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Abstract

Clustering graphs under the Stochastic Block Model (SBM) and extensions are1
well studied. Guarantees of correctness exist under the assumption that the data2
is sampled from a model. In this paper, we propose a framework, in which we3
obtain “correctness” guarantees without assuming the data comes from a model.4
The guarantees we obtain depend instead on the statistics of the data that can be5
checked. We also show that this framework ties in with the existing model-based6
framework, and that we can exploit results in model-based recovery, as well as7
strengthen the results existing in that area of research.8

1 Introduction: a framework for clustering with guarantees without model9

assumptions10

In the last few years, model-based clustering in networks has witnessed spectacular progress. At11
the central of intact are the so-called block-models, the Stochastic Block Model (SBM), Degree-12
Corrected SBM (DC-SBM) and Preference Frame Model (PFM). The understanding of these models13
has been advanced, especially in understanding the conditions when recovery of the true clustering is14
possible with small or no error. The algorithms for recovery with guarantees has also been improved.15
However, the impact of the above results is limited by the assumption that the observed data come16
from the model.17

This paper proposes a framework to provide theoretical guarantees for the results of model based18
clustering algorithms, without making any assumption about the data generating process. To de-19
scribe the idea, we need some notation. Assume that a graph G on n nodes is observed. A model-20
based algorithm clusters G, and outputs clustering C and parametersM(G, C).21

The framework is as follows: if M(G, C) fits the data G well, then we shall prove that any other22
clustering C′ of G that also fits G well will be a small perturbation of C. If this holds, then C with23
model parametersM(G, C) can be said to capture the data structure in a meaningful way.24

We exemplify our approach by obtaining model-free guarantees for the SBM and PFM models.25
Moreover, we show that model-free and model-based results are intimately connected.26

2 Background: graphs, clusterings and block models27

Graphs, degrees, Laplacian, and clustering Let G be a graph on n nodes, described by its ad-28

jacency matrix Â. Define d̂i =
∑n
j=1 Âij the degree of node i, and D̂ = diag{d̂i} the diagonal

29

matrix of the node degrees. The (normalized) Laplacian of G is defined as1 L̂ = D̂−1/2ÂD̂−1/2. In30

1Rigorously speaking, the normalized graph Laplacian is I − L̂ [10].
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extension, we define the degree matrix D and the Laplacian L associated to any matrix A ∈ Rn×n,31
with Aij = Aji ≥ 0, in a similar way.32

Let C be a partitioning (clustering) of the nodes of G into K clusters. We use the shorthand notation33

i ∈ k for “node i belongs to cluster k”. We will represent C by its n×K indicator matrix Z, defined34

by35

Zik = 1 if i ∈ k, 0 otherwise, for i = 1, . . . n, k = 1, . . . K. (1)

Note that ZTZ = diag{nk} with nk counting the number of nodes in cluster k, and ZT ÂZ =36

[nkl]
K
k,l=1 with nkl counting the edges in G between clusters k and l. Moreover, for two indicator37

matrices Z,Z ′ for clusterings C, C′, (ZTZ ′)kk′ counts the number of points in the intersection of38

cluster k of C with cluster k′ of C′, and (ZT D̂Z ′)kk′ computes
∑
i∈k∩k′ d̂i the volume of the same39

intersection.40

“Block models” for random graphs (SBM, DC-SBM, PFM) This family of models contains41

Stochastic Block Models (SBM) [19, 1], Degree-Corrected SBM (DC-SBM) [18] and Prefer-42

ence Frame Models (PFM) [21]. Under each of these model families, a graph G with adja-43

cency matrix Â over n nodes is generated by sampling its edges independently following the law44

Âij ∼ Bernoulli(Aij), for all i > j. The symmetric matrix A = [Aij ] describing the graph is the45

edge probability matrix. The three model families differ in the constraints they put on an acceptable46

A. Let C∗ be a clustering. The entries of A are defined w.r.t C∗ as follows (and we say that A is47

compatible with C∗).48

SBM: Aij = Bkl whenever i ∈ k, j ∈ l, with B = [Bkl] ∈ RK×K symmetric and non-negative.49

