a uniform sample I of size n′ from {1, . . . n} (without replacement).
for k′ in I do

Find Xl the nearest neigbor in X of X̂k′ , and add l to I (removing duplicates)
end
Output: Y = RR(Y0,Kh, d, I, . . .)

Algorithm 3: PRINCIPALCURVES-RIEMANNIANRELAXATION (PCS-RR)180
181
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Figure 1: Hourglass to sphere. From left to right: target Y (noisy sphere), initialization Y0 of RR (noisy
hourglass), output of RR, mean-squared error and Loss vs. noise level σ (on a log10 scale). Convergence of
RR was achieved after 400 iterations.

Informally speaking, PRINCIPALCURVES uses a form of Mean-Shift to obtain points in the d-182

dimensional manifold of highest density in the data. The result is generally biased, however [7] have183

shown that this algorithm offers a very advantageous bias-variance trade-off in case of manifolds184

with noise. We use the output Ŷ of PRINCIPALCURVES to find a subset of points that (1) lie in a high185

density region relative to most directions in RD and (2) are “in the middle” of their neighbors, or186

more formally, have neighborhoods of dimension at least d. In other words, this is a good heuristic to187

avoid “border effects”, or other regions where the d-manifold assumption is violated.188

4 Experimental evaluation189

Hourglass to sphere illustrates how the algorithm works for s = 3, d = 2. The data X is sampled190

uniformly from a sphere of radius 1 with intrinsic dimension d = 2. We sample n = 10000 points191

from the sphere and add i.i.d. Gaussian noise with Σ = σ2/sIs4, estimating the Laplacian L on the192

noisy data X. We initialize with a noisy “hourglass” shape in s = 3 dimensions, with the same noise193

distribution as the sphere. If the algorithm works correctly, by using solely the Laplacian and weights194

from X, it should morph the hourglass Y0 back into a sphere. The results after convergence at 400195

iterations are shown in Fig. 1 (and an animation of this convergence in the Supplement). We see that196

RR not only recovers the sphere, but it also suppresses the noise.197

The next two experiments compare RR to several embedding algorithms w.r.t geometric recovery. The198

algorithms are Isomap, Laplacian Eigenmaps, HLLE[6], MVU, 5 . The embeddings YLE,MV U,HLLE
199

need to be rescaled before being evaluated, and we use the “oracle” rescaling w.r.t the synthetic200

ground truth. The algorithms are compared w.r.t the dual metric distortion Loss, and w.r.t mean201

squared errror in pairwise distance (the loss optimized by Isomap 6 ). This is202

dis(Y,Ytrue) = 2/n(n−1)
∑
k 6=k′

(
||Yk − Yk′ || − ||Ytruek − Ytruek′ ||

)2
(10)

where Y is the embedding resulting from the chosen method and Ytrue are the true noiseless203

coordinates. Note that none of Isomap, MVU, HLLE could have been tested on the hourglass to204

sphere data of the previous example, because they work only for s = d. The sample size is n = 3000205

in both experiments, and noise is added as described above.206

Flat “swiss roll” manifold, s = d = 2 The results are displayed in Fig. 2,207

Curved “half sphere” manifold s = d = 2. Isometric embedding into 2D is not possible. We208

examine which of the algorithms achieves the smallest distortions in this scenario. The true distances209

were computed as arc-lengths on the half-sphere. The results are displayed in Fig 2.210

RR achieves the lowest loss and lowest distortion over all noise values tested and on both data sets.211

Isomap and HLLE also generally perform well but the latter requires oracle knowledge of the scale of212

the true embedding. Convergence of RR was achieved on the swiss roll data set after 1000 iterations213

and on the half sphere after 10 iterations. This indicates the importance of quality of the initialization.214

4For this artificial noise, adding dimensions beyond s has no effect except to increase σ.
5embeddings were computed using drtoolbox: https://lvdmaaten.github.io/drtoolbox/
6Isomap estimates the true distances using graph shortest path
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Figure 2: top-left: swiss roll with a hole data set in D = 3 (no noise), top-mid: embeddings of each algorithm
on the swiss roll data (no noise). top-right: embeddings of each algorithm on the half sphere data(no noise),
the original data plotted in the top left. mid-left: dis value vs. noise level σ by algorithm on the swiss roll data.
mid-right: dis value vs. noise level σ by algorithm on the half sphere data. bottom-left: Loss value vs. noise
level σ by algorithm on the swiss roll data. bottom-right: Loss value vs. noise level σ by algorithm on the half
sphere data. The initial Loss of RR is the LEIG Loss (orange).