DC-SBM: Aij = wiwjBkl whenever i ∈ k, j ∈ l, with B as above and w1, . . . wn non-negative50

weights associated with the graph nodes.51

PFM: A satisfies D = diag(A1), D−1AZ = ZR where 1 denotes the vector of all ones, Z is52

the indicator matrix of C∗, and R is a stochastic matrix (R1 = 1, Rkl ≥ 0), the details are53

in [21]54

While perhaps not immediately obvious, the SBM is a subclass of the DC-SBM, and the latter a55

subclass of the PFM. Another common feature of block-models, that will be significant throughout56

this work is that for all three, Spectral Clustering algorithms [16] have been proved to work well57

estimating C∗.58

3 Main theorem: blueprint and results for PFM, SBM59

LetM be a model class, such as SBM, DC-SBM, PFM, and denoteM(G, C) ∈ M to be a model60

that is compatible with C and is fitted in some way to graph G (we do not assume in general that this61

fit is optimal).62

Theorem 1 (Generic Theorem) We say that clustering C fits G well w.r.tM iffM(G, C) is “close63

to” G. If C fits G well w.r.tM, then (subject to other technical conditions) any other clustering C′64

which also fits G well is close to C, i.e. dist(C, C′) is small.65

In what follows, we will instantiate this Generic Theorem, and the concepts therein; in66

particular the following will be formally defined. (1) Model construction, i.e an algorithm67

to fit a model in M to (G, C). This is necessary since we want our results to be68

computable in practice. (2) A goodness of fit measure between M(C,G) and the data G.69

(3) A distance between clusterings. We adopt the widely used Misclassification Error (or Hamming)70

distance defined below.71

The Misclassification Error (ME) distance between two clusterings C, C′ over the same set of n72

points is73

dist(C, C′) = 1− 1

n
max
π∈SK

∑
i∈k∩π(k)

1, (2)

where π ranges over all permutations of K elements SK , and π(k) indexes a cluster in C′. If the74

points are weighted by their degrees, a natural measure on the node set, the Weighted ME (wME)75
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distance is76

distd̂(C, C
′) = 1− 1∑n

i=1 d̂i
max
π∈SK

∑
i∈k∩π(k)

d̂i . (3)

In the above,
∑
i∈k∩k′ d̂i represents the total weight of the set of points assigned to cluster k by C77

and to cluster k′ by C′. Note that in the indicator matrix representation of clusterings, this is the78

k, k′ element of the matrix ZT D̂Z ′ ∈ RK×K . While dist is more popular, we believe distd̂ is more79

natural, especially when node degrees are dissimilar, as d̂ can be seen as a natural measure on the80

set of nodes, and distd̂ is equivalent to the earth-mover’s distance.81

3.1 Main result for PFM82

Constructing a model Given a graph G and clustering C of its nodes, we wish to construct a PFM83

compatible with C, so that its Laplacian L satisfies that ||L̂− L|| is small.84

Let the spectral decomposition of L̂ be85

L̂ = [Ŷ Ŷlow]

[
Λ̂ 0

0 Λ̂low

] [
Ŷ T

Ŷ Tlow

]
= Ŷ Λ̂Ŷ T + ŶlowΛ̂lowŶ

T
low (4)

where Ŷ ∈ Rn×K , Ŷlow ∈ Rn×(n−K) and Λ̂, Λ̂low diagonal matrices of dimension K, respectively86

n −K. To ensure that the matrices Ŷ , Ŷlow are uniquely defined we assume throughout the paper87

that L̂’s K-th eigengap, i.e, |λK | − |λK+1|, is non-zero.88

Assumption 1 The eigenvalues of L̂ satisfy λ̂1 = 1 ≥ |λ̂2| ≥ . . . ≥ |λ̂K | > |λ̂K+1| ≥ . . . |λ̂n|.89

Denote the subspace spanned by the columns of M , for any M matrix, by R(M), and || || the90

Euclidean or spectral norm.91

PFM Estimation Algorithm

Input Graph G with Â, D̂, L̂, Ŷ , Λ̂, clustering C with indicator matrix Z.
Output (A,L) = PFM(G, C)

1. Construct an orthogonal matrix derived from Z.

YZ = D̂1/2ZC−1/2, with C = ZTD̂Z the column normalization of Z. (5)

Note Ckk =
∑
i∈k d̂i the volume of cluster k.

2. Project YZ on Ŷ and perform Singular Value Decomposition.

F = Y TZ Ŷ = UΣV T (6)

3. Change basis inR(YZ) to align with Ŷ .

Y = YZUV
T . Complete Y to an orthonormal basis [Y B] of Rn. (7)

4. Construct Laplacian L and edge probability matrix A.

L = Y Λ̂Y T + (BBT )L̂(BBT ), A = D̂1/2LD̂1/2. (8)
92

Proposition 2 Let G, Â, D̂, L̂, Ŷ , Λ̂ and Z be defined as above, and (A,L) = PFM(G, C). Then,93

1. D̂ and L, or A define a PFM with degrees d̂1:n.94

2. The columns of Y are eigenvectors of L with eigenvalues λ̂1:K .95

3. D̂1/21 is an eigenvector of both L and L̂ with eigenvalue λ̂1 = 1.96
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The proof is relegated to the Supplement, as are all the omitted proofs.97

PFM(G, C) is an estimator for the PFM parameters given the clustering. It is evidently not the98

Maximum Likelihood estimator, but we can show that it is consistent in the following sense.99

Proposition 3 (Informal) Assume that G is sampled from a PFM with parametersD∗, L∗ and com-100

patible with C∗, and let L = PFM(G, C∗). Then, under standard recovery conditions for PFM (e.g101

[21]) ||L∗ − L|| = o(1) w.r.t. n.102

Assumption 2 (Goodness of fit for PFM) ||L̂− L|| ≤ ε.103

PFM(G, C) instantiates M(G, C), and Assumption 2 instantiates the goodness of fit measure. It104

remains to prove an instance of Generic Theorem 1 for these choices.105

Theorem 4 (Main Result (PFM)) Let G be a graph with d̂1:n, D̂, L̂, λ̂1:n as defined, and L̂ sat-106

isfy Assumption 1. Let C, C′ be two clusterings with K clusters, and L,L′ their correspond-107

ing Laplacians, defined as in (8), and satisfy Assumption 2. Set δ = 4(K−1)ε2

(|λ̂K |−|λ̂K+1|)2
and δ0 =108

mink Ckk/maxk Ckk with C defined as in (5), where k indexes the clusters of C. Then, whenever109

δ ≤ δ0,110

distd̂(C, C
′) ≤ maxk Ckk∑

k Ckk
δ, (9)

with distd̂ being the weighted ME distance (3).111

In the remainder of this section we outline the proof steps, while the partial results of Proposition 5,112

6, 7 are proved in the Supplement. First, we apply the perturbation bound called the Sinus Theorem113

of Davis and Kahan, in the form presented in Chapter V of [20].114

Proposition 5 Let Ŷ , λ̂1:n, Y be defined as usual. If Assumptions 1 and 2 hold, then115

||diag(sin θ1:K(Ŷ , Y ))|| ≤ ε

|λ̂K | − |λ̂K+1|
= ε′ (10)

where θ1:K are the canonical (or principal) angles betweenR(Ŷ ) andR(Y ) (see e.g [8]).116

The next step concerns the closeness of Y, Ŷ in Frobenius norm. Since Proposition 5 bounds the117

sinuses of the canonical angles, we exploit the fact that the cosines of the same angles are the singular118

values of F = Y T Ŷ of (6).119

Proposition 6 Let M = Y Y T , M̂ = Ŷ Ŷ T and F, ε′ as above. Assumptions 1 and 2 imply that120

1. ||F ||2F = traceMM̂T ≥ K − (K − 1)ε′2.121

2. ||M − M̂ ||2F ≤ 2(K − 1)ε′2.122

Now we show that all clusterings which satisfy Proposition 6 must be close to each other in the123

weighted ME distance. For this, we first need an intermediate result. Assume we have two clus-124

terings C, C′, with K clusters, for which we construct YZ , Y, L,M , respectively Y ′Z , Y
′, L′,M ′ as125

above. Then, the subspaces spanned by Y and Y ′ will be close.126

Proposition 7 Let L̂ satisfy Assumption 1 and let C, C′ represent two clusterings for which L,L′127

satisfy Assumption 2. Then, ||Y TZ Y ′Z ||2F ≥ K − 4(K − 1)ε′2 = K − δ128

The main result now follows from Proposition 7 and Theorem 9 of [14], as shown in the Supplement.129