4.1 Visualizing the main SDSS galaxy sample in spectra space215

The data contains spectra of galaxies from the Sloan Digital Sky Survey7 [1]. We extracted a subset216

of spectra whose SNR was sufficiently high, known as the main sample. This set contains 675,000217

galaxies observed in D = 3750 spectral bins, preprocessed as described in [2], which includes218

moving them to a common rest-frame wavelength and filling-in missing data using a weighted PCA,219

before computing a sparse neighborhood graph and pairwise distances between neighbors in this220

graph. A log-log plot of the average number neighbors m(r) vs. neighborhood radius r (shown in the221

Supplement), indicates that the intrinsic dimension of these data varies with the scale r. In particular,222

in order to support m = O(d) neighbors, the radius must be above 60, in which case d ≤ 3. We223

embedded the whole data set by Diffusion Maps, obtaining the graph in Fig. 3 a. This figure strongly224

suggests that d is not constant for this data cloud, and that the embedding is not isometric (Fig 3,225

b). We “rescaled” the data along the three evident principal curves shown in Figure 3 a by running226

Algorithm 3 (Y, n = 105, n′ = 2000, s = 3, d = 1). In the new coordinates (Fig 3, c), Y is now close227

to isometric along the selected curves, while in Fig. 3,b, ||Hk|| was in the thousands on the uppermost228

“arm”. This means that, at the largest scale, the units of distance in the space of galaxy spectra are229

being preserved (almost) uniformly along the sequences, and that they correspond to the distances230

in the original D = 3750 data. Moreover, we expect the distances along the final embedding to be231

closer on average to the true distance, because of the denoising effect of the embedding. Interpreting232

7www.sdss.org
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a b

c d
Figure 3: a: Initial LE embedding from D = 3750 to s = 3 dimensions, with the principal curves Ŷ
superimposed. For clarity, we only show a small subsample of the Y0; a larger one is in the Supplement; b:
same embedding, only points “on” principal curves, colored by log10 ||Hk|| (hence, 0 represents isometry); c:
same points as in (b), after RR(color on the same scale as in (b)); d: 40,000 galaxies in the coordinates from (c),
colored by the strength of Hydrogen α emission, a very nonlinear feature which requires dozens of dimensions
to be captured in a linear embedding. Convergence of PCS-RR was achieved after 1000 iterations and took
2.5 hours optimizing a Losswith n′ = 2000 terms over the n× s = 105 × 3 coordinates, corresponding to the
highest density points. (Please zoom for better viewing)

the coordinates along these “arms” is in progress. As a next step of the analysis, RR with s = d = 3233

will be used to rescale the high-density region at the confluence of the three principal curves.234

5 Discussion235

The RR we propose departs from existing non-linear embedding algorithms in two major ways.236

First, instead of a heuristically chosen loss, like pairwise distances, or local linear reconstruction237

error, it directly optimizes the (dual) Riemannian metric of the embedding Y; when this is successful,238

optimality w.r.t all other geometrically consistent criteria is satisfied simultaneously. From the239

computational point of view, the non-convex loss is optimized iteratively by projected gradient.240

Our algorithm explicitly requires both an embedding dimension s and an intrinsic dimension d as241

inputs. Estimating the intrinsic dimension of a data set is not a solved problem, and beyond the scope242

of this work. However, as a rule of thumb, we propose chosing the smallest d for which Loss is not243

too large, for s fixed, or, if d is known (something that all existing algorithms assume), increasing s244

until the loss becomes almost 0. Most existing embedding algorithms, as Isomap, LLE, HLLE, MVU,245

LTSA only work in the case s = d, while Laplacian Eigenmaps/Diffusion Maps requires only s but246

does not attempt to preserve geometric relations. Finally, RR is computationally competitive with247

existing algorithms, and can be seamlessly adapted to a variety of situations arising in the analysis of248

real data sets.249
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