This proof approach is different from the existing perturbation bounds for clustering, which all use130

counting arguments. The result of [14] is a local equivalence, which bounds the error we need in131

terms of δ defined above (“local” meaning the result only holds for small δ).132
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3.2 Main Theorem for SBM133

In this section, we offer an instantiation of Generic Theorem 1 for the case of the SBM. As before,134

we start with a model estimator, which in this case is the Maximum Likelihood estimator.135

SBM Estimation Algorithm

Input Graph with Â, clustering C with indicator matrix Z.
Output A = SBM(G, C)

1. Construct an orthogonal matrix derived from Z: YZ = ZC−1/2 with C = ZTZ.

2. Estimate the edge probabilities: B = C−1ZT ÂZC−1.
3. Construct A from B by A = ZBZT .136

Proposition 8 Let B̃ = C1/2BC1/2 and denote the eigenvalues of B̃, ordered by decreasing mag-137

nitude, by λ1:K . Let the spectral decomposition of B̃ be B̃ = UΛUT , with U an orthogonal matrix138

and Λ = diag(λ1:K). Then139

1. A is a SBM.140

2. λ1:K are the K principal eigenvalues of A. The remaining eigenvalues of A are zero.141

3. A = Y ΛY T where Y = YZU .142

Assumption 3 (Eigengap) B is non-singular (or, equivalently, |λK | > 0.143

Assumption 4 (Goodness of fit for SBM) ||Â−A|| ≤ ε.144

With the model (SBM), estimator, and goodness of fit defined, we are ready for the main result.145

Theorem 9 (Main Result (SBM)) Let G be a graph with incidence matrix Â, and λ̂AK the K-th146

singular value of Â. Let C, C′ be two clusterings with K clusters, satisfying Assumptions 3 and 4.147

Set δ = 4Kε2

|λ̂A
K |2

and δ0 = mink nk/maxk nk, where k indexes the clusters of C. Then, whenever148

δ ≤ δ0, dist(C, C′) ≤ δmaxk nk/n, where dist represents the ME distance (2).149

Note that the eigengap of Â, Λ̂AK is not bounded above, and neither is ε. Since the SBM is less150

flexible than the PFM, we expect that for the same data G, Theorem 9 will be more restrictive than151

Theorem 4.152

4 The results in perspective153

4.1 Cluster validation154

Theorems like 4, 9 can provide model free guarantees for clustering. We exemplify this procedure in155

the experimental Section 6, using standard spectral clustering as described in e.g [19, 18, 16]. What156

is essential is that all the quantities such as ε and δ are computable from the data.157

Moreover, if Y is available, then the bound in Theorem 4 can be improved.158

Proposition 10 Theorem 4 holds when δ is replaced by δY = K− < M̂,M >F +(K − 1)(ε′)2 +159

2
√

2(K − 1)ε′||M̂ −M ||F , with ε′ = ε/(|λ̂K | − |λ̂K+1|) and M, M̂ defined in Proposition 6.160

4.2 Using existing model-based recovery theorems to prove model-free guarantees161

We exemplify this by using (the proof of) Theorem 3 of [21] to prove the following.162

Theorem 11 (Alternative result based on [21] for PFM) Under the same conditions as in Theo-163

rem 4, distd̂(C, C
′) ≤ δWM , with δWM = 128 Kε2

(|λ̂K |−|λ̂K+1|)2
.164
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It follows, too, that with the techniques in this paper, the error bound in [21] can be improved by a165

factor of 128.166

Similarly, if we use the results of [19] we obtain alternative model-free guarantee for the SBM.167

Assumption 5 (Alternative goodness of fit for SBM) ||L̂2−L2||F ≤ ε, where L̂, L are the Lapla-168

cians of Â and A = SBM(G, C) respectively.169

Theorem 12 (Alternative result based on [19] for SBM) Under the same conditions as in Theo-170

rem 9, except for replacing Assumption 4 with 5, dist(C, C′) ≤ δRCY with δRCY = ε2

|λ̂K |4
16 maxk nk

n .171

A problem with this result is that Assumption 5 is much stronger than 4 (being in Frobenius norm).172

The more recent results of [18] (with unspecified constants) in conjunction with our original As-173

sumptions 3, 4, and the assumption that all clusters have equal sizes, give a bound of O(Kε2/λ̂2
K)174

for the SBM; hence our model-free Theorem 9 matches this more restrictive model-based theorem.175

4.3 Sanity checks and Extensions176

It can be easily verified that if indeed G is sampled from a SBM, or PFM, then for large enough n,177

and large enough model eigengap, Assumptions 1 and 2 (or 3 and 4) will hold.178

Some immediate extensions and variations of Theorems 4, 9 are possible. For example, one could179

replace the spectral norm by the Frobenius norm in Assumptions 2 and 4, which would simplify180

some of the proofs. However, using the Frobenius norm would be a much stronger assumption [19]181

Theorem 4 holds not just for simple graphs, but in the more general case when Â is a weighted graph182

(i.e. a similarity matrix). The theorems can be extended to cover the case when C′ is a clustering183

that is α-worse than C, i.e when ||L′ − L̂|| ≥ ||L− L̂||(1− α).184

4.4 Clusterability and resilience185

Our Theorems also imply the stability of a clustering to perturbations of the graph G. Indeed, let L̂′186

be the Laplacian of G′, a perturbation of G. If ||L̂′ − L̂|| ≤ ε, then ||L̂′ − L|| ≤ 2ε, and (1) G′ is187

well fitted by a PFM whenever G is, and (2) C is δ stable w.r.t G′, hence C is what some authors [9]188

call resilient.189

A graph G is clusterable when G can be fitted well by some clustering C∗. Much work [4, 7] has190

been devoted to showing that clusterability implies that finding a C close to C∗ is computationally191

efficient. Such results can be obtained in our framework, by exploiting existing recovery theorems192

such as [19, 18, 21], which give recovery guarantees for Spectral Clustering, under the assumption of193

sampling from the model. For this, we can simply replace the model assumption with the assumption194

that there is a C∗ for which L (or A) satisfies Assumptions 1 and 2 (or 3 and 4).195

5 Related work196

To our knowledge, there is no work of the type of Theorem 1 in the literature on SBM, DC-SBM,197

PFM. The closest work is by [6] which guarantees approximate recovery assuming G is close to a198

DC-SBM.199

Spectral clustering is also used for loss-based clustering in (weighted) graphs and some stability200

results exist in this context. Even though they measure clustering quality by different criteria, so that201

the ε values are not comparable, we review them here. The recent paper of [17], Theorem 1.2 states202

that if the K-way Cheeger constant of G is ρ(k) ≤ (1 − λ̂K+1)/(cK3) then the clustering error2203

distd̂(C, C
opt) ≤ C/c = δPSZ . In the current proof, the constant C = 2 × 105; moreover, ρ(K)204

cannot be computed tractably. In [15], the bound δMSX depends on εMSX , the Normalized Cut205

scaled by the eigengap. Since both bounds refer to the result of spectral clustering, we can compare206

the relationship between δMSX and εMSX ; for [15], this is δMSX = 2εMSX [1− εMSX/(K − 1)],207

2The results is stronger, bounding the perturbation of each cluster individually by δPSZ , but it also includes
a factor larger than 1, bounding the error of K-means algorithm.
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which is about K − 1 times larger than δ when ε = εMSX . In [5], dist(C, C′) is defined in terms of208

||Y TZ − Y ′Z ||2F , and the loss is (closely related) to ||Â − SBM(G, C)||2F . The bound does not take209

into account the eigengap, that is, the stability of the subspace Ŷ itself.210

Bootstrap for validating a clustering C was studied in [11] (see also references therein for earlier211

work). In [3] the idea is to introduce a statistics, and large deviation bounds for it, conditioned on212

sampling from a SBM (with covariates) and on a given C.213

6 Experimental evaluation214

Experiment Setup Given G, we obtain a clustering C0 by spectral clustering [16]. Then we215

calculate clustering C by perturbing C0 with gradually increasing noise. For each C, we construct216

PFM (C,G)and SBM(C,G) model, and further compute ε, δ and δ0. If δ ≤ δ0, C is guaranteed to be217

stable by the theorems. In the remainder of this section, we describe the data generating process for218

the simulated datasets and the results we obtained.219

220

PFM Datasets We generate from PFM model with K = 5, n = 10000, λ1:K =221

(1, 0.875, 0.75, 0.625, 0.5). eigengap = 0.48, n1:K = (2000, 2000, 2000, 2000, 2000). The222

stochastic matrix R and its stationary distribution ρ are shown below. We sample an adjacency223

matrix Â from A (shown below).224

ρ =
[

25 .12 .17 .18 .28
]

R =


.79 .02 .06 .03 .10
.03 .71 .23 .00 .02
.09 .16 .69 .00 .06
.04 .00 .00 .80 .16
.10 .01 .03 .11 .76



A Â

225

Perturbed PFM Datasets A is obtained from the previous model by perturbing its principal226

subspace (details in Supplement). Then we sample Â from A.227

228

Lancichinetti-Fortunato-Radicchi (LFR) simulated matrix [12] The LFR benchmark graphs229

are widely used for community detection algorithms, due to heterogeneity in the distribution230

of node degree and community size. A LFR matrix is simulated with n = 10000, K = 4,231

nk = (2467, 2416, 2427, 2690) and µ = 0.2, where µ is the mixing parameter indicating the232

fraction of edges shared between a node and the other nodes from outside its community.233

234

Political Blogs Dataset A directed network ~A of hyperlinks between weblogs on US politics,235

compiled from online directories by Adamic and Glance [2], where each blog is assigned a political236

leaning, liberal or conservative, based on its blog content. The network A contains 1490 blogs.237

After erasing the disconnected nodes, n = 983. We study Â = ( ~AT ~A)3, which is a smoothed238

undirected graph. For ~AT ~A we find no guarantees.239

240

The first two data sets are expected to fit the PFM well, but not the SBM, while the LFR data is241

expected to be a good fit for a SBM. Since all bounds can be computed on weighted graphs as well,242

we have run the experiments also on the edge probability matrices A used to generate the PFM and243

perturbed PFM graphs.244

The results of these experiments are summarized in Figure 1. For all of the experiments, the cluster-245

ing C is ensured to be stable by Theorem 4 as the unweighted error grows to a breaking point, then246

the assumptions of the theorem fail. In particular, the C0 is always stable in the PFM framework.247
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Comparing δ from Theorem 9 to that from Theorem 4, we find that Theorem 9 (guarantees for SBM)248

is much harder to satisfy. All δ values from Theorem 9 are above 1, and not shown.3 In particular,249

for the SBM model class, the C cannot be proved stable even for the LFR data.250

Note that part of the reason why with the PFM model very little difference from the clustering C0 can251

be tolerated for a clustering to be stable is that the large eigengap makes PFM(G, C) differ from252

PFM(G, C0) even for very small perturbations. By comparing the bounds for Â with the bounds253

for the “weighted graphs” A, we can evaluate that the sampling noise on δ is approximately equal254

to that of the clustering perturbation. Of course, the sampling noise varies with n, decreasing for255

larger graphs. Moreover, from Political Blogs data, we see that “smoothing” a graph, by e.g. taking256

powers of its adjacency matrix, has a stability inducing effect.257

Figure 1: Quantities ε, δ, δ0 from Thm 4 plotted vs dist(C, C0) for various datasets: Â denotes a simple graph, while A denotes a

weighted graph (i.e. a non-negative matrix). For the Political Blogs: Truth means C0 is true clustering of [2], spectral means C0 is obtained

from spectral clustering. For SBM, δ is always greater than δ0.

7 Discussion258

This paper makes several contributions. At a high level, it poses the problem of model free validation259

in the area of community detection in networks. The stability paradigm is not entirely new, but260

using it explicitly with model-based clustering (instead of cost-based) is. So is “turning around” the261

model-based recovery theorems to be used in a model-free framework.262

All quantities in our theorems are computable from the data and the clustering C, i.e do not con-263

tain undetermined constants, and do not depend on parameters that are not available. As with264

distribution-free results in general, making fewer assumptions allows for less confidence in the con-265

clusions, and the results are not always informative. Sometimes this should be so, e.g when the266

data does not fit the model well. But it is also possible that the fit is good, but not good enough267

to satisfy the conditions of the theorems as they are currently formulated. This happens with the268

SBM bounds, and we believe tighter bounds are possible for this model. It would be particularly269

interesting to study the non-spectral, sharp thresholds of [1] from the point of view of model-free270

recovery. A complementary problem is to obtain negative guarantees (i.e that C is not unique up to271

perturbations).272

At the technical level, we obtain several different and model-specific stability results, that bound the273

perturbation of a clustering by the perturbation of a model. They can be used both in model-free274

and in existing or future model-based recovery guarantees, as we have shown in Section 3 and in the275

experiments. The proof techniques that lead to these results are actually simpler, more direct, and276

more elementary than the ones found in previous papers.277

3We also computed δRCY but the bounds were not informative.
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free results325

Proof of Proposition 2326

1. Proof by verification.327

2. LY = Y Λ̂Y TY + (BBT )L̂(BBT )Y = Y Λ̂. Since B is the orthogonal complement of328

Y , it follows that it is a stable subspace as well.329

3. This is a well known result; see for example [20].330

The celebrated Sinus Theorem is reproduced here for completeness.331

Theorem 13 (Sinus Theorem of Davis-Kahan, from [20], Theorem V.3.6) Let L̂ be a Hermi-332

tian matrix with spectral resolution given by (4), Y be any n × K matrix with orthonormal333

columns, and M any symmetric K × K matrix with eigenvalues µ1:K . Let R = L̂Y − YM334

and ∆ = minλ∈λ̂K+1:n,µ∈µ1:K
|λ − µ| > 0. Then, for any unitarily invariant norm || ||,335

||diag(sin θ1:K(Ŷ , Y ))|| ≤ ||R||∆ , where θ1:K are the canonical angles betweenR(Ŷ ) andR(Y ).336

Proof of Proposition 5 This is a corollary of Theorem 3.6 in [20]. If eigenvalues are sorted by their
absolute values, then λ̂K+1:n ∈ [−|λ̂K+1|, |λ̂K+1|] and µ1:K ∈ R\(−|λ̂K+1|−∆, |λ̂K+1|+∆). If
we set M = Λ̂, so that λ̂1:K ∈ R \ (−|λ̂K+1| −∆, |λ̂K+1|+ ∆). Now we view Y as a perturbation
of Ŷ , hence

R = L̂Y − Y Λ̂ = L̂Y − LY + (LY − Y Λ̂) = (L̂− L)Y (11)

||R|| = ||(L̂− L)Y || ≤ ||L̂− L||||Y || ≤ ε. (12)

From Theorem 13 the result follows. 2337

Proof of Proposition 6 For 1:

||F ||2F = traceFFT = traceUΣV TV ΣUT = traceUTUΣV TV Σ = trace Σ2

= 1 +

K∑
k=2

cos2 θk = 1 +

K∑
k=2

(1− sin2 θk) = K −
K∑
k=2

sin2 θk since θ1 = 0 (13)

≥ K − (K − 1)ε′2 (14)

For 2: Denote trace M̂TM =< M̂,M >F . Then ||M − M̂ ||2F = ||M ||2F + ||M̂ ||2F − 2 <338

M̂,M >F≤ K +K − 2(K − (K − 1)ε′2) = 2(K − 1)ε′2. 2339

Proof of Proposition 7 We have that | < M − M̂,M ′ − M̂ >F | ≤ ||M − M̂ ||F ||M ′ − M̂ ||F .
From Proposition 6 the r.h.s is no larger than 2(K − 1)ε′2.

− < M − M̂,M ′ − M̂ >F ≤ ||M − M̂ ||F ||M ′ − M̂ ||F ≤ 2(K − 1)ε′2 (15)

− < M,M ′ >F + < M̂,M >F + < M̂,M ′ >F −||M̂ ||2F ≤ 2(K − 1)ε′2 (16)

< M,M ′ >F ≥ < M̂,M >F + < M̂,M ′ >F −K − 2(K − 1)ε′2 (17)

≥ 2K − 2(K − 1)ε′2 −K − 2(K − 1)ε′2 = K − 4(K − 1)ε′22(18)

Now, note that traceMM ′ = traceY Y TY ′(Y ′)T = trace((Y ′)TY ))(Y TY ′) = ||Y TY ′||2F .340

Moreover, by (7), YZ and Y differ by a unitary transformation. Since || ||F is unitarily invariant,341

the result follows.342

Proof of Theorem 4 We apply Theorem 9 of [14] with AX = Z,AX′ = Z ′, and ÃX = Y , ÃX′ =343

Y ′. It follows that pXYkk′ =
∑
i∈k∩k′ d̂i/

∑n
i=1 d̂i. Hence, the point weights are proportional to344

d̂1:n. Also, evidently, pmin/pmax = δ0, and the result follows.345

Note that we use the fact that both PFM’s have degrees equal to d̂1:n to obtain this proof. 2346

Proposition 14 Assumptions 3 and 4, imply ||diag(sin θ1:K(Ŷ , Y ))|| ≤ ε/|λ̂AK | = ε′, where λ̂AK347

is the K-th eigenvalue of Â.348
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Proof of Proposition 14 We consider Â a perturbation of A, its eigenvectors Ŷ as the perturbed
eigenvectors of A and M = Λ̂. Then, R = AŶ − Ŷ Λ̂

||R|| = ||AŶ − Ŷ Λ̂|| (19)

= ||(AŶ − ÂŶ ) + (ÂŶ − Ŷ Λ̂)|| (20)

≤ ||(A− Â)Ŷ || (21)

≤ ||A− Â||||Ŷ || ≤ ε. (22)

The separation between Λ̂ and the residual spectrum of A is |λ̂K |. From the main Davis-Kahan349

theorem 13 the result follows. 2350

Proof of Proposition 8 The proofs of 1 and 2 are straightforward. To show 3, note that A =351

ZC−1ZT ÂZC−1ZT = YZC
1/2BC1/2Y TZ = YZUΛUTY TZ = Y ΛY T . The definition of B352

above shows that this is the Maximum Likelihood estimator of B given the clustering C.353

⇔ Bkl =
#edges from cluster k to cluster l

nknl
(23)

Proof of Theorem 9 We now follow the steps outlined in section 3 with ε′ from Proposition 14 to354

obtain our main stability result.355

Proof of Proposition 10 In the Proof of Proposition 7, we replace the bounds corresponding to356

< M̂,M >F , ||M̂ −M ||F by the actual values computed from M,M̂ . We obtain357

< M,M ′ >F≥< M̂,M >F −(K − 1)(ε′)2 − 2
√

2(K − 1)ε′||M̂ −M ||F . (24)

Proof of Proposition 3358

From the Proof of this theorem, we have that ||L∗ − L̂|| = o(1), ||(D∗)1/2 − D̂1/2|| = o(1),359

||λ∗ − Λ̂|| = o(1), and ||Ŷ − Y ∗|| = o(1). Let Z be the indicator matrix of C∗. The principal360

eigenvectors of L∗ are Y ∗ = (D∗)1/2Z(C∗)−1/2. It follows then that ||ZT D̂Z − ZTD∗Z|| =361

o(1), and since C = ZT D̂Z, YZ = D̂1/2ZC−1/2 we have that ||YZ − Y ∗|| = o(1), ||F ∗ −362

F || = o(1) where F ∗ = Y TY ∗. Moreover, since ||Ŷ − Y ∗|| = o(1), ||F − I|| = o(1) Hence363

||UV T − I|| = o(1). Since the choice of B depends only on R(YZ), it follows immediately that364

||BBT L̂BTB − B∗(B∗)TL∗(B∗)TB∗|| = o(1). Now, L = YZUV
T Λ̂V UTY TZ + BBT L̂BTB,365

and L∗ = Y ∗Λ∗(Y ∗)T +B∗(B∗)TL∗(B∗)TB∗, which completes the proof. 2366

perturbation of the PFM model To obtain a noisy PFM modelA, we calculate the firstK piecewise367

constant [15] eigenvectors V of the transition matrix P = D−1A, from which we obtain V ∗ by368

perturbing each entry in V with a noise ε ∼ unif(0, 10−4). The perturbed similarity matrix A is369

then obtained as A = D1/2(D1/2V ∗Λ̂V ∗TD1/2 + ŶlowΛ̂lowŶ
T
low)D1/2. An adjacency matrix Â is370

generated from A. In figure 2, we show the perturbed graphs A and Â.371

A Â

Figure 2: Left: the visualization of the perturbed A. Right: the visualization of the perturbed Â
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